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of nonlinear (separable) Hadamard spaces for approximating zeros of the mean of a stochas-
tically perturbed monotone vector field and prove its convergence under a suitable strong
monotonicity assumption, together with a probabilistic independence assumption and a sepa-
rability assumption on the tangent spaces. As a particular case, our results transfer previous
work by P. Bianchi on that method in Hilbert spaces for the first time to Hadamard manifolds.
Moreover, our convergence proof is fully effective and allows for the construction of explicit
rates of convergence for the iteration towards the (unique) solution both in mean and almost
surely. These rates are moreover highly uniform, being independent of most data surrounding
the iteration, space or distribution. In that generality, these rates are novel already in the
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conditions on the Yosida approximates and special cases of stochastic convex minimization are
discussed.
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1. Introduction

1.1. Background and motivation. One of the fundamental problems in stochastic approxi-
mation is solving

min
xPX

ż

fpξ, xq dµpξq,

for a function f : E ˆ X Ñ p´8,`8s on a probability space pE, E , µq and some other target
space X. Indeed, this problem is widely studied for various classes of spaces X and functions
f , with particular focus being placed on approximation methods and their complexity, and we
refer to [14, 15, 44] and the references therein for various discussions along those lines. If X
is a Hilbert space and f is a normal convex integrand (see [56]), some of the most prominent
methods employed in that context are variants of the well-known stochastic proximal point
method, that is the iteration

(`) xn`1 “ proxfλn
pξn`1, xnq

of random variables over an auxiliary probability space pΩ,F ,Pq, assuming a starting point x0 P

X, a sequence of parameters pλnq Ď p0,8q with certain growth conditions, a sequence pξn`1q of
random variables ξn`1 : Ω Ñ E which are independent and identically distributed (i.i.d.) with

(common) distribution µ, and writing proxfλpξ, xq :“ argminyPX

␣

fpξ, yq ` 1
2λ

∥x ´ y∥2
(

for the
proximal map of f . This iteration and variants thereof, and in particular their complexities, are
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widely studied under various assumptions on the convexity of f (we refer to [12, 14, 15, 44, 58]
among many others), prominently in particular when f is strongly convex where then also fast
rates of convergence can be achieved under additional moment conditions.

In a non-probabilistic setting, as is well-known (see e.g. [8]), proximal maps of convex func-
tions are just a special instantiation of the general notion of a resolvent of a monotone operator.
On this general level of monotone operators, Bianchi [17] (see also [16]) studied a corresponding
variant of the proximal point algorithm phrased with resolvents for general monotone operators
which are now stochastically perturbed, similar as to f above.

Concretely, let pE, E , µq and pΩ,F ,Pq be probability spaces as before, let X be a separable
Hilbert space and A : E ˆ X Ñ 2X be a set-valued map. Under a suitable measurability
assumption on A and assuming the maximal monotonicity of Apξ, ¨q (the precise assumptions
will be discussed later), Bianchi [17] studied the iteration

(˚) xn`1 “ Jλnpξn`1, xnq

for an i.i.d. sequence pξn`1q of random variables Ω Ñ E with distribution µ and a suitable
sequence of parameters pλnq as before, where now Jλpξ, xq :“ pId ` λApξ, ¨qq´1pxq.
This process indeed generalizes the method (`) discussed above by setting A “ Bf , with Bf

being the (stochastic) subgradient of f . Moreover, as highlighted in [17], this method bears
resemblance in form to the seminal Robbins-Monro method [55] for finding roots of integral
functions

ş

V ps, xq dµpsq, that is xn`1 “ xn ´ λnV pξn`1, xnq, with similar constants as above,
as (˚) can also be equivalently written as xn`1 “ xn ´ λnAλnpξn`1, xnq where Aλpξ, xq :“
px ´ Jλpξ, xqq{λ is the so-called Yosida approximation of the operator A.

While the iteration (`) approximates a minimizer of the mean of the function in question,
the iteration generated by (˚) approximates a zero of the mean operator

Apxq :“

ż

Aps, xq dµpsq,

where the integral refers to the Aumann integral [7]. Indeed, as shown in [17], the weighted
averages of the sequence pxnq, that is xn :“

řn
k“0 λkxk{

řn
k“0 λk, converge weakly to a zero of

A. Approaching this convergence result faces considerable difficulties, resulting among others
in an additional uniform integrability assumption, and the proof given by Bianchi in [17] is very
sophisticated.

As illustrated in [17], these additional uniform integrability assumptions and some of the
difficulties of the proof can be circumvented under the assumption of strong monotonicity of A,
and the convergence can then be improved to the strong convergence of pxnq towards the (in that
context unique) zero of A. However, even in that context the proof given in [17] is nontrivial,
relying on various well-known results from stochastic approximation, like the Robbins-Siegmund
theorem on supermartingale convergence, that are not immediately recognized to be effective.
As put forward by Bianchi in [17], while the work [17] is set in a highly general context, “the
price to pay with our approach is the absence of convergence rate certificates”. Indeed, while
rates have been given for various special cases, they have (essentially) always focused on the case
A “ Bf for some suitable convex function f and the general case remains, to our knowledge,
quantitatively untreated already for strongly monotone operators A over Hilbert spaces.

1.2. The contributions of the present paper and related work. In the present paper, we
augment the strong convergence result given in [17] under a strong monotonicity assumption
with explicit rates of convergence both in expectation and almost surely. However, we move



CONVERGENCE OF A STOCHASTIC PPA IN METRIC SPACES OF NONPOSITIVE CURVATURE 3

considerably beyond simply quantitatively outfitting the results of Bianchi by lifting the algo-
rithm to the general nonlinear setting of Hadamard spaces, that is complete geodesic metric
spaces of nonpositive curvature.

These metric spaces of nonpositive curvature were originally introduced by Aleksandrov and
are commonly called CATp0q spaces, after the work of Gromov. Examples range from Hilbert
spaces, R-trees and Hadamard manifolds (i.e. complete simply connected Riemannian manifolds
of nonpositive sectional curvature), to intricate examples like the Billera-Holmes-Vogtmann tree
space prominently used in phylogenetics [18]. As illustrated by this plethora of spaces, extending
tools and results from convex analysis to such metric contexts is particularly well motivated
through applied considerations, not the least of which being the extensive developments of
machine learning (where optimization over manifolds and other nonlinear spaces plays a key
role, as discussed e.g. in [64]). We refer to the seminal monograph [19] for a comprehensive
overview of CATp0q and Hadamard spaces and further refer to [11] for a shorter treatment
focused on aspects of convex analysis and optimization and to [2] for a recent treatment of
geodesic metric spaces.

Even defining the results of Bianchi in this general context is rather subtle, requiring a
synthesis of a range of different notions and results. Concretely, at first we rely on the theory
of monotone vector fields in these general geodesic contexts, as introduced by Chaipunya,
Kohsaka and Kumamin [22],1 simultaneously generalizing monotone operators on Hilbert spaces
and monotone vector fields on Hadamard manifolds (see Section 2.2). These in turn further
require various considerations on the geometry of geodesic metric spaces, including in particular
the notion of tangent spaces introduced in this general context by Nikolaev [50], generalizing
the respective central notion from Riemannian manifolds (see Section 2.1). Beyond that, we
naturally require a theory of integration in the context of Hadamard spaces which was largely
developed in the seminal work of Sturm [60, 61] (see Section 2.3). In particular, we require
an extension of Sturm’s integral to set-valued mappings in this metric context, that is an
Aumann-Sturm type integral.

All of these considerations come together to define stochastically perturbed monotone vector
fields on separable Hadamard spaces (see Section 3) and with that a metric analogue of the
stochastic proximal point algorithm of Bianchi (see Section 4), for which we prove a strong
convergence result (see Theorem 4.7) under a strong monotonicity assumption together with
an additional probabilistic independence assumption as well as a separability assumption on
the metric tangent spaces, both discussed in full detail later on. This auxiliary independence
assumption is in particular naturally satisfied in the context where the tangent spaces have flat
curvature. Our result hence immediately covers both Bianchi’s original setting of (separable)
Hilbert spaces as well as Hadamard manifolds, in which case our results seem to be in particular
qualitatively novel as, to our knowledge, such a stochastic variant of the general proximal point
algorithm in the style of Bianchi was not considered in any kind of nonlinear context before.

