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Abstract. We provide abstract, general and highly uniform rates of asymptotic regularity
for a generalized stochastic Halpern-style iteration, which incorporates a second mapping in
the style of a Krasnoselskii-Mann iteration. This iteration is general in two ways: First, it
incorporates stochasticity in a completely abstract way rather than fixing a sampling method;
secondly, it includes as special cases stochastic versions of various schemes from the optimiza-
tion literature, including Halpern’s iteration as well as a Krasnoselskii-Mann iteration with
Tikhonov regularization terms in the sense of Boţ, Csetnek and Meier. For these particular
cases, we in particular obtain linear rates of asymptotic regularity, matching (or improving) the
currently best known rates for these iterations in stochastic optimization, and quadratic rates
of asymptotic regularity are obtained in the context of inner product spaces for the general
iteration. We utilize these rates to give bounds on the oracle complexity of such iterations
under suitable variance assumptions and batching strategies, again presented in an abstract
style. Finally, we sketch how the schemes presented here can be instantiated in the context of
reinforcement learning to yield novel methods for Q-learning.

Keywords: Asymptotic regularity, Halpern iteration, Tikhonov regularization, Q-learning,
proof mining
MSC2020 Classification: 47J25, 47H09, 62L20, 03F10

1. Introduction

Approximating fixed points of nonexpansive mappings is one of the most fundamental tasks
in nonlinear analysis and optimization. The problem becomes particularly interesting when we
only have noisy versions those mappings, in which case the resulting approximation methods
become stochastic processes. Concrete examples of this general situation include model-free
reinforcement learning algorithms, where variants of Q-learning, for instance, can be viewed as
stochastic methods for computing fixpoints of nonexpansive operators.

To be more concrete, let pX, ‖¨‖q be a seperable real-valued normed space and T, U : X Ñ X
be two nonexpansive mappings on X, i.e.

‖Tx´ Ty‖ ď ‖x´ y‖ and ‖Ux´ Uy‖ ď ‖x´ y‖

for all x, y P X. In order to approximate common fixed points of two such mappings under
stochastic noise constraints, we introduce in this paper the so-called stochastic Halpern-Mann
iteration, given by the schema

(sHM)

#

yn :“ p1´ αnqpTxn ` ξnq ` αnu,

xn`1 :“ p1´ βnqpUyn ` δnq ` βnyn,
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where, over some fixed probability space pΩ,F ,Pq, x0 and u are arbitrary X-valued random
variables chosen as a fixed starting point and as an anchor of the iteration, respectively, pξnq, pδnq
are sequences of X-valued random variables representing the stochastic noise, and pαnq, pβnq Ď
r0, 1s are suitable nonstochastic parameter sequences.

The schema (sHM) is designed to capture situations in which one does not have direct access
to Txn (respectively Uyn), but can only use noisy versions T̃ of T and Ũ of U . Intuitively, ξn
would then represent the difference between Txn and the corresponding approximation of Txn
obtained from T̃ through a suitable sampling method (and similarly for δn and Uyn), though
our presentation is fully abstract and we will make no assumptions about ξn or δn, other than
imposing controls on the means Er‖ξn‖s and Er‖δ‖ns, which however are carefully chosen so
that they can be achieved in concrete scenarios through sampling methods such as minibatching
under suitable assumptions.

The main results of the paper establish general conditions under which we guarantee the
asymptotic regularity of the scheme (sHM), both in the traditional sense of ‖xn ´ xn`1‖ (some-
times called the discrete velocity [2]) and also relative to the mappings, i.e. considering the
displacements ‖xn ´ Txn‖ and ‖xn ´ Uxn‖. Furthermore, we establish these asymptotic regu-
larity results both in expectation and almost surely, i.e. we show both

Er‖xn ´ xn`1‖s, Er‖xn ´ Txn‖s, Er‖xn ´ Uxn‖s Ñ 0

as well as

‖xn ´ xn`1‖ , ‖xn ´ Txn‖ , ‖xn ´ Uxn‖Ñ 0 almost surely

under suitable conditions on the auxiliary parameters as well as the noise. In the general case
this requires a subtle geometric argument and involves a delicate interplay between the two
modes of stochastic convergence, which manifest, respectively, in the additional assumptions
that X is uniformly convex and that the sequence p‖Uyn ´ yn‖q is uniformly integrable. Most
importantly, in all cases we provide explicit convergence rates for these expressions, under very
general conditions and dependent only on a few moduli witnessing quantitative aspects of our
main assumptions. In particular, we identify natural circumstances under which these rates are
very fast, reaching up to linear speed in special cases.

