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Abstract. We study the recently introduced Busemann subgradient method due to Goodwin,
Lewis, Nicolae and López-Acedo, extending it to minimize the mean of a stochastic function over
general Hadamard spaces. We prove a strong convergence theorem under a local compactness
assumption and further prove weak ergodic convergence of the method over Hadamard spaces
satisfying condition (Q4), a slight extension of the (Q4) condition of Kirk and Payanak, which in
particular includes Hilbert spaces, R-trees and spaces of constant curvature. The proof is based
on a general (weak) convergence theorem for stochastic processes in Hadamard spaces which
confine to a stochastic variant of quasi-Fejér monotonicity, together with a nonlinear variant
of Pettis’ theorem, which are of independent interest. Lastly, we provide a strong convergence
result under a strong convexity assumption, and in that case in particular derive explicit rates
of convergence.
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1. Introduction

1.1. Background and motivation. One of the most general and productive formulations of
(stochastic) approximation is the problem of minimizing a convex integral function, that is
solving the problem

(P) min
x∈C

∫
f(e, x) dµ(e),

for a given normal convex integrand f : E × C → R (see [56]) on a complete probability space
(E, E , µ) and some target set C ⊆ X in a suitable space X, say a Hilbert or Banach space.
There are various prevalent modern tools for approaching this problem, among them being
stochastic variants of the proximal point algorithm and of projected subgradient methods, and
we refer to [14, 15, 45], among many others, for various such discussions.

Indeed, most of these methods already are concerned with the particularly important and
motivating special case of minimizing a finite sum of convex functions fi : C → R, i.e.

(P)f min
x∈C

m∑
i=1

fi(x).

These problems gain further relevance if considered outside of linear contexts such as Hilbert
or Banach spaces. Concretely, latest since the extensive developments of machine learning in
recent years, where optimization over nonlinear spaces such as manifolds plays a key role (we
refer e.g. to the discussion in [59]), extensions of these tools from (stochastic) convex analysis to
nonlinear contexts are of high practical relevance. Further, this relevance naturally transcends
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the realm of spaces with differentiable structure such as manifolds, as illustrated by e.g. the
Billera-Holmes-Vogtmann tree space [17] prominently used in phylogenetics.

The present paper is concerned with a method recently introduced by Goodwin, Lewis,
López-Acedo and Nicolae [32] to solve the above minimization problem (P)f in the context of
the general class of geodesic metric spaces with nonpositive curvature, as introduced in the
work of Aleksandrov [1]. These spaces, often called CAT(0) spaces after the work of Gromov
[33] and Hadamard spaces if complete, uniformly cover examples such as Hilbert spaces, R-trees
and Hadamard manifolds (i.e. complete simply connected Riemannian manifolds of nonpositive
sectional curvature) and the Billera-Holmes-Vogtmann tree space mentioned before, as well
as further involved examples. As such, they have continuously been a focus of attention for
extending tools from convex analysis on linear spaces to nonlinear contexts, most notably
recently in other related work by Goodwin, Lewis, López-Acedo and Nicolae [31, 41, 42]. We
refer to [2, 18] for a comprehensive overview of geodesic and CAT(0) spaces and further refer
to [9] for a shorter treatment focused on aspects of convex analysis and optimization.

Concretely, the work [32] provides a projected subgradient method for the problem (P)f .
However, lack of linear structure makes constructions such as subgradients, which naturally
rely on duality theory, complicated in general geodesic metric spaces such as Hadamard spaces.
In that way, the approach of [32] diverges from usual subgradient methods by making particu-
larly novel use of the boundary cone CX∞ of a Hadamard space X and associated Busemann
functions, and other advanced geometric tools from Hadamard spaces, to define a novel type
of subgradient for the associated functions.

Indeed, as shown in [32], this resulting notion of a Busemann subgradient, which in Euclidean
space coincides with the usual notion of subgradients, supports a broad theory and in particular
allows for the derivation and effective analysis of the following stochastic projected subgradient
method:1 Given a starting point x0 ∈ X, an i.i.d. sequence (in) of random selections distributed
uniformly over {1, . . . ,m} and a sequence of step-sizes (tn) of positive reals with

∑
n∈N tn = +∞

and
∑

n∈N t
2
n < +∞, one defines the iteration

(SB0) xn+1 := PC(rxn,ξn(sntn))

where [ξn, sn] = Busemannfin (xn) ∈ CX∞ represents a Busemann subgradient of fin at xn,
chosen using an oracle function Busemann, and rxn,ξn(sntn) represents the point reached by
following the geodesic ray starting from xn with direction ξn and speed sn, and with step size
tn.

2

For this stochastic method, they in particular establish the following result:

Theorem 1.1 (Theorem 6.2 in [32]). Let X be a Hadamard space with the geodesic extension
property and at least two points and let C ⊆ X be nonempty, closed and convex. Let F (x) :=∑m

i=1 fi(x) be given, where each fi : C → R is Busemann subdifferentiable, and such that
argminF ̸= ∅. Assume further that there is some L ≥ 0 such that every Busemann subgradient
[ξ, s] of any fi at any point in C satisfies s ≤ L.

Let (xn) be the sequence generated by (SB0) with (tn) and (in), where (tn) ⊆ (0,+∞) is such
that3

∑
n∈N tn = +∞ and

∑
n∈N t

2
n < +∞, and (in) is a sequence of i.i.d. random variables

1The work [32] also considers a non-stochastic incremental variant of this Busemann subgradient method,
but we will not be concerned with such deterministic methods in the present paper.

2The above is just intended as a sketch. In particular, all these currently undefined notions will be detailed
in Section 5 later on.

3In fact, they already provide this result under the assumption that
∑n

k=0 t
2
k/

∑n
k=0 tk → 0.



ON STOCHASTIC BUSEMANN SUBGRADIENT METHODS 3

distributed uniformly over {1, . . . ,m}. Then

E
[
min

i=0,...,n
F (xi)

]
→ minF.

Further, they also obtain the following quantitative result: For the special case that C
has diameter bounded by D > 0, Theorem 6.2 in [32] further establishes the non-asymptotic
guarantee

E
[
min

i=0,...,n
F (xi)

]
≤ 2(1 + log(3))mLD√

n+ 2

for all n ≥ 2, using the parameter sequence tn := D
mL

√
n+1

.

While the above result presents a (quantitative) approximation result for the method (SB0),
the possibilities of Busemann subgradients and methods such as (SB0) are only beginning to
be explored (see e.g. also the recent [25]), and many questions remain, such as convergence
behavior of the whole sequence, rates under regularity conditions, and extensions for solving
general stochastic minimization problems. We address precisely those questions in the present
paper.

1.2. Main results and related work. In this paper, we adapt the previous Busemann subgra-
dient method introduced by Goodwin, Lewis, López-Acedo and Nicolae in [32] to solve general
stochastic minimization problems as in (P), and moreover provide a more detailed study on its
asymptotic behavior.

Concretely, let (Ω,F ,P) and (E, E , µ) be probability spaces, with (E, E , µ) complete, and let
X be a separable Hadamard space with the geodesic extension property and at least two points.4

Further, fix a closed convex nonempty subset C ⊆ X together with a functional f : E×C → R.
We now want to solve (P), that is we want to minimize F (x) :=

∫
f(e, x) dµ(e) over C,

assuming that F is proper and that such a minimum actually exists, i.e. that argminF ̸= ∅.
For that, we assume that f has the following properties: At first, we assume that f actually

has Busemann subgradients and further is suitably measurable, i.e.

(A1)

{
f(e, ·) is Busemann subdifferentiable for any e ∈ E

and f(·, x) is measurable for all x ∈ X.

Further, we impose a Lipschitz condition on the Busemann subgradients, i.e.

(A2)

{
there exists a constant L > 0 such that for any e ∈ E and any

Busemann subgradient [ξ, s] ∈ CX∞ of f(e, ·) at x ∈ C, we have s ≤ L.

These two assumptions on f are derived from [32] (see Assumption A therein, and recall The-
orem 1.1), suitably extended to the present, more general context. However, both are also
natural if seen in the broader context of (stochastic) subgradient methods, where measurability
and a Lipschitz condition on the subgradients are among the most basic common assumptions
(see e.g. [45]). As mentioned before, further details on all involved objects will be given in
Section 5 later on.

Motivated by [32], we consider the following stochastic Busemann subgradient method: De-
fine

(SB) xn+1 := PC(rxn,ξn(sntn))

4These assumption pertain to the existence of boundary points and the well-definedness of various notions,
as discussed in detail later.
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given a starting point x0 ∈ C and sequences (tn) of positive reals as well as (ζn+1) of random
variables Ω → E, where [ξn, sn] = Busemannf (ζn+1, xn) represents a Busemann subgradient of
f(ζn+1, ·) at xn, chosen using an oracle function Busemannf for f . Crucially, we assume that
we utilize an oracle which preserves measurability, namely

(A3)

{
whenever x : Ω → C and ζ : Ω → E are measurable functions,

then [ξ, s] = Busemannf (ζ, x) is measurable as a function Ω → CX∞.

While such an oracle also already appears in [32] as discussed before, measurability thereof or
of the associated iteration is not discussed, which however will occupy us here. Indeed, the
question whether such a map always exists seems to be rather subtle, but it can be guaranteed
in proper spaces, as will be discussed later.