In that way, our results also extend the previous seminal work of Li, López and Mart́ın-
Márquez [38] on the proximal point method for monotone vector fields in Hadamard manifolds
for the first time to the stochastic context, at least in the special case of strong monotonicity.
In the special case of the subgradient of a strongly convex function, which will be discussed

1As mentioned in [22], this notion seems to be distinct from the notion of a monotone operator on a CATp0q

space as introduced by Khatibzadeh and Ranjbar [31], relying on a previous notion of dual space for a CATp0q

space by Kakavandi and Amini [29].
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throughout, our method in particular reduces to a stochastic proximal point algorithm in sep-
arable Hadamard spaces previous studied by Bačák [12] (extending [10] as well as [9]).2

Also in this generalized setting, our convergence proof is in fact fully effective and allows
for the construction of explicit rates of convergence for the iteration towards the (unique)
solution both in expectation and almost surely, which are highly uniform, being independent
of most data surrounding the iteration, space or distribution. Even in the context of strong
monotonicity assumptions, rates of convergence for the stochastic proximal point method are
largely restricted to the setting of a convex function (where the assumption translates to a
strong convexity assumption), such as in the well-known works [4, 52] as well as [25]. The
only work known to us that treats general random monotone operators quantitatively is the
recent preprint [59] where fast rates of convergence are derived under a strong monotonicity
assumption in Hilbert spaces. This work however focuses on the method xn`1 “ Jλpξn`1, xnq,
i.e. where the λn are kept constant, which is distinct from the one studied by Bianchi in [17]
as the results there require λn Ñ 0 (by virtue of assuming

ř

nPN λ
2
n ă 8). In that way, in the

context of Bianchi’s method from [17], the rates presented in this paper seem to us to be novel
already in the context of Hilbert spaces in their generality.

In the end, we briefly discuss applications to the case of the minimization of the expecta-
tion of a strongly convex function (see Corollary 4.10). Also, we discuss additional uniform
boundedness conditions on the second moments of the Yosida approximates, akin to some of
the assumptions considered in [4, 25] in the special case of a convex function and restricted to
a linear setting, which allow us to derive fast nonasymptotic guarantees (see Theorem 4.11).

The methods we employ here to derive the rates of convergence follows a general approach
introduced recently by Neri, Powell and the author [46] towards constructing rates of conver-
gence for very general classes stochastic approximation methods,3 including ones that pertain
to metric generalizations of stochastic quasi-Fejér monotonicity (as studied in Hilbert spaces
in the seminal works of Combettes and Pesquet [23, 24]) of which the present algorithm is,
crucially, a particular instance. Indeed, our paper in that way also serves as a case study to
illustrate how the abstract approach from [46] can be used in a very concrete situation to give
a perspicuous quantitative analysis of a rather involved algorithm and also how the general
metric setting of [46] can be practically of use. We hope that the concrete applications pre-
sented in the present paper help to develop future applications of [46], such as potentially to
the recent works of Karimi, Hsieh, Mertikopoulos and Krause [27, 30], where variants of the
Robbins-Monro method over Riemannian manifolds were studied. In particular, the stochastic
considerations on metric spaces of the present paper might be of help in lifting these results to
a broader metric context.

Also for the stochastic proximal point method studied here, various questions remain which
we hope can be answered by future research instigated by the present work, such as whether
the weak convergence results from [17] or the fast rates derived for the distinct method xn`1 “

Jλpξn`1, xnq in the previously mentioned preprint [59] lift to the metric setting.

2Indeed, our approach is quite different to that of [12]. In the context of a strongly convex function, our results
dispense of the local compactness assumption and Lipschitz-like conditions from [12] while imposing separability
and probabilistic independence assumptions on the tangent space. Comparing, and perhaps unifying, these
works would prove for interesting future work.

3The results from [46], and likewise the present results, have been obtained using the logic-based methodology
of proof mining [33, 34]. More precisely, they are part of a recent advance to apply these logical methods in
probability theory and stochastic optimization for the first time [45, 46, 47, 48, 53]. As common in proof mining
however, this paper avoids any reference to mathematical logic.
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2. Preliminaries

In this section, we give the necessary preliminaries to objects involved in the present paper,
such as geodesic metric spaces and their tangent bundles, monotone vector fields on these
spaces, and in particular the theory of integration on geodesic spaces of nonpositive curvature.
The range of different notions involved, the care needed to bring them together later, and
the fact that such a combination has not been considered before, results in rather complex
preliminaries which we however have tried to keep as minimal as possible.

2.1. Geodesics, CATp0q spaces and tangent spaces. We begin with the background on
geodesic metric spaces. Let pX, dq be a metric space. A geodesic is an isometry γ : r0, ls Ñ X.
We call the image γpr0, lsq a geodesic segment and say that it joins x “ γp0q and y “ γplq, as
well as that γ issues from x. Note that necessarily l “ dpx, yq. X is called (uniquely) geodesic
is every two points are joined by a (unique) geodesic. If such geodesics are unique, we denote
the (unique) geodesic connecting two points x, y P X by γx,y.
For the purpose of this paper, a geodesic metric space pX, dq is now called a CATp0q space

(also called a space of nonpositive curvature in the sense of Aleksandrov) if it satisfies

d2pγptlq, xq ď p1 ´ tqd2pγp0q, xq ` td2pγplq, xq ´ tp1 ´ tqd2pγp0q, γplqq

for all x P X and all geodesics γ : r0, ls Ñ X (that is, an extension of the so-called Bruhat-
Tits CN-inequality [20] to geodesics, see e.g. Proposition 2.3 in [61]). Any CATp0q space is
uniquely geodesic. A complete CATp0q space is called a Hadamard space. As mentioned in
the introduction, we refer to [2, 11, 19] for comprehensive overviews of geodesic metric spaces,
CATp0q spaces and Hadamard spaces, including alternative definitions.

Another characterization of CATp0q spaces that will be useful in this paper was given by
Berg and Nikolaev [13] using their so-called quasi-inner product (also called quasi-linearization
function), that is the map defined by

xÝÑxy,ÝÑuvy :“
1

2

`

d2px, vq ` d2py, uq ´ d2px, uq ´ d2py, vq
˘

for all x, y, u, v P X, where we wrote ÝÑxy,ÝÑuv as a shorthand for pairs px, yq, pu, vq P X2. As shown
in [13], in any metric space pX, dq this function is the unique functionX2ˆX2 Ñ R such that for
all x, y, u, v, w P X: (1) xÝÑxy,ÝÑxyy “ d2px, yq; (2) xÝÑxy,ÝÑuvy “ xÝÑuv,ÝÑxyy; (3) xÝÑxy,ÝÑuvy “ ´ xÝÑyx,ÝÑuvy;
(4) xÝÑxy,ÝÑuvy ` xÝÑxy,ÝÑvwy “ xÝÑxy,ÝÑuwy. It then follows from the results in [13] that a geodesic
metric space pX, dq is a CATp0q space if, and only if,

(CS) xÝÑxy,ÝÑuvy ď dpx, yqdpu, vq

for all x, y, u, v P X, i.e. where a metric version of the Cauchy-Schwarz inequality holds.
The most important notion for our paper regarding CATp0q spaces is that of their tangent

spaces as developed in the work of Nikolaev [50], as they can be used to provide analogs
of fundamental notions from duality theory of linear spaces and manifolds. We essentially
follow the exposition and (mostly) the notation of [37] and generally refer to [2, 19] for further
exposition and proofs. Throughout, let pX, dq be a CATp0q space. For nonconstant geodesics
γ and η issuing from a point x P X, their Aleksandrov angle =xpγ, ηq is defined by

=xpγ, ηq :“ lim
s,tÑ0`

=̄xpγpsq, ηptqq,

with =̄xpy, zq, generally, referring to the comparison angle, defined via the comparison triangle
∆̄px̄, ȳ, z̄q of the geodesic triangle ∆px, y, zq Ď X, as usual. The Aleksandrov angle =x now
defines a pseudometric on the set of all nonconstant geodesics issuing from x. We write Σ1

xX
for the set of all equivalence classes of such geodesics under the equivalence relation defined
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by =xpγ, ηq “ 0 and we still write =x for the Aleksandrov angle extended to these equivalence
classes in the obvious way. The completion pΣxX,=xq of the space pΣ1

xX,=xq is called the
metric space of directions from x and we denote the elements of it still by letters also used
for geodesics, that is γ, η, etc. The tangent space TxX of X at x is then the Euclidean cone
over ΣxX, that is TxX :“ pΣxX ˆ r0,8qq{ „ where pγ, tq „ pη, sq if, and only if, t “ s “ 0
or t “ s ą 0 and γ “ η. For brevity, we write tγ for the equivalence class rpγ, tqs„ and given
u “ tγ and λ ě 0, we write λu :“ pλtqγ. On TxX, we define a metric

dxptγ, sηq :“
a

t2 ` s2 ´ 2ts cos=xpγ, ηq.

The space TX “
Ť

xPX TxX is called the tangent bundle of X. It in particular follows from
the results of Nikolaev [50] that TxX is a complete CATp0q space, that is a Hadamard space.
If X is a Hilbert space, then TxX reduces to X and if X is a Hadamard manifold, then TxX
reduces to the usual Riemannian tangent space of X at x.

We now require some further notation and structure on TxX. We write 0x :“ 0γ and we
introduce the notations ∥tγ∥x :“ dxp0x, tγq “ t and

gxptγ, sηq :“
1

2

`

∥tγ∥2x ` ∥sη∥2x ´ d2xptγ, sηq
˘

“ ts cos=xpγ, ηq.