To date, only the very simple instance of (sHM) corresponding to a stochastic variant of
Halpern’s method [15] has been previously studied, where setting U :“ Id and δn :“ 0 gives
rise to the iteration

(sH) xn`1 “ p1´ αnqpTxn ` ξnq ` αnu,

considered in [4] (for finite dimensional normed spaces), a scheme which in the Euclidean setting
has recently received a great deal of attention in the context of stochastic monotone inclusion
problems [5, 11, 30, 43]. In all cases, controlling the variance of the noise terms is crucial
for convergence, and this is just one of several elements that makes the analysis of stochastic
schemes such as (sH) markedly different from that of their nonstochastic counterparts, some
of the others being a focus on oracle complexity, and the relevance of stochastic methods to
machine learning.

Given this increasing interest in stochastic variants of classic methods, the purpose of the
present paper is to broaden their current scope and provide a collection of generalised conver-
gence results in which all of the aforementioned features (variance reduction, oracle complexity,
applications in machine learning) are presented in the abstract.
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With this in mind, our main scheme (sHM) represents a stochastic analogue of the determinis-
tic Halpern-Mann scheme recently introduced in [13], which integrates two of the most promi-
nent methods for approximating fixed points for nonexpansive mappings, the Krasnoselskii-
Mann method [23, 31] and Halpern’s method [15] (see also [40] and [41]), with the intended gain
of combining the beneficial features of both, in particular the strong convergence of Halpern’s
method even in infinite dimensional spaces.

While we focus on the special case of the stochastic Halpern iteration (sH) at several points
in the paper, where it forms a useful example and where in particular our results on asymptotic
regularity in that case generalize and improve those presented in [4], our method (sHM) is
certainly not limited to this special case, and in line with [13] encompasses stochastic variants
of other well-known deterministic methods.

An important example of this is represented by setting T :“ Id and ξn :“ 0, as well as
u :“ 0 and γn :“ 1´αn, whereby we obtain a version of the Krasnoselskii-Mann iteration with
Tikhonov regularization terms considered in [1, 42] that now incorporates stochastic noise

(sKM-T) xn`1 “ p1´ βnqpUpγnxnq ` δnq ` βnpγnxnq

or, in other words, the stochastic Krasnoselskii-Mann iteration as considered in [3] with Tikhonov
regularization terms as considered in [1] (or, further, equivalently as a stochastic version of the
modified Mann iteration [17]). This method is known to produce fast asymptotic behavior in the
deterministic setting, and also benefits from strong convergence results similarly to Halpern’s
iteration [1]. To our knowledge, the stochastic variant (sKM-T) is introduced here for the first
time, and our convergence results for this special case of (sHM), which for a particular choice
of parameters and suitable conditions on the noise terms result in linear rates of asymptotic
regularity, show that fast asymptotic behaviour is also inherited by the stochastic variant.

While the special cases of (sH) and (sKM-T) exhibit linear rates of asymptotic regularity
under very mild (quantitative) assumptions on the space, parameters and noise, the general
iteration (sHM) proves to be more complex as mentioned before, depending to a large degree on
the geometry of the space: In the general case, we assume X to be uniformly convex, and the
rate then depends on a corresponding modulus witnessing this uniform convexity. Our main
geometric argument is carried out in a pointwise manner, yielding almost sure convergence (with
rates). Nevertheless, the passage back to convergence in mean requires a uniform integrability
assumption (which as we show can actually be imposed on the noise terms), and our rates then
also depend on a corresponding modulus of uniform integrability, which we define and use for
the first time in this paper. However, fast rates also apply to the general scheme (sHM), where
in the special case of a uniformly convex space of power type p ě 2, the complexity of those
rates is of order p, and so in particular we get quadratic rates of asymptotic regularity for inner
product spaces.

While all of our rates are novel, we emphasise that the qualitative asymptotic regularity
results for any iteration contained in (sHM) that goes beyond the Halpern iteration, are also
to the best of our knowledge new to the literature.

All of the results obtained in this paper are motivated via the methodology of the proof
mining program, a subfield of mathematical logic which combines an abstract approach to
proofs in mainstream mathematics with the extraction of computational information, such as
bounds or rates, from those proofs. We refer to the seminal monograph [19] for a comprehensive
overview of both theoretical as well as applied aspects of this program, along with the survey
[21] for an overview of more recent applications to nonlinear analysis. Proof mining has been
widely applied in nonlinear analysis, and has found particular success in providing quantitative
convergence results for Halpern’s iteration and its many variants, with notable instances ranging
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from initial rates of asymptotic regularity for Halpern’s iteration given by Leuştean [26] and the
first analysis of Wittmann’s proof of the strong convergence of Halpern’s iteration given in the
seminal paper of Kohlenbach [20], to the extensions of these results to nonlinear context such as
CATp0q-spaces as in [22] (by a logical analysis of a corresponding convergence proof by Saejung
[37]). They also include extensions of the Halpern iteration [38] for the modified Mann iteration
introduced in [17] (and extended to nonlinear spaces in [10]) as well as the Krasnoselskii-Mann
iteration with Tikhonov regularization terms and its extensions as in [6, 7, 8, 12] (with [6] of
particular note, as linear rates of asymptotic regularity are there obtained for the first time in
the context of applications of proof mining). In particular, the definition of the deterministic
Halpern-Mann method given in [13] and its corresponding convergence proof were motivated
by these logical considerations, as were the recent rates of asymptotic regularity given for this
iteration in [29].