Lastly, for the parameters we assume that

(Par) (ζn+1) is i.i.d. with distribution µ and
∑
n∈N

tn = +∞,
∑
n∈N

t2n < +∞.

While not immediately obvious at first, we will later show that the assumptions (A1) – (A3) in
fact suffice to guarantee that xn is measurable for any n ∈ N.

It should be noted that, as mentioned before, (P) is a generalisation of the minimization
problem for finite sums of functions (P)f as studied in [32], which is reobtained by considering
finite measure spaces. Further, the above method (SB) subsumes the method (SB0) in the same
way, so that the present results also pertain to the method studied in [32].

Towards an asymptotic analysis of the method (SB), we will show the following results. At
first, we show that the sequence strongly converges in the presence of a local compactness
assumption.

Theorem 1.2. Let (E, E , µ) and (Ω,F ,P) be probability spaces, with (E, E , µ) complete, and
let X be a locally compact Hadamard space with the geodesic extension property and at least
two points and a closed convex nonempty subset C ⊆ X. Let f : E×C → R be a function with
properties (A1) – (A3) as above. Define F (x) :=

∫
f(e, x) dµ(e) and assume argminF ̸= ∅. Let

(xn) be the iteration given by (SB) with (tn) and (ζn+1), and assume (Par).
Then (xn) a.s. strongly converges to an argminF -valued random variable.

Lifting the local compactness assumption, the best we in general can expect is a weak con-
vergence result. However, lifting such a result to a stochastic context like the above is highly
nontrivial. Indeed, for related methods like the proximal point algorithm, it is a fundamental
open problem whether its stochastic analog converges weakly even over separable Hilbert spaces
(see [11]) and this also seems to be true for subgradient methods such as the above.

We instead show an ergodic convergence result, i.e. a convergence result for the ergodic
average sequence (xn) defined recursively by

x0 := x0 and xn+1 :=
tn
tn+1

xn ⊕
tn+1

tn+1

xn+1

where tn :=
∑n

k=0 tk, and writing (1−λ)x⊕λy for the point γ(λd(x, y)) on the unique geodesic
γ : [0, d(x, y)] → X joining x and y.

This result however comes at the expense of a narrower class of spaces, being derived for
separable Hadamard spaces satisfying condition (Q4) as introduced in [35], a slight extension
of the (Q4) condition of Kirk and Panyanak [37], which in particular includes Hilbert spaces,
R-trees and spaces of constant curvature, but is known to exclude certain gluings of Hadamard
spaces (see [30]).
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Theorem 1.3. Let (E, E , µ) and (Ω,F ,P) be probability spaces, with (E, E , µ) complete, and
let X be a separable Hadamard space satisfying (Q4) with the geodesic extension property and at
least two points and a closed convex nonempty subset C ⊆ X. Let f : E×C → R be a function
with properties (A1) – (A3) as above. Define F (x) :=

∫
f(e, x) dµ(e) and assume argminF ̸= ∅.

Let (xn) be the iteration given by (SB) with (tn) and (ζn+1), and assume (Par).
Then (xn), defined with (tn), a.s. weakly converges to an argminF -valued random variable.

The question whether the method (SB) satisfies a weak ergodic convergence result in all
separable Hadamard spaces remains an open question.

Our arguments for both theorems above are based on a general (weak) convergence theorem
for stochastic processes in Hadamard spaces which confine to a stochastic variant of quasi-
Fejér monotonicity (see Proposition 4.3 later on), which is also of independent interest. Fejér
monotonicity is a fundamental notion in modern (convex) analysis and optimization, with many
if not most iterative procedures confining to a variant thereof (see e.g. [21, 22] and also [6]). In
particular, Fejér monotonicity has played a crucial role in the weak convergence proof for the
deterministic proximal point method in Hadamard spaces given in [7], which relied on a previous
(deterministic) weak convergence result for such sequences given in [12]. Stochastic variants of
(quasi-)Fejér monotonicity go back at least to the work of Ermol’ev [27, 28, 29], but the notion
was subsequently further refined in the seminal work of Combettes and Pesquet [23] (see also
[24]), where a general and abstract (weak) convergence theorem for such sequences is established
over separable Hilbert spaces on which we have modeled our result on. Indeed, the approach
to our central weak convergence result given in Proposition 4.3 is a rather immediate synthesis
of the stochastic work [23] set in Hilbert spaces and the deterministic work of Bačák, Searston
and Sims [12] set in a metric context. The extensions for weak ergodic convergence over Hilbert
spaces are due to Passty [50] and related arguments over Hadamard spaces, involving condition
(Q4), have recently been given in the work of Khatibzadeh and Moosavi [36], on which we base
our ergodic convergence result (see Proposition 4.5 later on). In the course of these results, we
further rely on a nonlinear variant of (the consequence of) Pettis’ theorem [51], stating that a
weak limit of a sequence of measurable functions taking values in a separable Hadamard space
is again measurable (see Proposition 3.1 later on). To our knowledge, this result is also new to
the literature of Hadamard spaces.

Further considerations on stochastic quasi-Fejér monotonicity in a metric context can e.g.
be found in the recent work [47], which while phrased in the context of strong stochastic
regularity conditions (which among other things induce strong convergence) nevertheless further
illustrates the range of different methods that immediately fall under this paradigm. Indeed,
even though we only consider the above method (SB) in the present paper, we think that the
general convergence result formulated here will be of use for the convergence analysis of further
methods from stochastic convex optimization over nonlinear spaces.

One such method which we in particular want to highlight derives from the work of Bianchi
[16], in particular its recent extension to a metric setting of nonpositive curvature given in
[52]. Concretely, the work [16] studies a corresponding stochastic proximal point algorithm
for stochastically perturbed monotone operators over separable Hilbert spaces. Only almost
sure weak ergodic convergence is known in Hilbert spaces (see [16]), which can be improved to
almost sure strong convergence of the original iteration in the context of a strong monotonicity
assumption. This latter result was extended to a metric setting in [52], and it remains an
interesting open problem if also the almost sure weak ergodic convergence proven in [16] can
be lifted to the metric setting, where we hope that the present considerations will be helpful,
at least over spaces satisfying condition (Q4). While such a method might offer additional
difficulties due to the use of general monotone vector fields, a more intermediate goal along
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the same vein that we want to highlight is the stochastic proximal point method as discussed
in Hadamard spaces by Bačák [10], generalising related work on the minimization of a finite
sum of functions as discussed in the well-known work [8] (in a similar way as the present
paper generalises [32]). Indeed, as mentioned before, it remains a fundamental open question
whether already that method almost surely weakly converges even in separable Hilbert spaces
(recall [11]), but a related result on almost sure weak ergodic convergence, at least over spaces
satisfying condition (Q4), could hopefully be derived via the present results (in a similar way
as (Q4) has already been used in [36] to provide such a result for the deterministic proximal
splitting method considered in [8]).
Lastly, we will prove the following result on rates under a strong convexity assumption:

Theorem 1.4. Let (E, E , µ) and (Ω,F ,P) be probability spaces, with (E, E , µ) complete, and let
X be a separable Hadamard space with the geodesic extension property and at least two points
and a closed convex nonempty subset C ⊆ X. Let f : E ×C → R be a function with properties
(A1) – (A3) as above and assume additionally that f(e, ·) is strongly convex with parameter
α(e) > 0, i.e.

f(e, γ(t)) ≤ (1− t)f(e, γ(0)) + tf(e, γ(1))− t(1− t)
α(e)

2
d2(γ(0), γ(1))

for any geodesic γ : [0, 1] → C and any t ∈ [0, 1], where additionally α :=
∫
α dµ > 0. Define

F (x) :=
∫
f(e, x) dµ(e) and assume argminF ̸= ∅. Let (xn) be the iteration given by (SB) with

(tn) and (ζn+1), and assume (Par).
Then (xn) a.s. and in mean strongly converges to the unique minimizer x∗ of F . Moreover,

the following rates of convergence apply: Let χ : (0,∞) → N and θ : N × (0,∞) → N be such
that

∀ε > 0

 ∞∑
n=χ(ε)

t2n < ε

 and ∀b > 0 ∀k ∈ N

θ(k,b)∑
n=k

tn ≥ b

 .

Let T >
∑∞

n=0 t
2
n. Lastly, let b > 0 be such that b > d2(x0, x

∗). Then

∀ε > 0 ∀n ≥ ρ(ε)
(
E[d2(xn, x

∗)] < ε
)

with rate ρ(ε) := θ(χ(ε/2L2), 8(b+ L2T )/εα) and

∀λ, ε > 0
(
P
(
∃n ≥ ρ′(λ, ε)

(
d2(xn, x

∗) ≥ ε
))

< λ
)

with rate ρ′(λ, ε) := ρ(λε).

The proof essentially relies on a similar approach as the results given by Neri, Powell and
the author in [47] for the quantitative asymptotic behavior for general stochastic processes
subscribing to a monotonicity condition.5

Indeed, the above result can in fact be substantially extended to other regularity conditions
on the mean function f(x) :=

∫
f(e, x) dµ(e) beyond strong convexity, including generalized

weak sharp minima, as will be discussed in more detail in forthcoming work by the author
and Thomas Powell on the general theory of such regularity conditions and their relation to
quantitative convergence analyses for stochastic processes, extending [47].