Note that gxptγ, sηq “
@ÝÝÑ
0xtγ,

ÝÝÑ
0xsη

D

x
, where we wrote xÝÑ̈,ÝÑ̈yx for the quasi-inner product

on TxX, and so gxptγ, sηq ď ∥tγ∥x ∥sη∥x by (CS), as well as gxptγ, tγq “ ∥tγ∥2x, gxptγ, sηq “

gxpsη, tγq and gxptγ, sηq “ tgxpγ, sηq.
Following e.g. [51] (see also [35, 26, 40]), we define the function logx : X Ñ TxX by logx a :“

dpx, aqγx,a for a ‰ x as well as logx x :“ 0x, which provides an extension of the well-known
inverse exponential map, crucial to the study of Riemannian manifolds and their curvature, to
this metric setting.4 Crucially, note that logx is nonexpansive (see e.g. [26], eq. (2.4)), that is

dxplogx a, logx bq ď dpa, bq.

The most important property of the pseudo-inner product gx on TxX is the following:

Lemma 2.1 (essentially Proposition 2.16 in [22]). For any x, a, b P X:

gxpt logx a, s logx bq ě
ts

2
pd2px, aq ` d2px, bq ´ d2pa, bqq.

Also, we will in the following use that gx is Lipschitz continuous in both arguments, which
we show in the following lemma:

Lemma 2.2. For x P X and u, v, w P TxX: |gxpu, vq ´ gxpu,wq| ď ∥u∥x dxpv, wq.

Proof. Note that

gxpu, vq ´ gxpu,wq “
1

2
∥v∥2x ´

1

2
∥w∥2x ´

1

2
d2xpu, vq `

1

2
d2xpu,wq

“
1

2

`

d2xp0x, vq ` d2xpu,wq ´ d2xp0x, wq ´ d2xpu, vq
˘

“
@ÝÑ
0xu,ÝÑvw

D

x
.

Using that TxX is a CATp0q space, (CS) applied to
@ÝÑ
0xu,ÝÑvw

D

x
yields

gxpu, vq ´ gxpu,wq “
@ÝÑ
0xu,ÝÑvw

D

x
ď dxp0x, uqdxpv, wq “ ∥u∥x dxpv, wq.

Analogously, we obtain gxpu,wq ´ gxpu, vq ď ∥u∥x dxpv, wq. This yields the claim. □
4Indeed, under suitable assumptions on the extendibility of geodesics, one can consider the function expx tγ :“

γptq for γ P TxX, of which logx is an inverse of and which provides a metric analog of the exponential map of
Riemannian manifolds. We will however not rely on this map in the rest of this paper.
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2.2. Monotone vector fields, maximality and resolvents. We now discuss monotone
vector fields in this metric context as introduced in [22],5 extending monotone operators on
Hilbert spaces and monotone vector fields on Hadamard manifolds as introduced in [43, 49]
(see also [38, 39, 63]). Precisely, a monotone vector field on a CATp0q space X is a mapping
A : X Ñ 2TX such that Apxq Ď TxX and

gxpu, logx yq ď ´gypv, logy xq

for all px, uq, py, vq P A. While not introduced in [22], in analogy to [38] we call the mapping
strongly monotone (with parameter α ą 0) if

gxpu, logx yq ď ´gypv, logy xq ´ αd2px, yq

for all px, uq, py, vq P A.
We denote the set of zeros of A by zerA :“ tx P X | 0x P Apxqu. If A is strongly monotone,

then it immediately follows that its zero is unique if it exists.

Example 2.3. The canonical example for a monotone vector field is the subdifferential of a
proper, convex and lower-semicontinuous function f : X Ñ p´8,`8s, with convexity ex-
pressed by requiring that

fpγptlqq ď p1 ´ tqfpγp0qq ` tfpγplqq

for any geodesic γ : r0, ls Ñ X and any t P r0, 1s. This object was defined in the general setting
of Hadamard spaces and their tangent bundles in [22] via

Bfpxq :“ tu P TxX | fpyq ě fpxq ` gxpu, logx yq for all y P Xu.

In the usual settings of Hilbert spaces or Hadamard manifolds, this object naturally reduces to
the subdifferential studied there. Further, in the recent work of Lewis, López-Acedo and Nicolae
[37], an alternative characterization of this object is given, over locally compact spaces with
the geodesic extension property, via normal cones and further substantial structure theory is
provided (all the while performing the considerably more subtle task of providing these results
on metric spaces with general upper bounded curvature). Indeed, that the subdifferential
studied in [37] coincides with the one studied in [22] over suitable Hadamard spaces as considered
in [37] follows from Proposition 4.4 therein. The monotonicity of Bf follows immediately from
the definition, see also Proposition 3.7 in [22].

Further, this object also provides a suitable example for a strongly monotone vector field in
the case where f is a strongly convex function with constant α ą 0, i.e. where

fpγptlqq ď p1 ´ tqfpγp0qq ` tfpγplqq ´ tp1 ´ tq
α

2
d2pγp0q, γplqq

for any geodesic γ : r0, ls Ñ X and any t P r0, 1s, as the following Proposition 2.4 shows. In
particular, this result generalizes a similar result given in [63] in the setting of monotone vector
fields over Hadamard manifolds (which also requires a rather involved proof compared to the
corresponding result in Hilbert spaces, originally due to Rockafellar [57], see also Example 22.4
in [8]).

Proposition 2.4. If f is a strongly convex function with constant α ą 0, then Bf is strongly
monotone with constant α in this case

5The work [22] relies on a slightly different approach towards the tangent spaces of a CATp0q space, which
however has no impact on the present paper. All results cited from [22] hold true in our setup as well.
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Proof. Assuming w.l.o.g. that x ‰ y, and writing l “ dpx, yq, note that for px, uq, py, vq P Bf ,
we have

p1 ´ tqfpxq ` tfpyq ´ tp1 ´ tq
α

2
d2px, yq ě fpγx,yptlqq ě fpxq ` gxpu, logx γx,yptlqq

and so

fpyq ´ fpxq ě
gxpu, logx γx,yptlqq

t
` p1 ´ tq

α

2
d2px, yq

for any t P p0, 1s. Similarly, we get

fpxq ´ fpyq ě
gypv, logy γy,xptlqq

t
` p1 ´ tq

α

2
d2px, yq

for all t P p0, 1s so that combined, using gxpu, logx γx,yptlqq{t “ gxpu, logx yq (and similarly for y
and v), we have

´gypv, logy xq ´ p1 ´ tqαd2px, yq ě gxpu, logx yq.

Sending t Ñ 0 yields ´gypv, logy xq´αd2px, yq ě gxpu, logx yq by which Bf is strongly monotone
with constant α ą 0. To see that gxpu, logx γx,yptlqq{t “ gxpu, logx yq (and similarly for y and v),
note that we have logx γx,yptlq “ dpx, γx,yptlqqγx,γx,yptlq “ tdpx, yqγx,γx,yptlq so that using Lemma
2.2, it holds that

|1
t
gxpu, logx γx,yptlqq ´ gxpu, logx yq| “ |gxpu, γx,γx,yptlqq ´ gxpu, γx,yq|

ď ∥u∥x dxpγx,γx,yptlq, γx,yq

“ ∥u∥x
b

2 ´ 2 cos=xpγx,γx,yptlq, γx,yq.

Now, by definition we have

=xpγx,γx,yptlq, γx,yq “ lim
s,s1Ñ0`

=̄xpγx,γx,yptlqpsq, γx,yps1
qq

“ lim
s,s1Ñ0`

=̄xpγx,ypsq, γx,yps1
qq

“ =xpγx,y, γx,yq “ 0,

using that γx,γx,yptlqpsq “ γx,ypstlq for suitably small s. Hence, we have

|1
t
gxpu, logx γx,yptqq ´ gxpu, logx yq| ď ∥u∥x

b

2 ´ 2 cos=xpγx,γx,yptlq, γx,yq “ 0.

□

Example 2.5. As follows from (the proof of) Corollary 4.5 in [37], in the case of the subdiffer-
ential Bf of a proper, convex and lower-semicontinuous function f : X Ñ p´8,`8s one has
that

argminf “ tx P X | 0x P Bfpxqu “ zerBf.

Following [22] (which in turn generalizes [39]), we define the resolvent Jλ via

Jλx :“ tz P X | 1
λ
logz x P Apzqu.

As shown in (the proof of) Proposition 3.4 in [22], it follows from Lemma 2.1 that if A is
monotone, then for any x P X and λ ą 0, a z P X such that 1

λ
logz x P Apzq is necessarily

unique. In that case, we identify Jλ with the corresponding (potentially partial) function from
X to X.

A monotone vector field A is called maximal if its graph graA :“ tpx, uq P X ˆTX | u P Axu

cannot be extended properly while preserving monotonicity. By the well-known theorem of
Minty [42], the maximality of a monotone operator over a Hilbert space is equivalent to the



CONVERGENCE OF A STOCHASTIC PPA IN METRIC SPACES OF NONPOSITIVE CURVATURE 9

totality of the resolvent. This extends to the setting of Hadamard manifolds as shown in [38]
under the condition that the domain domA :“ tx P X | Apxq ‰ Hu is the whole space (see
Remark 4.4 in [38]).