The present work departs from the aforementioned case studies in nonlinear analysis in that
it incorporates, for the first time, stochasticity. In this way it forms part of a recent advance
of proof mining into probability theory, which comprises both new developments in the logical
foundations of probability theory due to first author and Neri [32], together with applied results
on the quantitative aspects of stochastic processes by the second author and Neri [33, 34]. In
particular, the present paper is one of the first applications of proof mining to stochastic
optimization: It represents a particularly interesting case study in this respect, in that it does
not readily follow from analogous quantitative results in the deterministic setting (such as in
[13, 29]), but requires a substantial arsenal of new quantitative ideas for this stochastic setting,
as will be introduced and discussed in detail throughout the paper. We stress that while this
logical perspective was crucial in obtaining the present results, the paper does not rely on any
notions from logic at all.

The main motivation of this paper is not so much its novelty within the proof mining program,
but the real applicability of the main results in concrete areas. For this reason, our last section
is dedicated to reinforcement learning, where a novel method of Q-learning with Tikhonov
regularization terms is sketched, and the asymptotic regularity results from the main theoretical
part of this paper are utilized to give very good oracle complexity estimates for a specific
mini-batching procedure that matches those obtained for Halpern’s iteration in [4]. We also
emphasise that potential applications of the stochastic Halpern-Mann method are not limited
to this, and in particular the presence of the second mapping in the schema (sHM) allows
for novel instantiations in style of double Q-learning [16] that will be explored, together with
the Q-learning method with Tikhonov regularization terms mentioned before, in a subsequent
paper in more detail. Another promising application is represented by stochastic versions of
the splitting methods with Tikhonov regularization terms as studied in [1], but we leave this for
future work, as we do the study of the convergence of the method (sHM), where we expect that
strong convergence results hold for this method also in infinite dimensional spaces, analogously
to the deterministic case.

2. Preliminaries and basic lemmas

We write N˚ for N without 0. Throughout, if not stated otherwise, we fix an underlying
probability space pΩ,F ,Pq and all probabilistic notions such as almost sureness refer to that
space. Similarly, X will always denote, unless stated otherwise, a normed space with norm ‖¨‖.
We refer to measurable functions Ω Ñ R as random variables, to measurable functions Ω Ñ X
as X-valued random variables and we refer to sequences of random variables as stochastic
processes. In order to ensure that basic properties enjoyed by real-valued random variables
are also inherited by X-valued random variables, so that in particular our main scheme (sHM)
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is well-defined, one normally requires some further assumptions on the underlying space (as
discussed in detail in [24]). The simplest option is to assume that X is separable, though
if the reader prefers they can also just assume that X is finite dimensional. Equalities and
inequalities involving random variables will always be understood to hold almost surely, even
if not explicitly indicated.

Throughout the paper, we will be concerned with quantitative variants of various notions
and we here now briefly the discuss the key definitions of the main quantitative notions used
in the paper:

Given a non-negative sequence of reals panq, a rate of convergence for an Ñ 0 is a function
ϕ : p0,8q Ñ N such that

@ε ą 0 @n ě ϕpεq pan ă εq .

An invertible and decreasing rate ϕ immediately implies the asymptotic estimate an ď ϕ´1pnq
for all n P N and this immediately implies a complexity bound on the sequence in terms of the
commonly used big O notation, namely panq “ Opϕ´1pnqq.

Now, given a nonnegative stochastic process pXnq, a rate of convergence for Xn Ñ 0 almost
surely is a function Φ : p0,8q2 Ñ N such that

@λ, ε ą 0 pP pDn ě Φpλ, εq pXn ě εqq ă λq .

We note that whenever Φ is a rate of convergence for Xn Ñ 0 almost surely, then for every
ε ą 0, Φpε, ¨q is a rate of convergence for P psupněN pXn ě εqq Ñ 0 in the nonstochastic sense.

Further, given a non-negative sequence of reals panq, we later want to quantitatively witness
the convergence or divergence of the series over that sequence. For that, if

ř8

n“0 an ă 8, we
say that a function χ : p0,8q Ñ N is a rate of convergence for that sum if

@ε ą 0

¨

˝

8
ÿ

n“χpεq

an ă ε

˛

‚.

If
ř8

n“0 an “ 8, we say that a function θ : Nˆ p0,8q Ñ N is a rate of divergence for that sum
if

@b ą 0 @k P N

˜

θpk,bq
ÿ

n“k

an ě b

¸

.

Naturally, any such modulus satisfies θpk, bq ě k for any k P N and b ą 0.
We now collect some of the basic abstract convergence results that our paper relies on.