5The results from [47], and likewise the present results regarding rates of convergence, have been obtained
using the logic-based methodology of proof mining [39, 40], and are part of a series of recent applications of
these methods to probability theory and stochastic optimization [46, 47, 48, 49, 53]. As common in proof mining
however, this paper avoids any reference to mathematical logic.
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2. Preliminaries

We now discuss the few preliminary definitions, results and notations that we require through-
out. As mentioned in the introduction, beyond the results indicated in this paper we refer to
[2, 9, 18] for a comprehensive overview of geodesic metric spaces and their properties, in par-
ticular to [9] for aspects of (stochastic) optimization. Further, beyond the results indicated, we
refer to e.g. [38] for a standard textbook on probability theory.

Let (X, d) be a metric space. A geodesic is an isometry γ : [0, l] → X. We say that it joins
x = γ(0) and y = γ(l) (where necessarily l = d(x, y)). X is called (uniquely) geodesic if every
two points are joined by a (unique) geodesic. We call the image of a geodesic such as the above
a geodesic segment, and in the uniquely geodesic case denote it by [x, y]. A geodesic ray is
an isometry r : [0,∞) → X, and we say that r issues from r(0). A space X has the geodesic
extension property if for all x ̸= y ∈ X, there is a ray r : [0,∞) → X issuing from x such that
r(t) = y for some t > 0.

A geodesic metric space (X, d) is called a CAT(0) space (also called a space of nonpositive
curvature in the sense of Alexandrov) if it satisfies

d2(γ(tl), x) ≤ (1− t)d2(γ(0), x) + td2(γ(l), x)− t(1− t)d2(γ(0), γ(l))

for all x ∈ X and all geodesics γ : [0, l] → X (that is, an extension of the so-called Bruhat-
Tits CN-inequality [19] to geodesics). Any CAT(0) space is uniquely geodesic and a complete
CAT(0) space is called a Hadamard space. Further, a CAT(0) space has nonpositive curvature
in the sense of Busemann (see e.g. [9, 18]) and hence the metric is jointly convex in the sense
that d(γ(tl), η(tm)) is convex on t ∈ [0, 1] for all geodesics γ : [0, l] → X and η : [0,m] → X
(see e.g. Proposition 1.1.5 in [9]).

Weak convergence in CAT(0) spaces goes back to the work of Jost [34] and is often called
∆-convergence following the work of Kirk and Panyanak [37] (we refer in particular to the
discussion in [7] on that matter). We define weak convergence here as follows (see e.g. [9]):

Given a bounded sequence (xn) ⊆ X and a point x ∈ X, their asymptotic radius is given by

r(xn, x) := lim sup
n→∞

d2(xn, x)

and the general asymptotic radius of the sequence (xn) is given by

r(xn) := inf
x∈X

r(xn, x).

A point x ∈ X is called an asymptotic center of (xn) if r(xn, x) = r(xn). In Hadamard spaces,
asymptotic centers exist and are unique (see e.g. Proposition 7 in [26]). Further, each bounded
sequence has a weak cluster point (see e.g. Proposition 3.1.2 in [9]).

We say that a bounded sequence (xn) weakly converges to x ∈ X, written xn →w x, if x is
the asymptotic center of each subsequence of (xn). A point x ∈ X is a weak cluster point of
(xn) if there is a subsequence (xnk

) of (xn) with xnk
→w x.

We write W(xn) for the set of all weak cluster points of (xn) and S(xn) for the set of all
strong cluster points of (xn), the latter defined as usual using the metric.

A set C ⊆ X is called convex if the geodesics between any two points in C are contained in
C, and we call a function g : C → R convex if

g(γ(tl)) ≤ (1− t)g(γ(0)) + tg(γ(l))

for any geodesic γ : [0, l] → C and any t ∈ [0, 1]. Further, we call g lower-semicontinuous (lsc)
if

lim inf
n→∞

g(xn) ≥ g(x)
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whenever (xn) ⊆ C is a sequence such that xn → x. Crucially, every convex lsc function on a
Hadamard space is also weakly lower-semincontinuous (weakly lsc, see [7]), i.e. it satisfies the
above inequality even if (xn) ⊆ C is a sequence such that xn →w x. A particular example of a
convex function on a Hadamard spaces is the Busemann function br : X → R associated to a
ray r, defined by

br(x) := lim
t→∞

(d(x, r(t))− t),

which is nonexpansive (1-Lipschitz), convex and satisfies br(r(0)) = 0 (see Example 2.2.10 in
[9]).

Throughout this paper, if not stated otherwise, we let (X, d) be a separable Hadamard space
and (Ω,F ,P) as well as (E, E , µ) be two probability spaces, with (E, E , µ) complete. All prob-
abilistic notions such as measurability, random variables, almost sureness (a.s.), expectation,
etc., are understood relative to the space (Ω,F ,P), if not stated otherwise. In particular, an
X-valued random variable is a map x : Ω → X which is measurable relative to F and the
Borel σ-algebra B(X) of that space. We denote (conditional) expectations over (Ω,F ,P) by E.
All properties as well as (in-)equalities between random variables are understood to hold only
almost surely, if not stated otherwise. Sometimes we are working on general measurable spaces
(T, T ) or even measure spaces (T, T , τ). In such cases, we are always quite explicit on regarding
measurability notions, and in particular use the expression “almost everywhere” (a.e.) instead.

3. A nonlinear variant of Pettis’ theorem

In this section, we prove the following measurability result for weak limits in Hadamard
spaces:

Proposition 3.1. Let (T, T , τ) be a finite measure space and let X be a separable Hadamard
space. Let (xn) be a sequence of T /B(X)-measurable functions and let x : T → X be a function
such that the (xn) are bounded and xn →w x almost everywhere. Then there is a T /B(X)-
measurable y which is equal to x almost everywhere.

If T is complete, then x itself is measurable. Further, T can be σ-finite in that case.

In separable Hilbert spaces, the above result is a consequence (see Corollary 1.13 in [51])
of the seminal theorem of Pettis on weakly measurable functions (see Theorem 1.1 in [51]).
Indeed, compared to [51], we are here confined to finite measure spaces.

Our proof is rather simple, relying only on a few results from measurable selection theory.
We generally refer to [3, 4, 20] for further background on that area. Given a complete separable
metric space X and a measurable space (T, T ), call a set-valued map φ : T → 2X graph
measurable if

gra(φ) := {(t, x) ∈ T ×X | x ∈ φ(t)} ∈ T ⊗ B(X).

Over complete σ-finite measure spaces, and if φ has nonempty closed images, this is equivalent
to the (weak) measurability of φ : T → 2X , that is that

φ−1(C) := {t ∈ T | φ(t) ∩ C ̸= ∅} ∈ T
for all open sets C ⊆ X (see e.g. Theorem 8.1.4 in [4]).

The key result we need is the following on the graph measurability of minimizing maps.

Lemma 3.2. Let (T, T ) be a measurable space and let X be a complete separable metric space.
Further, let g : T ×X → R be a Carathéodory function. Then the functions

m(t) := inf
x∈X

g(t, x) and M(t) := argminx∈Xg(t, x)

are measurable and graph measurable, respectively.
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This result will then be combined with the following selection theorem of Aumann [5].

Theorem 3.3 ([5], see also Corollary 18.27 in [3]). Let (T, T , τ) be a finite measure space
and let X be a complete separable metric space. Let φ : T → 2X be graph measurable with
nonempty values. Then there is a measurable function x : T → X such that x(t) ∈ φ(t) almost
everywhere.

Lemma 3.2 commonly appears in the literature under the assumption that the measurable
space is complete and σ-finite for some measure, with the (in that context equivalent) con-
clusion of measurability of M (see e.g. Theorem 8.2.11 in [4]). However, we want to dispense
of this completeness assumption here, as it would later (unnecessarily) require us to assume
completeness of (Ω,F ,P). In that way, we rederive that result here which requires some care
on measurability and on the assumptions.

To prove Lemma 3.2, we first need the following result on Carathéodory functions:

Lemma 3.4 (Corollary 18.8 in [3]). Let g : T × X → (−∞,+∞] be Carathéodory function.
Then

φ(t) := {x ∈ X | g(t, x) = 0}
is graph measurable.