As mentioned in [22], it is unknown whether this equivalence between maximality and totality
extends to this general setting of CATp0q spaces. One direction however remains valid, as shown
in Proposition 3.5 in [22]: if the resolvents are all total, that is for any λ ą 0 and x P X there
exists a z P X with 1

λ
logz x P Apzq, then A is maximal. Following [22], we say that A satisfies

the surjectivity condition if all resolvents are total.

Example 2.6. As shown in Proposition 3.8 in [22], in the case of the subdifferential Bf of a
proper, convex and lower-semicontinuous function f : X Ñ p´8,`8s, its resolvent is given by

proxfλx :“ argminyPX

"

fpyq `
1

2λ
d2px, yq

*

,

that is the proximal map of f (or also called the Moreau-Yosida resolvent), which in this

context of Hadamard spaces was first defined by Jost [28]. In particular, as each proxfλ is total,
Bf satisfies the surjectivity condition (and so is also maximal).

In terms of essential properties of the resolvent required in this paper, we have for any λ ą 0
that Jλ is nonexpansive, that is

dpJλx, Jλyq ď dpx, yq

for any x, y P dompJλq, and that FixpJλq “ zerA. The resolvent is in fact even firmly nonex-
pansive in the sense of Ariza-Ruiz, Leuştean and López-Acedo [3], but we will not rely on this
here. For all these properties, we refer to Proposition 4.3 in [22].

At last, we will rely on the so-called Yosida approximate of the operator A. We define this
object here via

Aλx :“ 1
λ
logJλx x.

This seems to be distinct from the variant of the Yosida approximate introduced in [22], which
relies on the so-called negative geodesics constructed using the geodesic extension property.
However, the above definition precisely serves our purpose here as we have the following two
crucial properties:

Lemma 2.7. For any λ ą 0 and any x P dompJλq:

(1) Aλx P ApJλxq,
(2) ∥Aλx∥Jλx “

∥∥ 1
λ
logJλx x

∥∥
Jλx

“ 1
λ
dpx, Jλxq.

Proof. The first item is immediate by definition of Jλ as if x P dompJλq, then Aλx “ 1
λ
logJλx x P

ApJλxq since Jλ is single-valued. The second item is immediate from the definition of ∥¨∥ and
log, by which we have

∥∥ 1
λ
logJλx x

∥∥
Jλx

“ 1
λ
dpx, Jλxq. □

On the contrary, the definition given in [22] does not seem to satisfy the above essential
inclusion given in item (1) (while it does satisfy the norm property given in item (2)). Indeed,
the present definition of the Yosida approximate seems to be a dual variant of that given in
[22] which lives in the tangent space of the resolvent instead of that of the point. However, one
benefit of the present object is that it does not rely on the geodesic extension property.

In any way, this mapping will however only serve a technical and in a way auxiliary purpose
here and is not our main object of study so that no compatibility issues between the present
work and [22] arise.
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2.3. Measurability and integration on CATp0q spaces. We now introduce the necessary
background from the theory of random variables with values in Hadamard spaces. This theory
goes back to the seminal work of Sturm and covers a range of advanced areas such as martingales
and Markov processes. We here only rely on Sturm’s relatively early works [60, 61] for the
development of the L1- and L2-theory of these random variables. We also refer to the exposition
of these matters given by Bačák [11]. For that, let pT, T , τq be a probability space and pX, dq

be a separable Hadamard space. An (X-valued) random variable is a map x : T Ñ X which
is T /BpXq-measurable, where BpXq is the Borel σ-algebra of X. Write PpXq for the set of all
probability measures on X and for p P r1,8q, write PppXq for the set of all measures P P PpXq

such that
ş

dppw, zq dP pwq ă 8 for some/any z P X. As usual, the push-forward measure τx,
given by τxpAq :“ τpx´1pAqq for A P BpXq, is called the distribution of x. Naturally, we have
τx P PpXq.

Fundamentally (compare e.g. Theorem 2.3.1 in [11]), we have the following result in Hadamard
spaces: For any P P P1pXq and some/any y P X, there is a unique minimizer

bpP q :“ argminzPX

ż

`

d2pz, wq ´ d2pw, yq
˘

dP pwq,

which is independent of y, called the barycenter of P . If P P P2pXq, we further have

bpP q “ argminzPX

ż

d2pw, zq dP pwq.

Given p P r1,8q, the space LppT,X, τq is the space of all T /BpXq-measurable maps x :
T Ñ X with dppx, zq ă 8 for some/any z P X, where dpppx, yq :“

ş

dppx, yq dτ for T /BpXq-
measurable maps x, y : T Ñ X. The space LppT,X, τq arises from this space by considering
equivalence classes under the equivalence relation defined by dppx, yq “ 0. Note that x P

LppT,X, τq if, and only if, τx P PppXq.
The expectation of a random variable x P L1pT,X, τq is now defined via

Erxs :“

ż

x dτ :“ bpτxq

where bpτxq is the barycenter of τx as before.
We can similarly define the conditional expectation of a random variable x : T Ñ X relative

to a sub-σ-algebra T0 Ď T . Concretely, as shown in [60], for any x P L2pT,X, τq there is a unique
equivalence class of T0/BpXq-measurable random variables z P L2pT,X, τq which minimizes
d2pz, xq. We denote this equivalence class by Erx | T0s. Note that for T0 “ tH, T u, this notion
reduces to the previously defined expectation. This L2-theory of conditional expectations then
continuously extends to the L1-case (see Corollary 2.4 in [60]).

Indeed, we require only relatively little theory of the above objects beyond their definitions.
The first result is the following transformation theorem (which crucially employs separability):

Lemma 2.8 (p. 371 in [61]). Let pT 1, T 1q be another measure space. For any T /T 1-measurable
ζ : T Ñ T 1 and any T 1/BpXq-measurable x : T 1 Ñ X such that x ˝ ζ and x are integrable, it
holds that

ż

x ˝ ζ dτ “

ż

x dτζ .

The second result that we mention is a version of Jensen’s inequality, formulated even for
conditional expectations:
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Lemma 2.9 (Proposition 3.4 in [60]). Let T0 Ď T be a sub-σ-algebra. Further, let x P

L1pT,X, τq and let φ : X Ñ R be lower-semicontinuous and convex with pφ ˝ xq` P L1pT, τq.
Then

Erφ ˝ x | T0s ě φ pErx | T0sq .

The last result is the following independence property for conditional expectations, which
lifts a well-known result from real-valued conditional expectations (see e.g. Theorem 8.14 in
[32]) to the case of Hadamard spaces:

Lemma 2.10. Let T0 Ď T be a sub-σ-algebra and let x P L2pT,X, τq be independent of T0, that
is its generated σ-algebra σpxq is independent of T0 in the usual sense (see e.g. [32]). Then

Erx | T0s “

ż

x dτ.

Proof. Note that
ş

x dτ as a constant map is clearly in L2pT,X, τq and T0{BpXq-measurable.
To see Erx | T0s “

ş

x dτ and as x P L2pT,X, τq, it thus remains to see that
ş

x dτ minimizes
d2pz, xq amongst all T0{BpXq-measurable z P L2pT,X, τq. For that, simply note that

ż

d2pz, xq dτ “

ż ż

d2pzpt1
q, xptqq dτptq dτpt1

q ě

ż

d2
ˆ
ż

x dτ, xptq

˙

dτptq,

where the equality follows as z is T0{BpXq-measurable and hence independent of x, and the
inequality follows from the fact that

ş

x dτ “ argminwPX

ş

d2px,wq dτ as x P L2pT,X, τq. □

As we will later be concerned with these probabilistic notions for random variables taking
values not only in a Hadamard space X but also in its tangent spaces TxX, we comment on
some measurability aspects and some crucial assumptions related to this already in the following
remark:

Remark 2.11. As seen above, we crucially rely on the separability and completeness of the
underlying geodesic space to develop probability theory over it. As a consequence, we will later
throughout require that each tangent space TxX is separable, given an underlying separable
Hadamard space X. As discussed in [26] (see also [1]), there is rather little structural theory
on when the space TxX inherits these properties from the space X. While this assumption is
clearly true for separable Hilbert space and Hadamard manifolds, the only other result in that
vein we are aware of is given in [40] (see Corollary 5.7 and 5.8; see also Proposition 2.3.23 in
[35]), where it is shown that if X is a separable, locally compact and geodesically complete
CATpκq space, then TxX is a separable, locally compact and geodesically complete Hadamard
space. However, we in general do not assume local compactness here.

In any case, if TxX is separable, then dx is jointly measurable and so ∥¨∥x, gx and xÝÑxy,ÝÑuvyx
are (jointly) measurable as well. Further, note that logx is measurable as it is nonexpansive
and hence uniformly continuous.6

As usual, we say that a sequence pxnq of (X-valued) random variables is independent if
the generated σ-algebras σpxnq are independent and pxnq is called identically distributed if all
distributions τxn coincide. We abbreviate the property that a sequence is independent and
identically distributed by i.i.d., also as usual.