The most crucial of these, on the asymptotic behavior of sequences of reals satisfying certain
recursive inequalities is the following due to Xu [41], often called Xu’s lemma:

Lemma 2.1 ([41]). Suppose that psnq, pcnq Ď r0,8q as well as panq Ď r0, 1s and pbnq Ď R satisfy

sn`1 ď p1´ anqsn ` anbn ` cn

for all n P N where
ř8

n“0 an “ 8, lim sup bn ď 0 and
ř8

n“0 cn ă 8. Then sn Ñ 0.

We will in particular rely on a quantitative rendering of an instance of Xu’s lemma which
is represented by the following lemma. This result is contained in [22, 28] (up to the way the
errors and the moduli are phrased) therefore for brevity we omit the proof.

Lemma 2.2 (essentially [22, 28]). Suppose that psnq, pcnq Ď r0,8q and panq Ď r0, 1s satisfy

sn`1 ď p1´ anqsn ` cn
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for all n P N, and furthermore, that K ą 0 is an upper bound on psnq, θ is a rate of divergence
for

ř8

n“0 an “ 8 and χ a rate of convergence for
ř8

n“0 cn ă 8. Then sn Ñ 0 with rate

ϕK,θ,χpεq :“ θ

ˆ

χ
´ε

2

¯

, ln

ˆ

2K

ε

˙˙

` 1.

We now extend this lemma to a probabilistic variant. For that, we first consider the follow-
ing result which allows us to transfer quantitative information from convergence in mean for
“almost-monotone” sequences of random variables to rates of almost sure convergence.

Lemma 2.3. Let pXnq, pCnq be nonnegative stochastic processes satisfying

Xn`1 ď Xn ` Cn

almost surely for all n P N and suppose furthermore that

(a)
ř8

i“0 ErCis ă 8 with rate χ,
(b) ErXns Ñ 0 with rate ϕ.

Then Xn Ñ 0 almost surely, and with rate

ψpλ, εq :“ max tϕpλε{2q, χpλε{2qu .

Proof. We first note that for any n P N, we have E
“
ř8

i“nCi
‰

“
ř8

i“n ErCis by the monotone
convergence theorem. Now define a stochastic process pUnq by Un :“ Xn `

ř8

i“nCi. Then we
have

Un`1 “ Xn`1 `

8
ÿ

i“n`1

Ci ď Xn ` Cn `
8
ÿ

i“n`1

Ci ď Xn `

8
ÿ

i“n

Ci “ Un

almost surely for any n P N, and therefore the events pUn ě εq are monotone decreasing in n.
In particular, using Markov’s inequality, we get for any N P N:

P pDn ě NpUn ě εqq “ P pUN ě εq ď
ErUN s
ε

“
ErXN s `

ř8

i“N E rCis
ε

.

Therefore if N “ ψpλ, εq, we have

P pDn ě NpUn ě εqq ď
ErXN s `

ř8

i“N E rCis
ε

ă
pλε{2` λε{2q

ε
“ λ.

The result follows by observing that Xn ď Un holds almost surely for all n P N and thus

PpDn ě N pXn ě εqq ď PpDn ě N pUn ě εqq ă λ

for any N , and in particular for the N defined above. �

The above lemma now allows us to give a stochastic version of Lemma 2.2:

Lemma 2.4. Suppose that pXnq, pCnq are nonnegative stochastic processes satisfying

Xn`1 ď p1´ anqXn ` Cn

almost surely for all n P N. Furthermore, suppose that

(a) ErXns ď K for all n P N,
(b)

ř8

i“0 ai “ 8 with rate of divergence θ,
(c)

ř8

i“0 ErCis ă 8 with rate of convergence χ.
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Then ErXns Ñ 0 with rate ϕK,θ,χ defined as in Lemma 2.2, i.e.

ϕK,θ,χpεq :“ θ

ˆ

χ
´ε

2

¯

, ln

ˆ

2K

ε

˙˙

` 1,

and further Xn Ñ 0 almost surely with rate

ψK,θ,χpλ, εq :“ ϕK,θ,χ

ˆ

λε

2

˙

.

Proof. Taking expectations on both sides we have

ErXn`1s ď p1´ anqErXns ` ErCns
for all n P N and so the rate for ErXns Ñ 0 follows by Lemma 2.2. For the rate for the almost
sure convergence, observe that χpλε{4q ď ϕK,θ,χpλε{2q as θpk, bq ě k. Hence, one can proceed
as in the proof of Lemma 2.3 to show that

P pDn ě NpUn ě εqq ď
ErXN s `

ř8

i“N E rCis
ε

for any N where, using χpλε{4q ď ϕK,θ,χpλε{2q, we then can conclude P pDn ě NpUn ě εqq ă λ
for N “ ϕK,θ,χpλε{2q. �

3. Quantitative asymptotic regularity for the generalized stochastic
Halpern scheme

In this section we now outline our main theoretical results and derive rates of asymptotic
regularity for the iterations generated by the generalized stochastic Halpern scheme.