We can now provide the proof of Lemma 3.2:

Proof of Lemma 3.2. Using that X is separable, fix a countable dense set (zn). Then

m(t) = inf
x∈X

g(t, x) = inf
n∈N

g(t, zn)

by continuity of g(t, ·). Thus, m is measurable as every g(·, zn) is measurable. As g is a
Carathéodory function, so is g′(t, x) = g(t, x)−m(t). Using Lemma 3.4, we then get that

M(t) = {y ∈ X | g(t, y) = m(t)} = {y ∈ X | g′(t, x) = 0}
is graph measurable. □

The key observation is then that r(xn(t), y) defines a Carathéodory function, leading to the
following proof of our nonlinear variant of Pettis’s theorem:

Proof of Proposition 3.1. Fix a set T0 of measure zero such that (xn(t)) is bounded and xn(t) →w

x(t) for all t ∈ T c
0 . First note that (t, y) 7→ r(xn(t), y) for (t, y) ∈ T c

0 × X is a Carathéodory
function. Indeed, recall that by definition r(xn(t), y) = lim supn→∞ d2(xn(t), y). First fix t ∈ T c

0 .
As each d2(xn(t), ·) is Lipschitz continuous with the same constant, it follows that r(xn(t), ·) is
locally Lipschitz and hence continuous (see e.g. Example 2.2.8 in [9]). Now fix y ∈ X. As each
d2(xn(·), y) is measurable, we immediately get that r(xn(·), y) is measurable.
Lemma 3.2 then yields that

φ′(t) := argminy∈Xr(xn(t), y),

defined for t ∈ T c
0 , is graph measurable. As (xn(t)) is bounded, we have by the existence of

asymptotic centers that φ′(t) is nonempty for all t ∈ T c
0 (note that they are also closed by

continuity of r(xn(t), ·)). Now define φ(t) := φ′(t) for t ∈ T c
0 and φ(t) := X otherwise. Then

gra(φ) = gra(φ′) ∪ (T0 ×X) ∈ T ⊗ B(X)

so that φ is still graph measurable, with φ(t) nonempty (and closed) for all t ∈ T . Using
Theorem 3.3, there exists a measurable function y such that y(t) ∈ φ(t) almost everywhere,
say on T c

1 with T1 of measure zero. For t ∈ T c
0 ∩ T c

1 , by the uniqueness of asymptotic centers,
we get that x(t) = y(t). Thus x = y almost everywhere
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If (T, T , τ) is complete and σ-finite, then one can apply the Kuratowski–Ryll-Nardzewski
selection theorem (see e.g. Theorem 8.1.3 in [4]) in place of Theorem 3.3, which yields a mea-
surable function y with x = y almost everywhere as before. As the space is now complete, we
get that x is measurable as well. □

4. Stochastic quasi-Fejér monotonicity and weak (ergodic) convergence

As outlined in the introduction, the main technical convergence result we present is a general
proposition on the weak and strong convergence of stochastic quasi-Fejér monotone sequences
in metric spaces.

For that, we first introduce some convenient notation: Given a filtration F = (Fn) of F ,
that is a sequence of sub-σ-algebras of F such that Fn ⊆ Fm for n ≤ m, we write ℓ+(F) for
the set of sequences of non-negative real-valued random variables (en) that are adapted to the
filtration, i.e. where en is Fn-measurable for all n ∈ N. Further, we write ℓ1+(F) for the set of
all (en) ∈ ℓ+(F) such that

∑
n∈N en < +∞ a.s.

Now, fixing a solution set Z ⊆ X and a filtration F = (Fn), stochastic quasi-Fejér monotonic-
ity for a sequence (xn) adapted to F in our context takes the form of requiring

E[ϕ(d(xn+1, z)) | Fn] ≤ (1 + χn(z))ϕ(d(xn, z))− θn(z) + ηn(z) a.s.

for all z ∈ Z and n ∈ N, where ϕ is a suitable perturbation function and (χn(z)), (ηn(z)) ∈ ℓ1+(F)
as well as (θn(z)) ∈ ℓ+(F) are error sequences which might depend on the point z in question.

As such, our notion is a direct lift of the rather general stochastic quasi-Fejér monotonicity
considered in separable Hilbert spaces in the seminal work of Combettes and Pesquet [23] (see
equation (2.5) therein and recall the further references given in the introduction), to the metric
setting.

We can then obtain the following result on weak and strong convergence based on weak and
strong cluster points, which is itself an extension of a corresponding result in separable Hilbert
spaces given by Combettes and Pesquet [23] (see Proposition 2.3 therein). As mentioned in the
introduction, as such our result is in particular an immediate synthesis of Proposition 2.3 from
[23] (especially concerning items (1) – (3) of the following Proposition 4.3, which are highly
derivative of it and essentially are a direct lift to the metric setting) and Proposition 3.3 from
[12] on weak convergence of Fejér monotone sequences in Hadamard spaces. Indeed, the key
aspect of the convergence of Fejér monotone sequences in Hadamard spaces is the following
result essentially derived (in the proof of) Proposition 3.3 in [12], and it immediately allows us
to derive items (4) and (5) of the following Proposition 4.3. For self-containedness, we rederive
it here, with a slightly different argument.

Lemma 4.1 (essentially Proposition 3.3 in [12]). Let X be a Hadamard space and let Z ⊆ X be
a non-empty closed subset of X and (xn) ⊆ X be a given sequence such that d(xn, z) converges
for all z ∈ Z.

(1) If W(xn) ⊆ Z, then (xn) weakly converges a.s. to some point in Z.
(2) If S(xn) ∩ Z ̸= ∅, then (xn) strongly converges to some point in Z.

Proof. Note that (xn) is bounded and therefore has a weak cluster point. For the first item, it
hence suffices to show that (xn) has a unique weak cluster point. To that effect, let (xnk

) and
(xmk

) be subsequences of (xn) with asymptotic centers c1 and c2, respectively. As W(xn) ⊆ Z,
we have c1, c2 ∈ Z. Therefore d(xn, c1) and d(xn, c2) and so also d2(xn, c1) and d2(xn, c2)
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converge. Now, assume w.l.o.g. that r(xnk
) ≤ r(xmk

). We then have

r(xmk
) ≥ r(xnk

) = r(xnk
, c1)

= lim sup
k→∞

d2(xnk
, c1)

= lim
n→∞

d2(xn, c1)

= lim sup
k→∞

d2(xmk
, c1)

= r(xmk
, c1) ≥ r(xmk

),

where the third (and fourth) line follows from the fact that d2(xn, c1) (and so every subsequence
of it) converges. Thus in particular r(xmk

) = r(xmk
, c1) and so c1 is also an asymptotic center

of (xmk
), next to c2. As asymptotic centers are unique, we get c1 = c2 which completes the

argument.
For the strong convergence result, assume S(xn) ∩ Z ̸= ∅. Concretely, let x ∈ Z be a strong

accumulation point of (xn), i.e.
lim inf
n→∞

d(xn, x) = 0.

As d(xn, x) converges, we get limn→∞ d(xn, x) = 0, which completes the proof. □

Like in [23], and any other result on stochastic quasi-Fejér monotonicity for that matter, the
key statistical ingredient of our convergence result is the seminal Robbins-Siegmund theorem
on almost-supermartingale convergence:

Lemma 4.2 (Theorem 1 in [55]). Let F = (Fn) be a filtration, and let (αn), (θn) ∈ ℓ+(F) as
well as (ηn), (χn) ∈ ℓ1+(F) be such that

E[αn+1 | Fn] ≤ (1 + χn)αn − θn + ηn a.s.

for any n ∈ N. Then (αn) a.s. converges to a nonnegative real-valued random variable and
(θn) ∈ ℓ1+(F).

Proposition 4.3 (extending Proposition 2.3 in [23] and Proposition 3.3 in [12]). Let X be
a separable Hadamard space and let Z ⊆ X be a nonempty closed subset of X and let ϕ :
[0,+∞) → [0,+∞) be strictly increasing such that limt→+∞ ϕ(t) = +∞. Let F = (Fn) be a
filtration and let (xn) be a sequence of X-valued random variables adapted to F such that it is
stochastically quasi-Fejér monotone w.r.t. Z, that is for any z ∈ Z there are (χn(z)), (ηn(z)) ∈
ℓ1+(F) and (θn(z)) ∈ ℓ+(F) such that for all n ∈ N:
(∗) E[ϕ(d(xn+1, z)) | Fn] ≤ (1 + χn(z))ϕ(d(xn, z))− θn(z) + ηn(z) a.s.

Then we have the following assertions:

(1)
∑

n∈N θn(z) < +∞ a.s. for all z ∈ Z.
(2) (xn) is bounded a.s.

(3) There exists a set Ω̃ with P(Ω̃) = 1 such that for all ω ∈ Ω̃ and z ∈ Z, the sequence
given by d(xn(ω), z) converges.

(4) If W(xn) ⊆ Z a.s., then (xn) weakly converges a.s. to a Z-valued random variable.
(5) If S(xn) ∩ Z ̸= ∅ a.s., then (xn) strongly converges a.s. to a Z-valued random variable.

Proof. Ad (1): For any z ∈ Z, the above inequality (∗) and Lemma 4.2 immediately yield∑
n∈N θn(z) < +∞ a.s.

Ad (2): Let z ∈ Z be arbitrary. The above inequality (∗) and Lemma 4.2 immediately
yield that ϕ(d(xn, z)) converges a.s. to some nonnegative real-valued random variable αz. As
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limt→+∞ ϕ(t) = +∞, we get that the sequence d(xn, z) is bounded a.s., which is hence true also
for (xn).

Ad (3): Let us first note that given any z ∈ Z, d(xn, z) converges a.s., namely at every point
where the sequence d(xn, z) is bounded. For suppose not, then there is a point ω ∈ Ω such
that the sequence d(xn(ω), z) is bounded and where there are subsequences d(xnk

(ω), z) and
d(xmk

(ω), z) with respective distinct limits τ1(ω) and τ2(ω). W.l.o.g. suppose τ2(ω) > τ1(ω)
and take ε(ω) ∈ (0, (τ2(ω)− τ1(ω))/2). For large enough n, we will have

d(xnk
(ω), z) ≤ τ1(ω) + ε(ω) < τ2(ω)− ε(ω) ≤ d(xmk

(ω), z).

As ϕ is strictly increasing, we immediately get

ϕ(d(xnk
(ω), z)) ≤ ϕ(τ1(ω) + ε(ω)) < ϕ(τ2(ω)− ε(ω)) ≤ ϕ(d(xmk

(ω), z)).