6Note that as TxX is separable, logx is also measurable in the context of lower bounded curvature as discussed
in Remark 2.3 in [26], see also [51].
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In a separable Hilbert space pX, x¨, ¨yq, it is well-known that independent (X-valued) random
variables u, v : T Ñ X satisfy

ż

xu, vy dτ “

B
ż

u dτ,

ż

v dτ

F

,

where the integral in that case reduces to the Bochner integral on X. We will later require a
fractional part of this property for random variables taking values in the tangent space TxX
of a Hadamard space X, relative to the mapping gx considered above. While this therefore
naturally holds for Hilbert spaces and Hadamard manifolds, it is not clear if this property
holds in this full generality. Indeed, the only partial answer we can give here is that equality
always holds when TxX has flat curvature: If TxX has also nonnegative curvature, in addition
to the nonpositive curvature it natively has, then following similar arguments as in the proof of
Theorem 2.4, (4) in [26], it is rather immediate to show that gxpu, vq is both convex and concave,
in both arguments. Thus, for independent integrable random variables u, v : T Ñ TxX, we
have7

ż

gxpu, vq dτ “

ż ż

gxpuptq, vpt1
qq dτptq dτpt1

q

by independence and thus further
ż ż

gxpuptq, vpt1
qq dτptq dτpt1

q ď

ż

gx

ˆ
ż

u dτ, vpt1
q

˙

dτpt1
q ď gx

ˆ
ż

u dτ,

ż

v dτ

˙

by applying Jensen’s inequality (recall Lemma 2.9) twice, using concavity. Using convexity, we
obtain the above inequalities with opposite sign and so combined we get that

ż

gxpu, vq dτ “ gx

ˆ
ż

u dτ,

ż

v dτ

˙

holds in that case. Further, by virtue of using Lemma 2.9, the above clearly remains true for
conditional expectations, that is we have

Ergxpu, vq | T0s “ gx pEru | T0s,Erv | T0sq

for a sub-σ-algebra T0 Ď T , in the case where TxX has flat curvature.
As this issue is thereby rather delicate in this metric context, we will be highly explicit of any

assumption relating to this property throughout. However, to emphasize this here again, the
above equality and the results of this paper for that matter are in particular true in separable
Hilbert spaces and Hadamard manifolds. We do not know whether the present result extends
to prominent spaces beyond these cases, such as e.g. the Billera-Holmes-Vogtmann tree space
[18], but recent characterizations of tangents spaces thereof given in [35] might be of help to
establish the above independence property there.

We now transfer the above notion of an integral to set-valued operators in an analogous way
as the seminal work of Aumann [7] did for random variables taking values in (separable) Hilbert
spaces, replacing the use of the Bochner integral therein with the integral of Sturm.

Concretely, given a set-valued operator F : T Ñ 2X , a function ϕ : T Ñ X is a measurable
selection of F if it is T /BpXq-measurable and ϕpsq P F psq for all s P T . The set of all measurable
selections of F is denoted by SpF q and we write SppF q :“ SpF qXLppT,X, τq where LppT,X, τq

7Note that as u, v are integrable and independent, also gxpu, vq is integrable as we have
ş

|gxpu, vq| dτ ď
ş

∥u∥x ∥v∥x dτ “
`ş

∥u∥x dτ
˘ `ş

∥v∥x dτ
˘

ă 8, where the equality follows by independence.
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is the Lp-space defined as above via Sturm’s integral. The Aumann-Sturm integral of F is then
defined as

ż

F dµ “

"
ż

ϕ dµ | ϕ P S1
pF q

*

.

3. Random monotone vector fields on nonlinear spaces

We now bring the previous preliminaries together to define stochastically perturbed monotone
vector fields on CATp0q spaces. For that, let pT, T , τq be a probability space and X be a
separable Hadamard space such that each TxX is separable (recall the previous Remark 2.11).

Consider a set-valued operator A : T ˆX Ñ 2TX with Aps, xq Ď TxX for all s P T and x P X
such that Aps, ¨q is monotone for any s P T .

For such an operator, we define the resolvent similar to before via

Jλps, xq :“ tz P X | 1
λ
logz x P Aps, zqu

for λ ą 0, s P T and x P X. As before, if Aps, ¨q is monotone, then such a z is necessarily
unique if it exists and we denote it by Jλps, xq, similar to before.
The Yosida approximate is then lifted to this setting via

Aλps, xq :“ 1
λ
logJλps,xq x,

so that Lemma 2.7 yields Aλps, xq P Aps, Jλps, xqq as well as ∥Aλps, xq∥Jλps,xq
“ 1

λ
dpx, Jλps, xqq

for all λ ą 0, s P T and x P dompJλps, ¨qq.
There are various possible measurability properties for such operators which can be imposed.

In the context of a Hilbert space with an operator A : T ˆX Ñ 2X , the most direct is perhaps
to assume that A satisfies

(%) tps, xq P T ˆ X | Aps, xq X U ‰ Hu P T b BpXq

for any open set U Ď X, a property that is often called (Effros) measurability. We refer
to [6, 21] for further discussions on measurable set-valued operators. In Hilbert spaces and
when A is maximally monotone, as also outlined in [17], it follows by Lemma 2.1 from [5] that
this assumption implies (and is in fact equivalent to) the property that Jλp¨, xq is T /BpXq-
measurable for any x P X and some (or any) λ ą 0.

However, this equivalence does not seem to readily transfer to this hyperbolic setting. It is
at first not completely clear how to adequately transfer the above measurability assumption
to the nonlinear context, and if phrased as satisfying (%) for any open set U Ď TX, then
the question for a suitable topology on TX remains. Further, for any immediate such choice,
neither direction of the above equivalence seems to hold.

As it will be critical for us to guarantee the measurability of the resolvent, we will hence
focus on this latter property. So we arrive at the following official definition:

Definition 3.1. An operator A : T ˆ X Ñ 2TX with Aps, xq Ď TxX is called a random
monotone vector field if Aps, ¨q is monotone for any s P T and Jλp¨, xq is T /BpXq-measurable
for any x P X and some (or any) λ ą 0.

Note that this property fully suffices for our purposes here. In particular, we will make no
further measurability assumptions on such set-valued operators A in the following.

As will be discussed in Example 3.2 below, the above condition can be immediately verified
for the fundamental example of the subdifferential of a convex function.

In that context of a random monotone vector field A, now assume that Aps, ¨q also satisfies
the surjectivity condition, i.e. for any λ ą 0 and x P X, there exists a z P X with 1

λ
logz x P

Aps, zq. Then, note that Jλps, ¨q is single-valued, total and nonexpansive as discussed before
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and therefore, Jλps, ¨q is uniformly continuous for any s P E. So, Jλ is a Carathéodory map
whenever A is a random monotone vector field with the surjectivity condition. In particular,
we then have that Jλ is T bBpXq/BpXq-measurable in that case (see e.g. Lemma 8.2.6 in [6]).

For such a random monotone vector field A, we define its mean A via

Apxq :“

ż

Aps, xq dτpsq

where the integral refers to the Aumann-Sturm integral as defined before, now on TxX. Clearly,
A is monotone if Aps, ¨q is monotone for every s P E. Further, we introduce the notation
SApxq :“ SpAp¨, xqq and Sp

Apxq :“ SppAp¨, xqq. We write zerpAq :“ tx P X | 0x P Apxqu for the
set of zeros of A and for p ě 1, we write

ZAppq :“

"

x P X | Dϕ P Sp
Apxq

ˆ
ż

ϕ dµ “ 0

˙*

.

It should be noted that ZAppq Ď ZAp1q “ zerpAq.
Later on, we will in particular assume that Aps, ¨q is strongly monotone with a modulus αpsq,

where α : E Ñ R` forms a measurable and integrable function such that
ş

α dτ ą 0. Similar
to [17], this implies that A is strongly monotone with modulus α “

ş

α dµ ą 0.

Example 3.2. In analogy to [56], let f : T ˆX Ñ p´8,`8s be a normal convex integrand, i.e.
fps, ¨q is proper, lower-semicontinuous and convex for all s P T and f is T bBpXq-measurable.
Then for its associated subdifferential

Bfps, xq :“ tu P TxX | fps, yq ě fps, xq ` gxpu, logx yq for all y P Xu

as in Example 2.3, its resolvents are given, following Example 2.6, by the proximal maps

proxfλps, xq :“ argminyPX

"

fps, yq `
1

2λ
d2px, yq

*

.