3.1. Basic results and rates of asymptotic regularity. We begin with some fundamental
recursive inequalities for the iterations generated by the iteration (sHM):

Lemma 3.1 (essentially [29]). Let pxnq, pynq be the sequences generated by (sHM). Then the
following recurrence relations hold pointwise everywhere for all n P N:

‖yn`1 ´ yn‖ ď p1´ αn`1q p‖xn`1 ´ xn‖` ‖ξn`1 ´ ξn‖q ` |αn`1 ´ αn| ¨ ‖Txn ` ξn ´ u‖ ,(1)

‖xn`2 ´ xn`1‖ ď ‖yn`1 ´ yn‖` p1´ βn`1q ‖δn`1 ´ δn‖` |βn`1 ´ βn| ¨ ‖Uyn ` δn ´ yn‖ .(2)

Proof. For (1) we observe that

‖yn`1 ´ yn‖ “ ‖p1´ αn`1qpTxn`1 ` ξn`1q ´ p1´ αnqpTxn ` ξnq ` pαn`1 ´ αnqu‖
ďp1´ αn`1q ‖pTxn`1 ` ξn`1q ´ pTxn ` ξnq‖
` ‖pαn ´ αn`1qpTxn ` ξnq ´ pαn ´ αn`1qu‖

ďp1´ αn`1q p‖xn`1 ´ xn‖` ‖ξn`1 ´ ξn‖q ` |αn`1 ´ αn| ¨ ‖Txn ` ξn ´ u‖
where for the last inequality we use that T is nonexpansive. Similarly for (2) we have

‖xn`2 ´ xn`1‖ “ ‖p1´ βn`1qpUyn`1 ` δn`1q ` βn`1yn`1 ´ p1´ βnqpUyn ` δnq ´ βnyn‖
ď ‖p1´ βn`1qpUyn`1 ` δn`1q ´ p1´ βn`1qpUyn ` δnq ` βn`1pyn`1 ´ ynq‖
` ‖p1´ βn`1qpUyn ` δnq ´ p1´ βnqpUyn ` δnq ´ pβn ´ βn`1qyn‖

ďp1´ βn`1q p‖Uyn`1 ´ Uyn‖` ‖δn`1 ´ δn‖q ` βn`1 ‖yn`1 ´ yn‖
` |βn`1 ´ βn| ¨ ‖Uyn ` δn ´ yn‖

ď ‖yn`1 ´ yn‖` p1´ βn`1q ‖δn`1 ´ δn‖` |βn`1 ´ βn| ¨ ‖Uyn ` δn ´ yn‖
where again we use nonexpansivity of the operator in the last step. �
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We now move to our first quantitative result which presents a rate of asymptotic regularity
for the sequence pxnq, both in expectation and in probability. For that we introduce a first
central assumption on the boundedness of the iteration (sHM) in expectation, as commonly
made in the literature (see e.g. hypothesis pH1q in [4] of which this assumption here is a natural
extension to the generalised iteration (sHM)):

There exists a K0 P N˚ such that for all n P N:(Hyp)

Er‖Txn ´ u‖s, Er‖Uyn ´ yn‖s, Er‖Uu´ u‖s, Er‖Uyn ´ u‖s ď K0 ă 8.

Throughout, if not stated otherwise, we will assume the existence of such a K0.
In the context of the asymptotic regularity results that hold almost surely, we will sometimes

need to make a slightly stronger assumption that the random variables are actually L1-bounded
in the following sense:

There exists a nonnegative random variable Y with K0 ě ErY s for some K0 P N˚(Hyp1)

and for all n P N: ‖Txn ´ u‖ , ‖Uyn ´ yn‖ , ‖Uu´ u‖ , ‖Uyn ´ u‖ ď Y almost surely.

Contrary to the above (Hyp), which will essentially always be tacitly assumed, we will always
be very explicit about when we actually need to assume the above hypothesis (Hyp1). It is to
be noted that both hypotheses are guaranteed in the presence of a common fixed point of T
and U , as will be later discussed in more detail (see Lemma 3.9).

In any case, under the assumption (Hyp), we can immediately derive a bound on the expec-
tation of the discrete velocity and utilize that to derive our first rate of asymptotic regularity:

Theorem 3.2. Let pxnq, pynq be the sequences generated by (sHM). Suppose that
ř8

n“0 αn “ 8
with rate of divergence θ, that

8
ÿ

n“0

Er‖ξn`1 ´ ξn‖s,
8
ÿ

n“0

Er‖δn`1 ´ δn‖s,
8
ÿ

n“0

|αn`1 ´ αn|,
8
ÿ

n“0

|βn`1 ´ βn| ă 8

with moduli of convergence χ1 – χ4 and upper bounds B1 – B4, respectively, and that Er‖ξn‖s ď
E0 and Er‖δn‖s ď D0 for all n P N. Then Er‖xn`1 ´ xn‖s Ñ 0 with rate ϕK,θ,χ as well as
‖xn`1 ´ xn‖Ñ 0 almost surely with rate ψK,θ,χ with ϕ, ψ defined as in Lemma 2.4, i.e.