Taking the limit as n → ∞ gives

αz(ω) ≤ ϕ(τ1(ω) + ε(ω)) < ϕ(τ2(ω)− ε(ω)) ≤ αz(ω)

for the random variable αz from item (2), which is a contradiction.
Now, we move on to actually showing item (3). As X is separable, also Z is separable. Fix

a countable dense set Z0 in Z. By the previous, for every z ∈ Z0 there exists a set Ωz of

measure one such that d(xn(ω), z) converges for any ω ∈ Ωz. Define Ω̃ :=
⋂

z∈Z0
Ωz. Clearly Ω̃

has measure one. Let now z ∈ Z and ω ∈ Ω̃ be arbitrary. As Z0 is dense in Z, there exists a

sequence (zk) in Z0 such that zk → z. As ω ∈ Ω̃ ⊆ Ωzk , we in particular have that d(xn(ω), zk)

converges for any k ∈ N and for any ω ∈ Ω̃, say with limit τk(ω). For any k ∈ N and any such

ω ∈ Ω̃, we thus have

−d(zk, z) ≤ d(xn(ω), z)− d(xn(ω), zk) ≤ d(zk, z)

using triangle inequality, so that we get

−d(zk, z) ≤ lim inf
n→∞

d(xn(ω), z)− lim
n→∞

d(xn(ω), zk)

= lim inf
n→∞

d(xn(ω), z)− τk(ω)

≤ lim sup
n→∞

d(xn(ω), z)− τk(ω)

= lim sup
n→∞

d(xn(ω), z)− lim
n→∞

d(xn(ω), zk)

≤ d(zk, z).

Taking the limit as k → ∞ yields that d(xn(ω), z) converges with

lim
n→∞

d(xn(ω), z) = lim
k→∞

τk(ω).

Ad (4): Let Ω̃ be the set with measure one from item (3) and suppose that W(xn) ⊆ Z a.s.,

say W(xn(ω)) ⊆ Z for all ω ∈ Ω̂ for Ω̂ with measure one. Lemma 4.1 now yields that for any

ω ∈ Ω̂ ∩ Ω̃, the sequence (xn(ω)) converges weakly to an element x(ω) of Z. This then yields

the claim as follows: Ω̂ ∩ Ω̃ still has measure one. By Proposition 3.1, we get that there is a
measurable y with x = y a.s. Thus y is a.s. Z-valued and so w.l.o.g. we can assume that y is
Z-valued. Clearly, (xn) converges weakly to y almost surely.

Ad (5): In a similar way as item (4) above, using in particular item (3), Lemma 4.1 now
yields that xn(ω) strongly converges to some point x(ω) ∈ Z on a set of measure one. The
measurability of x follows immediately as X is separable. □
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Under suitable restrictions on the space, we can now also provide a stochastic weak ergodic
convergence result. We establish this result not for all separable Hadamard spaces, but only
for those that satisfy the condition (Q4), i.e. for points x, y, p, q ∈ X and any point m ∈ [x, y]:

d(p, x) ≤ d(x, q) and d(p, y) ≤ d(y, q) implies d(p,m) ≤ d(m, q).

Equivalently, and more crucially for the present paper, the condition expresses that

(Q4) F (p, q) := {x ∈ X | d(p, x) ≤ d(x, q)} is convex

for all p, q ∈ X. This condition was introduced by Kakavandi in [35] for studying topologies
capturing weak convergence (which was recently, and by quite a different method, substantially
extended by Lytchak and Petrunin [43]) and is a slight strengthening of the condition (Q4)
introduced by Kirk and Panyanak in [37] for establishing convergence of midpoint sequences in
geodesic segments (which was subsequently weakened in [30]). Examples of spaces that satisfy
(Q4) include Hilbert spaces, R-trees, Hadamard spaces with constant curvature and their closed
convex subsets (see [35] and see also [30] for related results for the condition (Q4)). However,
not all Hadamard spaces even satisfy the condition (Q4) as shown in [30]. In particular, any
CAT(0) gluing space containing two spaces with constant but different curvatures does not.

In the recent paper [36], this condition was used to establish the weak ergodic convergence
of a nonlinear variant, first studied by Bačák [8], of the proximal splitting method originally
considered by Passty [50].

While presented as tailored to that particular iteration, the approach given in [36] essentially
establishes the following general convergence principle, which can be seen a nonlinear variant of
Passty’s ergodic convergence condition given as Lemma 1 in [50]. However, note that compared
to [50], the present result requires the asymptotic regularity condition d(xn, xn+1) → 0 on the
sequence (xn) in addition to the usual condition that all weak cluster points of the weighted
averages are solutions. Even though this requirement is slightly cumbersome, especially in a
stochastic context, both properties can often be established simultaneously, as will also be the
case in this paper.

As the result only appears implicitly in [36], we reprove it here for the readers convenience:

Lemma 4.4 (essentially the proof of Theorem 4.2 in [36]). Let X be a Hadamard space satisfying
(Q4) and let Z ⊆ X be a non-empty closed convex subset of X. Let (xn) ⊆ X be a given
sequence such that d(xn, z) converges for all z ∈ Z. Further, let (tn) ⊆ (0,+∞) be such that∑

n∈N tn = +∞ and let (xn) be the associated sequence of weighted averages. If W(xn) ⊆ Z
and d(xn, xn+1) → 0, then (xn) weakly converges a.s. to some point in Z.

Proof. The sequence (xn) and hence also (xn) is bounded and therefore has a weak cluster
point. It thus suffices to show that (xn) has no further weak cluster point. Suppose that c1, c2
are two weak cluster points and let (xnk

) and (xmk
) be subsequences of (xn) with asymptotic

centers c1 and c2, respectively. As W(xn) ⊆ Z, we have c1, c2 ∈ Z. Therefore d(xn, c1) and
d(xn, c2) and so also d2(xn, c1) and d2(xn, c2) converge. Assume w.l.o.g. that limn→∞ d2(xn, c1) ≤
limn→∞ d2(xn, c2). We now distinguish two cases, namely limn→∞ d2(xn, c1) < limn→∞ d2(xn, c2)
and limn→∞ d2(xn, c1) = limn→∞ d2(xn, c2).

We begin with the former. There hence exists an n0 ≥ 1 with d2(xn, c1) < d2(xn, c2) and
so in particular xn ∈ F (c1, c2) for all n ≥ n0. Given i ∈ N, denote the weighted average of
(xn+i) with (tn) by xi

m. Convexity of F (c1, c2), that is (Q4), yields that xn0
m ∈ F (c1, c2). We

now show that d(xm, x
n0
m ) → 0. By triangle inequality, we have d(xm, x

n0
m ) ≤

∑n0−1
i=0 d(xi

m, x
i+1
m )
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it is enough to show that d(xi
m, x

i+1
m ) → 0 for all i ∈ N. For that, we show

d(xi
m, x

i+1
m ) ≤

m∑
k=0

tk
tm

d(xi+k, xi+k+1),

which in turn follows by induction on m. Concretely, we have d(xi
0, x

i+1
0 ) = d(xi, xi+1) and,

using joint convexity of the metric in Hadamard spaces, further

d(xi
m+1, x

i+1
m+1) = d

(
tm
tm+1

xi
m ⊕ tm+1

tm+1

xi+m+1,
tm
tm+1

xi+1
m ⊕ tm+1

tm+1

xi+m+2

)
≤ tm

tm+1

d(xi
m, x

i+1
m ) +

tm+1

tm+1

d(xi+m+1, xi+m+2)

≤ tm
tm+1

m∑
k=0

tk
tm

d(xi+k, xi+k+1) +
tm+1

tm+1

d(xi+m+1, xi+m+2)

=
m+1∑
k=0

tk
tm+1

d(xi+k, xi+k+1),

with ⊕ defined as before. As we have d(xn, xn+1) → 0 and
∑

n∈N tn = +∞, this yields that
d(xi

m, x
i+1
m ) → 0 by the convergence of weighted averages (e.g. the Silverman-Toeplitz theorem).

As xmk
→w c2, we therefore get xn0

mk
→w c2. As F (c1, c2) is convex and closed, it is weakly

closed (see e.g. Lemma 3.2.1 in [9]) and we hence have c2 ∈ F (c1, c2). So in particular d(c2, c1) ≤
d(c2, c2) = 0, that is c1 = c2.

Suppose now that limn→∞ d2(xn, c1) = limn→∞ d2(xn, c2) = L and suppose for a contradiction
that c1 ̸= c2. Let γ be the unique geodesic joining c1 and c2, and write γ′(λ) := γ(λd(c1, c2)). As
Z is convex, we get γ′(λ) ∈ Z for all λ ∈ [0, 1]. By assumption, we thus have that d2(xn, γ

′(λ))
converges. The strong convexity of d2 yields that

d2(xn, γ
′(λ)) ≤ (1− λ)d2(xn, c1) + λd2(xn, c2)− λ(1− λ)d2(c1, c2).

Taking the limit as n → ∞ thus yields

lim
n→∞

d2(xn, γ
′(λ)) ≤ L− λ(1− λ)d2(c1, c2) < L

for all 0 < λ < 1, as d2(c1, c2) > 0. Therefore, one has limn→∞ d2(xn, γ
′(λ)) < limn→∞ d2(xn, c2)

and hence can show as in the first part that c2 ∈ F (γ′(λ), c2). This gives

d(c2, γ
′(λ)) ≤ d(c2, c2) = 0

for all 0 < λ < 1, so that sending λ to 0 yields c1 = c2, which is a contradiction. □

A direct lift to the stochastic is then the following proposition:

Proposition 4.5. Under the assumptions of Proposition 4.3, suppose additionally that X sat-
isfies (Q4), that Z is convex and that W(xn) ⊆ Z as well as d(xn, xn+1) → 0 a.s. for a sequence
of weighted averages (xn) defined via some (tn) ⊆ (0,+∞) with

∑
n∈N tn = +∞.