It is thereby easy to see that Bf satisfies the previous discussed measurability condition on the
resolvents and hence is a random monotone vector field. Define

F pxq :“

ż

fps, xq dτpsq

and assume that F is proper. It further follows immediately that F is convex and lower-
semicontinuous. If we now in analogy to [17] assume that

Bfpxq “

ż

Bfps, xq dτpsq “ B

ż

fps, xq dτpsq “ BF pxq,

then we in particular have

zerBf “ zerBF “ argminF

by Example 2.5. Lastly, note that if it is further assumed that fps, ¨q is strongly convex with
constant αpsq ą 0 such that α is integrable with

ş

α dτ ą 0, then Bfps, ¨q is strongly monotone
with constant αpsq by Proposition 2.4, and so Bf is strongly monotone with constant α :“

ş

α dτ
and F is strongly convex with constant α.
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4. A stochastic proximal point algorithm

Extending the previous work of Bianchi [17], we now consider a stochastic variant of the prox-
imal point algorithm. Let pE, E , µq be a probability space and let X be a separable Hadamard
space where each TxX is also separable. Further, let A : E ˆX Ñ 2TX be a random monotone
vector field such that Aps, ¨q satisfies the surjectivity condition for any s P E.

The stochastic proximal point method is now given by the iteration

(SPPA) xn`1 :“ Jλnpξn`1, xnq

for a given starting value x0 P X, a sequence of parameters pλnq Ď p0,8q and a sequence pξn`1q

of random variables ξn : Ω Ñ E for an ambient probability space pΩ,F ,Pq over which the
iteration takes place. Note that each xn is thereby an (X-valued) random variable as Jλn is a
Carathéodory map.

In terms of the parameters, we make the assumptions that

(A0) pλnq P ℓ2`zℓ1` and that pξn`1q is i.i.d. with distribution µ,

where we write ℓp` for the space of nonnegative p-summable sequences. To distinguish the two
notions of integration we get from the two probability spaces, we use

ş

to denote integrals
over pE, E , µq and E to denote integrals over pΩ,F ,Pq. In further terms of notation, we in
the following write Fn :“ σpξ1, . . . , ξnq as well as Enr¨s as a shorthand for the conditional
expectation Er¨ | Fns. Also, all (in)equalities are understood to hold almost surely (over the
suitable probability space), if not stated otherwise.

Now, in the remainder of this section, we will establish a quantitative convergence result for
the above stochastic proximal point method in the context of a strong monotonicity assumption.
Concretely, we in the following assume that

(A1) Aps, ¨q is strongly monotone with modulus αpsq ą 0 such that

ż

α dµ ą 0.

As discussed before, this property in fact entails that A, the mean of the fields Aps, ¨q, is strongly
monotone with modulus α “

ş

α dµ ą 0. We assume w.l.o.g. that αpsq ď 1 for any s P E.
Motivated by the assumptions of Theorem 4 in [17], we assume that there exists a (hence

unique) zero x˚ of A which satisfies

(A2) x˚
P ZAp2q.

Further, we fix a ϕ˚ P S2
Apx˚q with

ş

ϕ˚ dµ “ 0x˚ . Lastly, assume that Tx˚X satisfies a partial
independence property given by

(A3) Enrgx˚pϕ˚
pξn`1q, logx˚ xnqs “ 0

for any n P N.
We want to shortly discuss this assumption (A3) further. Note first that

gx˚pEnrϕ˚
pξn`1qs,Enrlogx˚ xnsq “ 0.

Indeed, this follows from the assumption that
ş

ϕ˚ dµ “ 0 as follows: By Lemma 2.10, the
independence of ξn`1 from Fn yields that Enrϕ˚pξn`1qs “ Erϕ˚pξn`1qs (where one should note
that ϕ˚pξn`1q P L2pΩ, X,Pq as ϕ˚ P S2

Apx˚q). Further, by Lemma 2.8 we have Erϕ˚pξn`1qs “
ş

ϕ˚ dµ “ 0x˚ and so gx˚pEnrϕ˚pξqs,Enrlogx˚ xnsq “ 0.
Thereby, the assumption (A3) is indeed a fragment of the principle

Ergx˚pu, vq | Fs “ gx˚pEru | Fs,Erv | Fsq

for independent random variables u, v : Ω Ñ Tx˚X and F Ď F a sub-σ-algebra, where above
one concretely has u “ ϕ˚pξn`1q, v “ logx˚ xn and F “ Fn.
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In particular, combined with the discussion from Section 2.3, we get that (A3) holds in
particular whenever Tx˚X has flat curvature.
Under the assumptions (A0) – (A3), we now provide a strong convergence result for the

stochastic proximal point algorithm presented in (SPPA). Moreover, this convergence result
comes equipped with a highly uniform rate of convergence of the iteration both in mean and
almost surely which seems to be, in this general context, even novel in Hilbert spaces (as already
discussed in the introduction). The qualitative convergence result generalizes Theorem 4 in [17]
and in that way at least seems to be novel in all classes of Hadamard spaces transcending Hilbert
spaces satisfying our standing assumptions, in particular including Hadamard manifolds.

Our key analytical ingredients will be two central almost sure inequalities, modeled after
inequalities established in [17].

The first is the inequality given in Lemma 4.1, establishing a type of stochastic quasi-Fejér
monotonicity for the iteration in question. This inequality is modeled after the proof of Propo-
sition 1 in [17] (see in particular p. 2244 therein).8

Lemma 4.1. Let β P p0, 1
2
s. For any n P N, we have

Enrd2pxn`1, x
˚
qs ď d2pxn, x

˚
q ´ λ2

np1 ´ 2βqEnr∥Aλnpξn`1, xnq∥2xn`1
s ` λ2

n

ş

∥ϕ˚∥2x˚ dµ

2β

Proof. If not stated otherwise, all equalities and inequalities are understood to hold almost
surely (if applicable). Using Lemma 2.1, we get

d2pxn`1, x
˚
q ` d2pxn`1, xnq ´ 2gxn`1plogxn`1

xn, logxn`1
x˚

q ď d2pxn, x
˚
q.

Now, note that

gxn`1plogxn`1
xn, logxn`1

x˚
q “ λngxn`1p 1

λn
logxn`1

xn, logxn`1
x˚

q

“ λngxn`1pAλnpξn`1, xnq, logxn`1
x˚

q

ď ´λngx˚pϕ˚
pξn`1q, logx˚ xn`1q,

where the last inequality used the monotonicity of A, and that

Aλnpξn`1, xnq P Apξn`1, Jλnpξn`1, xnqq “ Apξn`1, xn`1q

as well as ϕ˚pξn`1q P Apξn`1, x
˚q. Now, note that

´ λngx˚pϕ˚
pξn`1q, logx˚ xn`1q

“ ´λngx˚pϕ˚
pξn`1q, logx˚ xnq ` λnpgx˚pϕ˚

pξn`1q, logx˚ xnq

´ gx˚pϕ˚
pξn`1q, logx˚ xn`1qq

ď ´λngx˚pϕ˚
pξn`1q, logx˚ xnq ` λn ∥ϕ˚

pξn`1q∥x˚ dx˚plogx˚ xn, logx˚ xn`1q

ď ´λngx˚pϕ˚
pξn`1q, logx˚ xnq ` λn ∥ϕ˚

pξn`1q∥x˚ dpxn, xn`1q

using Lemma 2.2 and the fact that logx˚ is nonexpansive in a Hadamard space. Using (analo-
gously to the proof of Lemma 2 in [17]) that

λn ∥ϕ˚
pξn`1q∥x˚ dpxn, xn`1q ď

λ2
n

4β
∥ϕ˚

pξn`1q∥2x˚ ` βd2pxn, xn`1q,

8The expression ∥Aλnpξn`1, xnq∥2xn`1
featuring in Lemma 4.1 could prove problematic from a measurability

point of view, as it involves a random variable in the index of the tangent space norm, i.e. as the point of issue
of a tangent space. However, note that λ2

n ∥Aλn
pξn`1, xnq∥2xn`1

“ d2pxn, xn`1q as also crucially used in the

proof, so that this expression is immediately measurable by the measurability of the resolvent and the joint
measurability of the metric, using separability of X.
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we get that

gxn`1plogxn`1
xn, logxn`1

x˚
q

ď ´λngx˚pϕ˚
pξn`1q, logx˚ xnq `

λ2
n

4β
∥ϕ˚

pξn`1q∥2x˚ ` βd2pxn, xn`1q

and so, using that λ2
n ∥Aλnpξn`1, xnq∥2xn`1

“ d2pxn, xn`1q, we get

d2pxn`1, x
˚
q ď d2pxn, x

˚
q ´ λ2

np1 ´ 2βq ∥Aλnpξn`1, xnq∥2xn`1

´ 2λngx˚pϕ˚
pξn`1q, logx˚ xnq `

λ2
n

2β
∥ϕ˚

pξn`1q∥2x˚ .