ϕK,θ,χpεq :“ θ

ˆ

χ
´ε

2

¯

, ln

ˆ

2K

ε

˙˙

` 1 and ψK,θ,χpλ, εq :“ ϕK,θ,χ

ˆ

λε

2

˙

,

where
χpεq :“ maxtχ1pε{4q, χ2pε{4q, χ3pε{4pE0 `K0q, χ4pε{4pD0 `K0qqu

as well as K :“ 2K0 ` E0 `D0 `B for B :“ B1 `B2 `B3pE0 `K0q `B4pD0 `K0q.

Proof. Using (1) and (2) of Lemma 3.1, we have that

‖xn`2 ´ xn`1‖ ď p1´ αn`1q ‖xn`1 ´ xn‖` cn
for all n P N everywhere on Ω where

cn :“ ‖ξn`1 ´ ξn‖` |αn`1 ´ αn|p‖Txn ´ u‖` ‖ξn‖q
` ‖δn`1 ´ δn‖` |βn`1 ´ βn|p‖Uyn ´ yn‖` ‖δn‖q.

It is immediate that

Ercns ď Er‖ξn`1 ´ ξn‖s ` Er‖δn`1 ´ δn‖s ` |αn`1 ´ αn|pK0 ` E0q ` |βn`1 ´ βn|pK0 `D0q

and so
χpεq :“ maxtχ1pε{4q, χ2pε{4q, χ3pε{4pE0 `K0qq, χ4pε{4pD0 `K0qqu
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is a rate of convergence for
ř8

n“0 Ercns ă 8, while B as defined above is an upper bound for
ř8

n“0 Ercns. Naturally, the above yields

Er‖xn`1 ´ xn‖s ď Er‖x1 ´ x0‖s `
n´1
ÿ

i“0

Ercis ď Er‖x1 ´ x0‖s `B

and we can then show that

Er‖x1 ´ x0‖s ď Er‖y0 ´ u‖s ` Er‖Uu´ u‖s ` Er‖ξ0‖s ` Er‖δ0‖s ď 2K0 ` E0 `D0

so that Er‖xn`1 ´ xn‖s ď K :“ 2K0`E0`D0`B. Using Lemma 2.4, we then get the desired
rates. �

We can then immediately transfer that rate to the complementary sequence pynq:

Theorem 3.3. Under the assumptions of Theorem 3.2, we have that Er‖yn`1 ´ yn‖s Ñ 0 with
rate

ϕ1pεq :“ maxtϕpε{3q, χ1pε{3q, χ3pε{3pK0 ` E0qqu.

as well as ‖yn`1 ´ yn‖Ñ 0 almost surely with rate

ψ1pλ, εq :“ max tϕ1pλε{2q, χpλε{2qu

where ϕ is a rate for Er‖xn`1 ´ xn‖s Ñ 0 and χ is as in Theorem 3.2.

Proof. Using (1) of Lemma 3.1, we get that

‖yn`1 ´ yn‖ ď ‖xn`1 ´ xn‖` ‖ξn`1 ´ ξn‖` |αn`1 ´ αn|p‖Txn ´ u‖` ‖ξn‖q

everywhere on Ω and for any n P N. Under expectation, we thus have

Er‖yn`1 ´ yn‖s ď Er‖xn`1 ´ xn‖s ` Er‖ξn`1 ´ ξn‖s ` |αn`1 ´ αn|pK0 ` E0q

and from that the rate for Er‖yn`1 ´ yn‖s Ñ 0 immediately follows, noting that a rate of
convergence χ for a series

ř8

n“0 an ă 8 yields that
ř8

n“χpεq an ă ε and so implies that an ă ε

for any n ě χpεq. For the rate of ‖yn`1 ´ yn‖Ñ 0 almost surely, note that using both (1) and
(2) of Lemma 3.1, we get that

‖yn`2 ´ yn`1‖ ď ‖yn`1 ´ yn‖` dn

for all n P N everywhere on Ω where

dn :“ ‖ξn`2 ´ ξn`1‖` |αn`2 ´ αn`1|p‖Txn`1 ´ u‖` ‖ξn`1‖q
` ‖δn`1 ´ δn‖` |βn`1 ´ βn|p‖Uyn ´ yn‖` ‖δn‖q.