Then (xn) weakly converges a.s. to a Z-valued random variable.

Proof. The previous Proposition 4.3, item (3), yields that there exists a set Ω̃ with measure one

such that for all ω ∈ Ω̃ and z ∈ Z, the sequence given by d(xn(ω), z) converges. By assumption,

we have W(xn(ω)) ⊆ Z as well as d(xn(ω), xn+1(ω)) → 0 for all ω ∈ Ω̂, and Ω̂ with measure
one. In particular, we therefore have W(xn(ω)) ⊆ Z, d(xn(ω), xn+1(ω)) → 0 and d(xn(ω), z)

converges for all z ∈ Z, for all ω ∈ Ω̂ ∩ Ω̃, and Ω̂ ∩ Ω̃ still has measure one.
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Lemma 4.4 applied for each ω ∈ Ω̂ ∩ Ω̃ individually yields that (xn(ω)) weakly converges to
some x(ω) ∈ Z. As each xn is measurable, Proposition 3.1 yields that there is a measurable
y with x = y a.s. Thus y is a.s. Z-valued and so w.l.o.g. we can assume that y is Z-valued.
Clearly, (xn) converges weakly to y almost surely. □

5. Initial considerations on the method (SB)

After these rather general considerations on the convergence of stochastic processes in Hadamard
spaces, we now turn to the method (SB). The present section is concerned with preliminary
observations on that method which we derive before turning to our convergence results, in
particular the measurability of the iteration (SB) under the assumptions (A1) – (A3) and the
existence of measurable maps satisfying (A3). In particular, from now on we assume, if not
stated otherwise, that X is a separable Hadamard space with the geodesic extension property
and at least two points.

5.1. Boundary cones and Busemann subgradients. We first recall the basic definitions
surrounding the method (SB). We begin with the notions of boundary X∞ and boundary cone
CX∞, where we refer to Chapter II.8 in [18] for further discussions (see also [32]).
Recall that the boundary of X at infinity X∞ is the set of all equivalence classes of rays in X

under the equivalence relation of being asymptotic, where two rays r, r′ are called asymptotic
if

d(r(t), r′(t)) ≤ K for all t ≥ 0

for some constant K ≥ 0. As X has the geodesic extension property and contains at least
two points, X∞ is nonempty. We say that a ray r has direction ξ ∈ X∞ if it belongs to the
respective equivalence class. In particular, given any x ∈ X and ξ ∈ X∞, there exists a unique
ray issuing at x with direction ξ. Following [32], we consider X∞ to be endowed with the cone
topology (see Definition II.8.6 in [18]). This makes the space first-countable, and moreover the
topology is completely specified by its convergent sequences, with the key result in that vein
discussed later in Lemma 5.2. Indeed, we refer to [32] for discussions on the particular benefits
that the cone topology offers for optimisation purposes, compared to the perhaps more common
topology induced by the angular metric.

The boundary cone CX∞ is now the usual Euclidean cone over X∞, i.e. CX∞ is the quotient
of X∞ × [0,∞) under the equivalence relation

(ξ, s) ∼ (ξ′, s′) if, and only if, s = s′ = 0 or (ξ, s) = (ξ′, s′).

Topologically, X∞ × [0,∞) is endowed with the product of the cone topology on X∞ and the
usual metric topology on [0,∞), and CX∞ is endowed with the resulting quotient topology,
also referred to as the cone topology. We denote an equivalence class of (ξ, s) ∈ X∞ × [0,∞)
in CX∞ by [ξ, s], and write [0] for the equivalence class of (ξ, 0) for some/any ξ ∈ X∞. Again,
convergence in CX∞ has a particularly useful characterization which we discuss later in Lemma
5.3. Examples of X∞ and CX∞ for various spaces X are discussed in [32].

We follow [32] and define the “pairing” function ⟨·, ·⟩ : X × CX∞ → R defined by

⟨x, [ξ, s]⟩ :=

{
sbξ(x) if s > 0,

0 if s = 0,

where we wrote bξ for the Busemann function corresponding to the (unique) ray rx,ξ with
direction ξ and some arbitrary but fixed origin x. Crucially, this pairing is continuous and
⟨·, [ξ, s]⟩ is convex, s-Lipschitz and positively homogeneous in s, meaning that ⟨·, [ξ, αs]⟩ =
α⟨·, [ξ, s]⟩ for all [ξ, s] ∈ CX∞ and α ≥ 0 (see Proposition 2.3 in [32]).
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We now turn to Busemann subgradients. Given a function g : C → R, a Busemann subgra-
dient of g at x ∈ C is a point [ξ, s] ∈ CX∞ such that

x = argminy∈C (g(y)− ⟨y, [ξ, s]⟩) .
We call g Busemann subdifferentiable if g has a Busemann subgradient at every x ∈ C. As
discussed in [32], x minimizes g if, and only if, [0] is a Busemann subgradient of g at x. The
work [32] provides quite a broad theory for such subgradients, including a chain rule, notions of
conjugacy and geometry of level sets. We also refer to [32] for various examples of Busemann
subdifferentiable functions and further discussion on relation to subgradients in the sense of
[41], defined using tangent cones of Alexandrov spaces.

As for properties of Busemann subdifferentiable maps, we here mention the following: First,
a Busemann subdifferentiable g is lsc (see p. 11 in [32]) and if C is convex, then g is also convex
(see Proposition 3.3 in [32]). Further, if g is Busemann subdifferentiable such that each point
x ∈ C admits a subgradient [ξ, s] with s ≤ L, then g is L-Lipschitz, with the converse being
true if C is open (see Proposition 4.3 in [32]).

5.2. Measurability of (SB). We now show the measurability of the main iteration under the
assumptions (A1) – (A3). For that, we recall the following folklore result on Carathéodory
functions.

Lemma 5.1 (folklore, see e.g. Lemma 8.2.6 in [4]). Let X, Y be complete separable metric
spaces and let (T, T ) be a measurable space. If g : T ×X → Y is a Carathéodory function, then
it is T ⊗ B(X)/B(Y ) measurable.

As a function f : E × C → R satisfying (A1) and (A2) is measurable in its left argument
by (A1) and continuous in its right by (A2) (recall the above discussion by which f(e, ·) is in
particular L-Lipschitz), it is thereby a Carathéodory function and so is E ⊗ B(C)-measurable.

Further, we require the following two characterizations of convergence inX∞ as well as CX∞,
both established in [32] (see also the discussion therein for previous works mentioning this and
related results).

Lemma 5.2 (Proposition 2.2 in [32]). Fix x ∈ X. For any (ξn) ⊆ X∞ and ξ ∈ X∞, we have
ξn → ξ if, and only if,

rx,ξn(δ) → rx,ξ(δ)

for all δ > 0.

Lemma 5.3 (Lemma 2.4 in [32]). For any ([ξn, sn]) ⊆ CX∞ and [ξ, s] ∈ CX∞, if [ξn, sn] →
[ξ, s] in CX∞, then {

sn → s if s = 0,

sn → s and ξn → ξ if s > 0.

Immediately, we can now see that rays are continuous in both direction and origin.

Lemma 5.4. The ray rx,ξ(s), seen as a function X ×CX∞ → X, is continuous both in x ∈ X
and [ξ, s] ∈ CX∞.

Proof. As geodesic rays depend continuously on its origin, rx,ξ(s) is continuous in x. Now let
[ξn, sn] → [ξ, s] in CX∞. We have

d(rx,ξn(sn), rx,ξ(s)) ≤ d(rx,ξn(sn), rx,ξn(s)) + d(rx,ξn(s), rx,ξ(s))

= |sn − s|+ d(rx,ξn(s), rx,ξ(s))
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using the fact that the rays are geodesics. Lemma 5.3 now implies that either sn → s if s = 0,
or sn → s and ξn → ξ if s > 0. In the former case, i.e. if s = 0, we have d(rx,ξn(s), rx,ξ(s)) =
d(x, x) = 0 so that d(rx,ξn(sn), rx,ξ(s)) ≤ |sn − s| → 0. In the second case, i.e. if s > 0, we
get that ξn → ξ implies that rx,ξn(δ) → rx,ξ(δ) for all δ > 0 using Lemma 5.2. In particular
d(rx,ξn(s), rx,ξ(s)) → 0 as s > 0. As |sn − s| → 0 as before, we get d(rx,ξn(sn), rx,ξ(s)) → 0 all
the same. □

We now establish measurability of the sequence (SB).

Lemma 5.5. Let X be a separable Hadamard space with the geodesic extension property and
at least two points, and let C ⊆ X be closed convex nonempty. Let f : E × C → R be a given
functional and assume (A1) – (A3).

Then the sequence (xn) defined by (SB) with with (tn) and (ζn+1), satisfying (Par), is mea-
surable.