We now apply the conditional expectation En. Using the usual transformation rule, we get
that Enr∥ϕ˚pξn`1q∥2x˚s “

ş

∥ϕ˚∥2x˚ dµ. We get Enrgx˚pϕ˚pξn`1q, logx˚ xnqs “ 0 using assumption
(A3). This yields

Enrd2pxn`1, x
˚
qs ď d2pxn, x

˚
q ´ λ2

np1 ´ 2βqEnr∥Aλnpξn`1, xnq∥2xn`1
s ` λ2

n

ş

∥ϕ˚∥2x˚ dµ

2β

which was the claim. □

Importantly, the above inequality yields the square integrability of the sequence pxnq:

Corollary 4.2. Erd2pxn, x
˚qs ď Erd2px0, x

˚qs `
ş

∥ϕ˚∥2x˚ dµ
ř8

n“0 λ
2
n ă 8 for any n P N.

The next inequality again establishes a type of stochastic quasi-Fejér monotonicity for the
iteration in question, however now with a different selection of error terms in the recurrence
inequality based on the strong monotonicity of the field which now plays a crucial role, compared
to the former inequality where it was not used. While at first sight perhaps redundant, it is
exactly the interplay between this and the former inequality that will allow us to establish
rates of convergence of the iteration in the end. This inequality is modeled after the proof of
Theorem 4 in [17] (see in particular p. 2253 therein).

Lemma 4.3. For any n P N, we have

Enrd2pxn`1, x
˚
qs ď p1 ` 2λ2

nqd2pxn, x
˚
q ´ 2λnαd

2
pxn, x

˚
q ` λ2

nVn

for Vn “ 2Enr∥Aλnpξn`1, xnq∥2xn`1
s `

ş

∥ϕ˚∥2x˚ dµ.

Proof. We proceed similarly to the proof of Lemma 4.1 and get

d2pxn`1, x
˚
q ` d2pxn`1, xnq ´ 2gxn`1plogxn`1

xn, logxn`1
x˚

q ď d2pxn, x
˚
q

as before using Lemma 2.1. Applying strong monotonicity in place of monotonicity then yields

gxn`1plogxn`1
xn, logxn`1

x˚
q

ď ´λngx˚pϕ˚
pξn`1q, logx˚ xn`1q ´ λnαpξn`1qd

2
pxn`1, x

˚
q.

As before in the proof of Lemma 4.1 (now with β “ 1
2
), we get

gxn`1plogxn`1
xn, logxn`1

x˚
q

ď ´λngx˚pϕ˚
pξn`1q, logx˚ xnq `

λ2
n

2
∥ϕ˚

pξn`1q∥2x˚ `
1

2
d2pxn, xn`1q

and so

d2pxn`1, x
˚
q ď d2pxn, x

˚
q ´ 2λnαpξn`1qd

2
pxn`1, x

˚
q

´ 2λngx˚pϕ˚
pξn`1q, logx˚ xnq ` λ2

n ∥ϕ˚
pξn`1q∥2x˚ .
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Now, using Lemma 2.1 again, we get

d2pxn`1, x
˚
q ě d2pxn, xn`1q ` d2pxn, x

˚
q ´ 2gxnplogxn

xn`1, logxn
x˚

q

ě d2pxn, x
˚
q ´ 2λngxnp 1

λn
logxn

xn`1, q

ě d2pxn, x
˚
q ´ λn

∥∥∥ 1
λn

logxn
xn`1

∥∥∥2

xn

´ λn

∥∥logxn
x˚

∥∥2

xn

where the third inequality follows using the definition of gxn . Combined, this yields

d2pxn`1, x
˚
q ď d2pxn, x

˚
q ´ 2λnαpξn`1qd

2
pxn, x

˚
q ` 2λ2

n

∥∥∥ 1
λn

logxn
xn`1

∥∥∥2

xn

`2λ2
n

∥∥logxn
x˚

∥∥2

xn
´ 2λngx˚pϕ˚

pξn`1q, logx˚ xnq ` λ2
n ∥ϕ˚

pξn`1q∥2x˚ .

where we have in particular used that αpsq ď 1. Note now that
∥∥logxn

x˚
∥∥
xn

“ dpxn, x
˚q and

that ∥ 1
λn

logxn
xn`1∥xn “ 1

λn
dpxn, xn`1q “ ∥Aλnpξn`1, xnq∥xn`1

, so that we have

d2pxn`1, x
˚
q ď p1 ` 2λ2

nqd2pxn, x
˚
q ´ λnαpξn`1qd

2
pxn, x

˚
q

`2λ2
n ∥Aλnpξn`1, xnq∥2xn`1

´ 2λngx˚pϕ˚
pξn`1q, logx˚ xnq ` λ2

n ∥ϕ˚
pξn`1q∥2x˚ .

We now again apply the conditional expectation En. Using the usual transformation rule,
we get Enr∥ϕ˚pξn`1q∥2x˚s “

ş

∥ϕ˚∥2x˚ dµ and Enrgx˚pϕ˚pξn`1q, logx˚ xnqs “ 0 follows from the
assumption (A3), both as before. Also, using the independence of ξn`1 and xn as well as the
usual transformation rule yields Enrαpξn`1qd

2pxn, xqs “ αd2pxn, x
˚q. Combined, we have

Enrd2pxn`1, x
˚
qs ď p1 ` 2λ2

nqd2pxn, x
˚
q ´ 2λnαd

2
pxn, x

˚
q ` λ2

nVn

which was the claim. □

Next, we endow our qualitative assumptions on the parameter sequence pλnq with moduli
witnessing their quantitative content. To be precise, we in the following assume that we have
functions χ : p0,8q Ñ N and θ : N ˆ p0,8q Ñ N such that

(1)
ř8

n“χpεq
λ2
n ă ε for all ε ą 0,

(2)
řθpk,bq

n“k λn ě b for all b ą 0 and k P N.
We also assume a bound Λ ą

ř8

n“0 λ
2
n and that we are given a c ą 0 with c ą

ş

∥ϕ˚∥2x˚ dµ.
Lastly, we assume that b ą 0 satisfies b ą Erd2px0, x

˚qs.
The second-to-last key quantitative result that we quote from the literature is the following

quantitative version of a lemma of Qihou [54] (see also Lemma 5.31 in [8]):

Lemma 4.4 (Theorem 3.2 in [47]). Let pxnq, pαnq, pβnq and pγnq be sequences of nonnegative
reals with

xn`1 ď p1 ` αnqxn ´ βn ` γn
for all n P N. If

ś8

i“0p1 ` αiq ă 8 and
ř8

i“0 γi ă 8, then pxnq converges and
ř8

i“0 βi ă 8.
Further, if K,L,M ą 0 satisfy x0 ă K,

ś8

i“0p1 ` αiq ă L and
ř8

i“0 γi ă M , then
ř8

i“0 βi ă

LpK ` Mq.

Finally, we only require the following rather immediate result (which can for example be
found in [46]).

Lemma 4.5. Suppose that punq, pvnq are sequences of nonnegative reals with L ą 0 such that
ř8

n“0 unvn ă L and θ : N ˆ p0,8q Ñ N such that
řθpk,bq

n“k un ě b for all b ą 0 and k P N. Then
lim infnÑ8 vn “ 0 with

@ε ą 0 @N P N Dn P rN ; θpN,L{εqspvn ă εq.
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Proof. For arbitrary ε ą 0 and N P N, suppose for a contradiction that vn ě ε for all

n P rN ; θpN,L{εqs. Then L ď ε
řθpN,L{εq

n“N un ď
řθpN,L{εq

n“N unvn ď
ř8

n“0 unvn ă L, which is a
contradiction. □

We can now employ this to derive a so-called lim inf-rate in expectation for the sequence
d2pxn, x

˚q:

Lemma 4.6. It holds that lim infnÑ8 Erd2pxn, x
˚qs “ 0 with

@ε ą 0 @N P N Dn P rN ; θpN,D{εqspErd2pxn, x
˚
qs ă εq

where C :“ 4 pb ` Λ2cq ` Λc and D :“ e2Λpb ` Cq{2α.

Proof. By Lemma 4.1 with β “ 1
4
, we have

Erd2pxn`1, x
˚
qs ď Erd2pxn, x

˚
qs ´

λ2
n

2
Er∥Aλnpξn`1, xnq∥2xn`1

s ` λ2
n2c.

Applying Lemma 4.4 yields
ř8

n“0
λ2
n

2
Er∥Aλnpξn`1, xnq∥2xn`1

s ă 2 pb ` Λ2cq and so

8
ÿ

n“0

λ2
n

´

Er∥Aλnpξn`1, xnq∥2xn`1
s ` c

¯

ă 4 pb ` Λ2cq ` Λc “: C.

By Lemma 4.3, we have

Erd2pxn`1, x
˚
qs

ď p1 ` 2λ2
nqErd2pxn, x

˚
qs ´ 2λnαErd2pxn, x

˚
qs ` λ2

n

´

Er∥Aλnpξn`1, xnq∥2xn`1
s ` c

¯

and so Lemma 4.4 implies that
ř8

n“0 λnErd2pxn, x
˚qs ă

e2Λpb`Cq

2α
“: D. Finally, Lemma 4.5

implies lim infnÑ8 Erd2pxn, x
˚qs “ 0 together with the respective rate as claimed. □

We can now already present our main theorem:

Theorem 4.7. Let pE, E , µq and pΩ,F ,Pq be probability spaces. Let X be a separable Hadamard
space and assume that each TxX is also separable. Let A : E ˆ X Ñ 2TX with Aps, xq Ď TxX
be a random monotone vector field and assume that Aps, ¨q satisfies the surjectivity condition
for any s P E. Let pxnq be the iteration given by (SPPA). Assume (A0) – (A3). Then it holds
that

Erd2pxn, x
˚
qs Ñ 0 and d2pxn, x

˚
q Ñ 0 a.s.