So, it is immediate that we have

Erdns ď Er‖ξn`2 ´ ξn`1‖s ` Er‖δn`1 ´ δn‖s ` |αn`2 ´ αn`1|pK0 ` E0q ` |βn`1 ´ βn|pK0 `D0q.

and so that χ from Theorem 3.2 is a rate of convergence for
ř8

n“0 Erdns ă 8 (noting that if χ is
a rate of convergence for

ř8

n“0 an ă 8, then
ř

n“χpεq an`1 “
ř

n“χpεq`1 an ď
ř

n“χpεq an ă ε so

that χ is also a rate of convergence for
ř8

n“0 an`1 ă 8). Using Lemma 2.3, we get the desired
rate for ‖yn`1 ´ yn‖Ñ 0 almost surely. �
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3.2. Asymptotic regularity relative to the mappings. We now move on to establishing
rates of asymptotic regularity for the iterations relative to the mappings. For that, we will
actually see a crucial dichotomy, where results based on the use of just one of the mappings
U or T are comparatively straightforward, whereas for the general case where neither U nor
T trivialize, we rely on a geometric argument for establishing a rate of asymptotic regularity
relative to U for the sequence pynq, which requires both a uniform convexity of the space X
along with a uniform integrability assumption on p‖Uyn ´ yn‖q. As such, before we move on
to these results, we first give rates of asymptotic regularity relative to the mappings for the
remaining cases, dependent on the relevant rates for p‖Uyn ´ yn‖q:

Theorem 3.4. Assume that

Er‖Uyn ´ yn‖s Ñ 0

with rate ϕ, and Er‖ξn‖s,Er‖δn‖s, αn Ñ 0 with rates ρ1 – ρ3, respectively. Assume further that
Er‖xn`1 ´ xn‖s Ñ 0 with a rate ϕ0. Then

(a) Er‖xn ´ yn‖s Ñ 0 with rate

ϕ1pεq :“ max tϕ0pε{3q, ϕpε{3q, ρ2pε{3qu ,

(b) Er‖Tyn ´ yn‖s Ñ 0 with rate

ϕ2pεq :“ max tϕ1pε{3q, ρ3pε{3K0q, ρ1pε{3qu ,

(c) Er‖Uxn ´ xn‖s Ñ 0 with rate

ϕ3pεq :“ max tϕ1pε{3q, ϕpε{3qu ,

(d) Er‖Txn ´ xn‖s Ñ 0 with rate

ϕ4pεq :“ max tϕ1pε{3q, ϕ2pε{3qu .

Proof. Related to (a) – (d), we can immediately establish the following inequalities:

‖xn ´ yn‖ ď ‖xn`1 ´ xn‖` ‖xn`1 ´ yn‖
ď ‖xn`1 ´ xn‖` ‖Uyn ´ yn‖` ‖δn‖ ,

‖Tyn ´ yn‖ ď ‖Tyn ´ Txn‖` ‖Txn ´ yn‖
ď ‖yn ´ xn‖` αn ‖Txn ´ u‖` ‖ξn‖ ,

‖Uxn ´ xn‖ ď ‖Uxn ´ Uyn‖` ‖Uyn ´ yn‖` ‖yn ´ xn‖
ď 2 ‖xn ´ yn‖` ‖Uyn ´ yn‖ ,

‖Txn ´ xn‖ ď ‖Txn ´ Tyn‖` ‖Tyn ´ yn‖` ‖yn ´ xn‖
ď 2 ‖xn ´ yn‖` ‖Tyn ´ yn‖ .

By taking the expectation, the rates immediately follow. �

We then can similar give rates of asymptotic regularity almost surely under a slight extension
of the previous conditions on the errors:

Theorem 3.5. Under the assumption (Hyp1), assume that

‖Uyn ´ yn‖Ñ 0

almost surely with rate ψ, and αn Ñ 0 with rate ρ. Further, assume that ‖ξn‖ , ‖δn‖Ñ 0 almost
surely with rates φ1, φ2, respectively, and that ‖xn`1 ´ xn‖ Ñ 0 almost surely with a rate ψ0.
Then
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(a) ‖xn ´ yn‖Ñ 0 almost surely with rate

ψ1pλ, εq :“ max tψ0pλ{3, ε{3q, ψpλ{3, ε{3q, φ2pλ{3, ε{3qu ,

(b) ‖Tyn ´ yn‖Ñ 0 almost surely with rate

ψ2pλ, εq :“ max tψ1pλ{3, ε{3q, ρpελ{9K0q, φ1pλ{3, ε{3qu ,

(c) ‖Uxn ´ xn‖Ñ 0 almost surely with rate

ψ3pλ, εq :“ max tψ1pλ{2, ε{3q, ψpλ{2, ε{3qu ,

(d) ‖Txn ´ xn‖Ñ 0 almost surely with rate

ψ4pλ, εq :“ max tψ1pλ{2, ε{3q, ψ2pλ{2, ε{3qu .