Proof. By Lemma 5.4, we have that rx,ξ(s) is continuous in x ∈ X and [ξ, s] ∈ CX∞. In
particular, it is B(CX∞)/B(X) measurable in [ξ, s]. Thereby, rx,ξ(s) is a Carathéodory function
and so is B(X)⊗B(CX∞)/B(X) measurable by Lemma 5.1 (taking (CX∞,B(CX∞)) as (T, T )).
As PC is continuous, it is measurable. Clearly x0 ∈ X is measurable and so, combined with
assumption (A3), we get by induction that

xn+1 := PC(rxn,ξn(sntn))

is measurable. □

5.3. Measurable Busemann oracles. It remains a question whether (A1) and (A2) suffice
to guarantee the existence of an oracle satisfying (A3). We here give a partial answer to this
question for proper spaces X, relying on a few further parts of measurable selection theory as
well as on the geometry of CX∞.

First, note that CX∞ becomes Polish when X is locally compact. More concretely, if X is a
locally compact separable Hadamard space, then CX∞ is a locally compact Polish topological
space, i.e. it is metrizable so that the resulting metric space is locally compact, complete and
separable (see p. 7 of [13]). Further, if X is proper, then X∞ is actually compact (see Definition
II.8.6 in [18]).

Now, define the Busemann subgradient via

∂Bf : E × C → 2CX∞
, (e, x) 7→ {[ξ, s] ∈ CX∞ | x ∈ argminy∈C(f(e, y)− ⟨y, [ξ, s]⟩)}.

The existence of an oracle Busemann satisfying assumption (A3) amounts to showing that for
any x : Ω → C and ζ : Ω → E measurable, the map ∂Bf(ζ, x) : Ω → 2CX∞

has a measurable
selection, which amounts to ∂Bf(ζ, x) being measurable.
Note that assumption (A2) yields that

∂Bf(e, x) ⊆ {[ξ, s] ∈ CX∞ | s ≤ L} = (X∞ × [0, L])/ ∼
for all e ∈ E and x ∈ C. If X is proper, then X∞ is compact and therefore also X∞ × [0, L]
and (X∞ × [0, L])/ ∼ are compact.

We now first note that ∂Bf(e, ·) has a closed graph. For that, we rely on a characterization
using Fenchel conjugacy. Following [32] (see p. 16 therein), we define the Fenchel conjugate
f • : E × CX∞ → (−∞,+∞] of f by

f •(e, [ξ, s]) := sup
y∈C

(⟨y, [ξ, s]⟩ − f(e, y)).

Note that f •(e, ·) is lsc as ⟨y, [ξ, s]⟩ is continuous in [ξ, s] and that f •(·, [ξ, s]) is measurable as
f(·, x) is measurable for all x.
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Crucially, we have the following result on Fenchel duality:

Lemma 5.6 (eq. (15) in [32]). For any e ∈ E, x ∈ C and [ξ, s] ∈ CX∞:

f •(e, [ξ, s]) + f(e, x) ≥ ⟨x, [ξ, s]⟩,
with equality if, and only if, [ξ, s] ∈ ∂Bf(e, x).

We can now use this result to prove that ∂Bf(e, ·) has a closed graph (following essentially
the usual argument for subdifferentials, see e.g. Proposition 16.36 in [6]):

Lemma 5.7. Fix e ∈ E. Let (xn) ⊆ C and ([ξn, sn]) ⊆ CX∞ be given with [ξn, sn] ∈ ∂Bf(e, xn)
as well as xn → x and [ξn, sn] → [ξ, s]. Then [ξ, s] ∈ ∂Bf(e, x).

Proof. Recall that both f and f • are lsc in their right argument. By Lemma 5.6, we get
f •(e, [ξn, sn]) + f(e, xn) = ⟨xn, [ξn, sn]⟩ from [ξn, sn] ∈ ∂Bf(e, xn). Hence, using Lemma 5.6
again, we obtain

⟨x, [ξ, s]⟩ ≤ f •(e, [ξ, s]) + f(e, x)

≤ lim inf
n→∞

f •(e, [ξn, sn]) + lim inf
n→∞

f(e, xn)

≤ lim inf
n→∞

(f •(e, [ξn, sn]) + f(e, xn))

= lim
n→∞

⟨xn, [ξn, sn]⟩ = ⟨x, [ξ, s]⟩,

using in particular also again that ⟨·, ·⟩ is continuous. We hence have f •(e, [ξ, s]) + f(e, x) =
⟨x, [ξ, s]⟩ and Lemma 5.6 yields [ξ, s] ∈ ∂Bf(e, x). □

We can now derive that the graph of ∂Bf is measurable, and so using completeness of the
space (E, E , µ) that e 7→ gra(∂Bf(e, ·)) is a measurable set-valued map.

Lemma 5.8. The function e 7→ gra(∂Bf(e, ·)) is (weakly) measurable.

Proof. Define

φ(e, [ξ, s]) = argminy∈C (f(e, y)− ⟨y, [ξ, s]⟩) .
Then for g(e, x, [ξ, s]) = (e, [ξ, s], x), which is measurable, we have

gra(∂Bf) = g−1(gra(φ)).

Note that f(e, y)−⟨y, [ξ, s]⟩ is jointly measurable in (e, [ξ, s]) as well as continuous in y. Hence
gra(φ) is measurable by Lemma 3.2 and so gra(∂Bf) is measurable. The result now follows
using completeness of (E, E , µ) (recall Theorem 8.1.4 in [4]). □

The last result we need is the following composition lemma which in works such as [4] (see
Theorem 8.2.8 therein, which provides even more general results) is usually derived under
a completeness assumption. We however here need to dispense of that, and for that follow
the approach of Rockafellar [57] (whose proof goes through for our special case, albeit being
originally phrased for Euclidean spaces):

Lemma 5.9 (essentially Theorem 1N in [57]). Let X,Y be complete separable metric spaces,
with Y proper, and (T, T ) be a measurable space. Let A : T × X → 2Y be such that t 7→
gra(A(t, ·)) is (weakly) measurable with closed values. Then for all measurable x : T → X, the
map

φ(t) := A(t, x(t))

is (weakly) measurable.
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Proof. Let C ⊆ Y be open. Using that Y is proper, we express C as the union over a sequence
of compact sets (Ck). Define the map φk(t) := {x(t)} × Ck, and note that φk has compact
images for every k. By Lemma 18.4 in [3], each φk is (weakly) measurable. As C is open and
φ(t) is closed, we have

φ−1(C) = {t ∈ T | C ∩ A(t, x(t)) ̸= ∅}

=
⋃
k∈N

{t ∈ T | (x, y) ∈ gra(A(t, ·)) and x = x(t), y ∈ Ck}

=
⋃
k∈N

{t ∈ T | gra(A(t, ·)) ∩ φk(t) ̸= ∅}.

By Lemma 18.4 in [3], we have that gra(A(t, ·)) ∩ φk(t) is (weakly) measurable (where it is
crucial that φk has compact images). In particular, the set

{t ∈ T | gra(A(t, ·)) ∩ φk(t) ̸= ∅} = (gra(A(t, ·)) ∩ φk(t))
−1(X × Y )

and hence φ−1(C) is measurable. As C was arbitrary, we get that φ is (weakly) measurable. □

We recall the Kuratowski–Ryll-Nardzewski selection theorem:

Lemma 5.10 (see e.g. Theorem 8.1.3 in [4]). Let X be a complete separable metric space and
let (T, T ) be a measurable space. If φ : T → 2X is a set-valued measurable map such that φ(t)
is non-empty and closed for any t ∈ T , then there exists a measurable function x : T → X such
that x(t) ∈ φ(t) for all t ∈ T .

We now obtain the following result on the existence of Busemann subgradient oracles:

Proposition 5.11. Let X be a separable Hadamard space with the geodesic extension property
and at least two points, and assume that X is proper. Let C ⊆ X be closed convex nonempty.
Further, let f : E × C → R be a given functional, assuming (A1) and (A2).

Then for any x : Ω → C and ζ : Ω → E measurable, the map ∂Bf(ζ, x) : Ω → 2CX∞
is

measurable. In particular, it has a measurable selection.

Proof. Lemma 5.8 yields that e 7→ gra(∂Bf(e, ·)) is (weakly) measurable and Lemma 5.7 yields
that it has closed values, so that measurability of ∂Bf(ζ, x) follows using Lemma 5.9 (recall
that ∂Bf maps to subsets of a compact space). As ∂Bf(ζ, x) is closed, Lemma 5.10 yields the
existence of a measurable selection. □

6. Proofs of the main results

We now turn to our convergence results for (SB). For that, we now briefly recall the setup:
Let (E, E , µ) and (Ω,F ,P) be probability spaces, with (E, E , µ) complete, exactly as before,
and let X be a separable Hadamard space with the geodesic extension property and at least
two points. Further, fix a closed convex nonempty subset C ⊆ X and let f : E × C → R be
a function with properties (A1) – (A3) as above. Let (xn) be the iteration given by (SB), and
assume (Par).

The convergence proof now proceeds by showing that the iteration in question is stochastically
quasi-Fejér monotone. For that, we introduced some notation. Define the filtration

Fn := σ(ζ1, . . . , ζn, x0, . . . , xn)

and write En for the conditional expectation E[· | Fn].
The key geometric ingredient is the following property of the Busemann subgradients:
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Lemma 6.1 (see e.g. Lemma 6.1 in [32]). Let g : C → R be a given function for a non-empty
closed and convex set C ⊆ X and let [ξ, s] be a Busemann subgradient of f at x ∈ C. Given
t > 0, define

x+ :=

{
PC(rx,ξ(st)) if s > 0,

x if s = 0.