Moreover, the following rates of convergence apply: Let χ : p0,8q Ñ N and θ : N ˆ p0,8q Ñ N
be such that

@ε ą 0

¨

˝

8
ÿ

n“χpεq

λ2
n ă ε

˛

‚ and @b ą 0 @k P N

˜

θpk,bq
ÿ

n“k

λn ě b

¸

.

Let Λ ą
ř8

n“0 λ
2
n. Also, let ϕ

˚ P S2
Apx˚q such that

ş

ϕ˚ dµ “ 0x˚ and c ą 0 with c ą
ş

∥ϕ˚∥2x˚ dµ.
Lastly, let b ą 0 be such that b ą Erd2px0, x

˚qs. Then

@ε ą 0 @n ě ρpεq
`

Erd2pxn, x
˚
qs ă ε

˘

with rate ρpεq :“ θpχpε{2cq, 2D{εq and

@λ, ε ą 0
`

P
`

Dn ě ρ1
pλ, εq

`

d2pxn, x
˚
q ě ε

˘˘

ă λ
˘

with rate ρ1pλ, εq :“ ρpλεq. Here: C :“ 4 pb ` Λ2cq ` Λc and D :“ e2Λpb ` Cq{2α.
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Proof. It obviously suffices to establish the quantitative results. For any n P N, define Xn :“
d2pxn, x

˚q ` c
ř8

m“n λ
2
m. As pxnq is adapted to pFnq, also pXnq is adapted to pFnq. As we have

Enrd2pxn`1, x
˚
qs ď d2pxn, x

˚
q ` λ2

nc a.s.

by Lemma 4.1, the stochastic process pXnq is a nonnegative supermartingale. Indeed, note that

EnrXn`1s “ En

“

d2pxn`1, x
˚
q
‰

` c
8
ÿ

m“n`1

λ2
m ď d2pxn, x

˚
q ` c

8
ÿ

m“n

λ2
m “ Xn.

Now, let ε ą 0 be arbitrary. Using Lemma 4.6, we choose an

n P rχpε{2cq; θpχpε{2cq, 2D{εqs

such that Erd2pxn, x
˚qs ă ε{2. Let m ě n be arbitrary. Then

Erd2pxm, x
˚
qs ď ErXms ď ErXns “ Erd2pxn, x

˚
qs ` c

8
ÿ

m“n

λ2
m ă ε

using that pXmq is a supermartingale and the properties of χ. As m was arbitrary, this yields
Er∥xn ´ x˚∥2s Ñ 0 and that ρ is a rate of convergence for that limit. For d2pxn, x

˚q Ñ 0 a.s.,
note that

PpDm ě npd2pxm, x
˚
q ě aqq ď PpDm ě npXm ě aqq ď

ErXns

a

where the second inequality follows from Ville’s inequality [62] (see also [41]). This immediately
implies that d2pxn, x

˚q Ñ 0 a.s. with rate ρ1. □

While the proof is presented here in a self-contained style, it follows the outline and is
effectively an instance of the proof of Theorem 2.8 in [46].

Remark 4.8. Note that the above Theorem 4.7 in particular holds whenever all tangent spaces
are flat, where the crucial independence assumption (A3) is then validated as discussed before,
so that the assumptions (A0) – (A2) suffice to establish the result. This in particular includes
separable Hilbert spaces and separable Hadamard manifolds. To our knowledge, in the gener-
ality presented here, the quantitative aspects of the above Theorem 4.7 are already novel in the
Hilbert space context while even the qualitative aspects of the above results seem to be novel
in the context of Hadamard manifolds.

Remark 4.9. If ρ is invertible and decreasing, Theorem 4.7 immediately implies the nonasymp-
totic guarantee Erd2pxn, x

˚qs ď ρ´1pnq for all n P N. We can then also derive a similar estimate
for PpDm ě npd2pxm, x

˚q ě εqq. However, the complexity of the rates that arise from Theorem
4.7 is without further assumptions rather dire, namely exponential:9 For the canonical choice
of λn “ 1

n`1
, a quick calculation shows that we get

Erd2pxn, x
˚
qs ď

4maxtC,Du

lnpn ` 2q
for all n P N

in that case, with a similar bound on PpDm ě npd2pxm, x
˚q ě εqq. This is because we make no

other assumptions on A besides the strong monotonicity assumption and the minor underlying
measurability assumptions. A brief discussion on fast rates under additional assumptions is
given below.

9As such, the rates are similar for deterministic variants of the proximal point algorithm in metric settings
without further assumptions than strong monotonicity, as e.g. obtained in [36] for the special case of strongly
(even uniformly) convex functions.
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As a particular corollary, we get the following result on minimizing strongly convex integrands
as discussed in Example 3.2:

Corollary 4.10. Let pE, E , µq and pΩ,F ,Pq be probability spaces. Let X be a separable
Hadamard space and assume that each TxX is also separable. Let f : T ˆ X Ñ p´8,`8s

be a normal convex integrand such that fps, ¨q is strongly convex with constant αpsq ą 0 such
that α is integrable with

ş

α dµ ą 0. Assume that F pxq :“
ş

fps, xq dνpsq is proper and that
ş

Bfps, xq dτpsq “ B
ş

fps, xq dτpsq. Let pxnq be the iteration given by xn`1 :“ proxfλn
pξn`1, xnq,

and assume (A0), (A2) and (A3).
Then Erd2pxn, x

˚qs Ñ 0 and d2pxn, x
˚q Ñ 0 a.s. Moreover, rates of convergence can be

computed for these limits in similarity to Theorem 4.7.

Note that assumption (A1) is immediately satisfied in the context of Corollary 4.10 by virtue
of Proposition 2.4. Again, the above is immediately true in separable Hilbert spaces and
Hadamard manifolds, in which case the independence assumption (A3) disappears.

As a last result, we briefly discuss an additional assumption on A that allows us to derive
fast rates of convergence. Concretely, assume the following uniform boundedness property for
the second moments of the Yosida approximates along the iteration: There is a σ ą 0 such that

(A4) Er∥Aλnpξn`1, xnq∥2xn`1
s ď σ

for all n P N. This is a special case of a general uniform boundedness assumption of second
moments of arbitrary selections from the random field A. In that way, assumption (A4) is
akin to the uniform boundedness assumptions for second moments of subgradient selections as
considered over linear spaces, e.g., in [4, 25]. In that context, we can derive the following fast
nonasymptotic guarantees:

Theorem 4.11. In the context of Theorem 4.7, assume (A4). Then for λn :“ 1{αpn ` 2q, it
holds that

Erd2pxn, x
˚
qs ď

u

n ` 2
and P

`

Dm ě n
`

d2pxm, x
˚
q ě ε

˘˘

ď
1

ε
¨
e2Λpu ` 4σ ` 2cq

n ` 2

for all n P N, where u “ maxt4σ ` 2c, r4{α2spb ` cΛqu and b ě Erd2px0, x
˚qs.

Proof. Note that Erd2pxn, x
˚qs ă b ` cΛ by Corollary 4.2. Hence, the claim is clear for n ď

n0 :“ r4{α2s ´ 2. Using (A4), it follows from Lemma 4.3 that

Erd2pxn`1, x
˚
qs ď p1 ` 2λ2

n ´ 2λnαqd2pxn, x
˚
q ` λ2

np2σ ` cq.

It is straightforward, albeit a bit tedious, to verify that 1 ` 2λ2
n ´ 2λnα ď 1 ´ 1.5{pn ` 2q for

n ě n0, so that we obtain

Erd2pxn`1, x
˚
qs ď

ˆ

1 ´
1.5

n ` 2

˙

d2pxn, x
˚
q ` λ2

np2σ ` cq.

for all such n. We then get Erd2pxn, x
˚qs ď u{pn ` 2q for the u above by induction on n (see

also Lemma 3.5 in [46]). Akin to the proof of Theorem 4.7, we can then also derive

PpDm ě npd2pxm, x
˚
q ě aqq ď

1

ε
¨
e2Λpu ` 4σ ` 2cq

n ` 2

by first moving to the supermartingale Xn “ d2pxn, x
˚q ` c

ř8

m“n λ
2
m and then applying Ville’s

inequality. We omit the details here. □
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As with the proof of Theorem 4.7, while we have presented the proof in a style tailored to
(SPPA), it follows the outline and is effectively an instance of the proof of Theorem 3.6 in [46].

Acknowledgments: I want to thank Ulrich Kohlenbach, Morenikeji Neri and in particular
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