Then for any y ∈ C:

d2(x+, y) ≤ d2(x, y)− 2t(f(x)− f(y)) + s2t2.

This immediately allows us to derive the following stochastic variant of quasi-Fejér mono-
tonicity.

Lemma 6.2. For any n ∈ N and any y ∈ C:

En[d
2(xn+1, y)] ≤ d2(xn, y)− 2tn(F (xn)− F (y)) + L2t2n.

Proof. Fix y ∈ C and n ∈ N. Using Lemma 6.1, we get

d2(xn+1, y) ≤ d2(xn, y)− 2tn(f(ζn+1, xn)− f(ζn+1, y)) + s2nt
2
n.

By assumption (A2), we get sn ≤ L and applying conditional expectations yields

En[d
2(xn+1, y)] ≤ d2(xn, y)− 2tn(En[f(ζn+1, xn)]− En[f(ζn+1, y)]) + L2t2n.

Now, as ζn+1 is independent of xn and Fn, we have

En[f(ζn+1, xn)](ω) =

∫
f(ζn+1(ω

′), xn(ω)) dP(ω′) = F (xn(ω))

and similarly En[f(ζn+1, y)] = F (y). This yields the claim. □

We can now prove Theorems 1.2 and Theorem 1.3:

Proof of Theorem 1.2. By Lemma 6.2, we have

En[d
2(xn+1, z)] ≤ d2(xn, z)− 2tn(F (xn)−minF ) + L2t2n

for any z ∈ argminF , for which we fix one in the following (using argminF ̸= ∅). Therefore,
using (Par), we find that (∗) in Proposition 4.3 is satisfied. Items (1) and (2) of that result now

yield that (xn) is bounded and
∑∞

n=0 tn(F (xn) − minF ) < +∞ a.s., say jointly on a set Ω̂ of

measure one. Fix one such ω ∈ Ω̂. Using (Par) again, this in particular implies

lim inf
n→∞

F (xn(ω)) = minF.

Let F (xnk
(ω)) → minF . Using local compactness, choose a convergent subsequence xnkj

(ω) →
x(ω). In particular, using that F is lsc by Fatou’s lemma, we have

F (x(ω)) ≤ lim inf
j→∞

F (xnkj
(ω)) = lim

j→∞
F (xnkj

(ω)) = minF

so that x(ω) ∈ argminF for any ω ∈ Ω̂. In particular, we thus have that S(xn)∩ argminF ̸= ∅
a.s., so that item (5) of Proposition 4.3 yields that (xn) strongly converges a.s. to an argminF -
valued random variable. □

Further, we also immediately get the following proof for the corresponding result on weak
ergodic convergence:
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Proof of Theorem 1.3. As in the proof of Theorem 1.2, we derive

En[d
2(xn+1, z)] ≤ d2(xn, z)− 2tn(F (xn)−minF ) + L2t2n

for any z ∈ argminF from Lemma 6.2, which using (Par) further yields
∞∑
n=0

tn(F (xn(ω))−minF ) < +∞

for any ω ∈ Ω̂, with some Ω̂ of measure one. Using the convexity of F , we now have that

F (xn(ω))−minF ≤
∑n

k=0 tk(F (xk(ω))−minF )

tn
→ 0

as tn → +∞ by (Par) and
∑∞

n=0 tn(F (xn(ω)) − minF ) < +∞, for any ω ∈ Ω̂. Therefore, if
xnk

(ω) →w x(ω) we get

F (x(ω)) ≤ lim inf
k→∞

F (xnk
(ω)) = lim

n→∞
F (xn(ω)) = minF

so that x(ω) ∈ argminF for any ω ∈ Ω̂, using that F is lsc by Fatou’s lemma and hence also
weakly lsc (recall Section 2). We have thus shown W(xn) ⊆ argminF a.s. Further, note that
argminF is convex as F is convex. Lastly, note that Lemma 6.1 in particular implies

d2(xn+1, y) ≤ d2(xn, y)− 2tn(f(ζn+1, xn)− f(ζn+1, y)) + s2nt
2
n

for all y ∈ C, so that setting y = xn yields d2(xn+1, xn) ≤ L2t2n and hence
∞∑
n=0

d2(xn+1, xn) < +∞ a.s.

and so d(xn+1, xn) → 0 a.s. The assumptions of Proposition 4.5 are thereby met, which yields
that (xn) weakly converges a.s. to an argminF -valued random variable. □

At last, we turn to the quantitative result given in Theorem 1.4. For that, we require the
following quantitative version of a lemma of Qihou [54] (see also Lemma 5.31 in [6]):

Lemma 6.3 (Theorem 3.2 in [48]). Let (xn), (αn), (βn) and (γn) be sequences of nonnegative
reals with

xn+1 ≤ (1 + αn)xn − βn + γn

for all n ∈ N. If
∏∞

i=0(1 + αi) < ∞ and
∑∞

i=0 γi < ∞, then (xn) converges and
∑∞

i=0 βi < ∞.
Further, if K,L,M > 0 satisfy x0 < K,

∏∞
i=0(1+αi) < L and

∑∞
i=0 γi < M , then

∑∞
i=0 βi <

L(K +M).

The next result on approximation properties for summable sequences is folklore:

Lemma 6.4. Suppose that (un), (vn) are sequences of nonnegative reals with L > 0 such that∑∞
n=0 unvn < L and θ : N× (0,∞) → N such that

∑θ(k,b)
n=k un ≥ b for all b > 0 and k ∈ N. Then

lim infn→∞ vn = 0 with

∀ε > 0 ∀N ∈ N ∃n ∈ [N ; θ(N,L/ε)](vn < ε).

Proof. For arbitrary ε > 0 and N ∈ N, suppose for a contradiction that vn ≥ ε for all n ∈
[N ; θ(N,L/ε)]. Then L ≤ ε

∑θ(N,L/ε)
n=N un ≤

∑θ(N,L/ε)
n=N unvn ≤

∑∞
n=0 unvn < L, which is a

contradiction. □

With these in place, we now derive a first asymptotic approximation result, extending The-
orem 1.1:
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Lemma 6.5. Let θ : N × (0,∞) → N be such that
∑θ(k,b)

n=k tn ≥ b for all b > 0 and k ∈ N.
Further, let T >

∑∞
n=0 t

2
n. Lastly, let b > 0 be such that b > d2(x0, x

∗) for some minimizer x∗

of F . Then lim infn→∞ E[F (xn)] = minF with

∀ε > 0 ∀N ∈ N ∃n ∈ [N ; θ(N, (b+ L2T )/ε)](E[F (xn)]−minF < ε).

Proof. We have

En[d
2(xn+1, x

∗)] ≤ d2(xn, x
∗)− 2tn(F (xn)−minF ) + L2t2n

by Lemma 6.2. Therefore, Lemma 6.3 yields
∑∞

n=0 tnE[F (xn)−minF ] < b+L2T and so Lemma
6.4 yields the result. □

We can now prove Theorem 1.4:

Proof of Theorem 1.4. For any n ∈ N, defineXn := d2(xn, x
∗)+L2

∑∞
m=n t

2
m. As (xn) is adapted

to (Fn), also (Xn) is adapted to (Fn). As we have

En[d
2(xn+1, x

∗)] ≤ d2(xn, x
∗)− 2tn(F (xn)−minF ) + L2t2n ≤ d2(xn, x

∗) + L2t2n

by Lemma 6.2, the stochastic process (Xn) is a nonnegative supermartingale. Indeed, note that

En[Xn+1] = En

[
d2(xn+1, x

∗)
]
+ L2

∞∑
m=n+1

t2m ≤ d2(xn, x
∗) + L2

∞∑
m=n

t2m = Xn.

Using the fact that f(e, ·) is strongly convex, we get that F is strongly convex with parameter
α, i.e.

F (γ(tl)) ≤ (1− t)F (γ(0)) + tF (γ(1))− t(1− t)
α

2
d2(γ(0), γ(1))

for any geodesic γ : [0, l] → X. For γ being the unique geodesic joining xn and x∗, and
l = d(xn, x

∗), we get

minF ≤ F

(
γ

(
l

2

))
≤ 1

2
F (xn) +

1

2
minF − α

8
d2(xn, x

∗)

so that
α

4
d2(xn, x

∗) ≤ F (xn)−minF.

Now, let ε > 0 be arbitrary and using Lemma 6.5, choose an

n ∈
[
χ(ε/2L2); θ(χ(ε/2L2), 8(b+ L2T )/εα)

]
such that E[F (xn)]−minF < εα/8. Then E[d2(xn, x

∗)] < ε/2. Let m ≥ n be arbitrary. Then

E[d2(xm, x
∗)] ≤ E[Xm] ≤ E[Xn] = E[d2(xn, x

∗)] + L2

∞∑
m=n

t2m < ε

using that (Xm) is a supermartingale and the properties of χ. As m was arbitrary, this yields
E[d2(xn, x

∗)] → 0 and that ρ is a rate of convergence for that limit.
For d2(xn, x

∗) → 0 a.s., note that

P(∃m ≥ n(d2(xm, x
∗) ≥ a)) ≤ P(∃m ≥ n(Xm ≥ a)) ≤ E[Xn]

a

where the second inequality follows from Ville’s inequality [58] (see also [44]). This immediately
implies that d2(xn, x

∗) → 0 a.s. with rate ρ′. □
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