Proof. The results follow immediately by the same inequalities established in the proof of
Theorem 3.4 where in the case (b) one just needs the following additional consideration, giving
a rate for αn ‖Txn ´ u‖Ñ 0 almost surely: Using Markov’s inequality we have

PpDn p‖Txn ´ u‖ ě K0{λqq ď PpY ě K0{λq ď λ

for Y as in (Hyp1). Now noting that if ω is such that ‖Txnpωq ´ upωq‖ ă K0{λ for all n P N,
then αn ‖Txnpωq ´ upωq‖ ă ε for any n ě ρpελ{K0q, and therefore we have

PpDn ě ρpελ{K0qpαn ‖Txn ´ u‖ ě εqq ď PpDn p‖Txn ´ u‖ ě K0{λqq ď λ

for any ε, λ ą 0 and this suffices to establish the claim in this case. �

Remark 3.6. If we assume that
8
ÿ

n“0

Er‖ξn‖s,
8
ÿ

n“0

Er‖δn‖s ă 8

with rates of convergence χ1, χ2, respectively, then we can immediately derive rates φ1, φ2 for
‖ξn‖ , ‖δn‖Ñ 0 almost surely: Since

ř8

n“0 Er‖ξn‖s ă 8 with rate χ1, we get

PpDn ě χ1pλεqp‖ξn‖ ě εqq ď
8
ÿ

n“χ1pλεq

Pp‖ξn‖ ě εq ď
8
ÿ

n“χ1pλεq

Er‖ξn‖s
ε

ă λ

using Markov’s inequality so that φ1pλ, εq :“ χ1pλεq is a rate for ‖ξn‖ Ñ 0 almost surely.
Similarly for

ř8

n“0 Er‖δn‖s ă 8 and χ2, φ2.

3.2.1. Special cases of the Halpern iteration and the Krasnoselskii-Mann iteration with Tikhonov
regularization terms. In the special case of U :“ Id and δn :“ 0, the iteration (sHM) collapses
to the stochastic Halpern iteration (sH). We then have trivial rates for Er‖Uyn ´ yn‖s Ñ 0 and
‖Uyn ´ yn‖Ñ 0 almost surely and so, in that case, we get under the assumptions of Theorems
3.2 and 3.4 (and also under suitable monotonicity assumptions of the rates involved) that

Er‖Txn ´ xn‖s Ñ 0

with a rate
ϕpεq :“ maxtϕK,θ,χpε{27q, ρ3pε{9K0q, ρ1pε{9qu

with ϕK,θ,χ defined as in Theorem 3.2 and ρ1, ρ3 as in Theorem 3.4. Note that this generalises
known rates in this case [4, Theorem 3.3], which apply only to specific choices of the parameters.
In a similar way, we get a new rate for ‖Txn ´ xn‖Ñ 0 almost surely, though we do not spell
it out here.

In the special case of T :“ Id and ξn :“ 0, the iteration (sHM) collapses to a stochastic variant
of the Krasnoselskii-Mann iteration with Tikhonov regularization terms (sKM-T) (and even a
slight extension by allowing general anchors u). In that case, we do not need to rely on the
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geometric arguments discussed in the next part of this section and can instead directly derive
rates of convergence for Er‖Uyn ´ yn‖s Ñ 0 and ‖Uyn ´ yn‖ Ñ 0 almost surely, essentially
following the approach of [38] (see also [6]).

Lemma 3.7 (essentially [38]). Let pxnq, pynq be the sequences generated by (sHM) where T “ Id
and ξn “ 0 for all n P N. Then the following recurrence relation holds everywhere on Ω for all
n P N:

‖Uyn`1 ´ yn`1‖ ď 2 ‖yn ´ yn`1‖` αn`1 ‖Uyn`1 ´ u‖` ‖δn‖` βn ‖Uyn`1 ´ yn`1‖ .

Proof. Given n P N, we have

‖Uyn`1 ´ yn`1‖ “ ‖Uyn`1 ´ p1´ αn`1qxn`1 ´ αn`1u‖
ď ‖Uyn`1 ´ xn`1‖` αn`1 ‖Uyn`1 ´ u‖
ď ‖Uyn`1 ´ Uyn‖` βn ‖Uyn`1 ´ yn‖` ‖δn‖` αn`1 ‖Uyn`1 ´ u‖
ď 2 ‖yn`1 ´ yn‖` βn ‖Uyn`1 ´ yn`1‖` ‖δn‖` αn`1 ‖Uyn`1 ´ u‖

pointwise everywhere. �

From that inequality, the following rates follow in a straightforward way:

Theorem 3.8. Let pxnq, pynq be the sequences generated by (sHM) where T “ Id and ξn “ 0
for all n P N. Also, let Λ ą 0 be such that Λ ď βn ď 1´Λ for all n P N. If Er‖yn ´ yn`1‖s Ñ 0
with rate ϕ, αn Ñ 0 with rate ρ and Er‖δn‖s Ñ 0 with rate χ, then Er‖Uyn ´ yn‖s Ñ 0 with
rate

κpεq :“ maxtϕpΛε{4q, ρpΛε{4K0q, χpΛε{4qu ` 1.

Under the alternative hypothesis (Hyp1) and assuming ‖yn ´ yn`1‖Ñ 0 almost surely with rate
ψ, αn Ñ 0 with rate ρ and ‖δn‖ Ñ 0 almost surely with rate φ, then ‖Uyn ´ yn‖ Ñ 0 almost
surely with rate

ζpλ, εq :“ maxtψpλ{3,Λε{4q, ρpΛλε{4K0q, φpλ{3,Λε{4qu ` 1.

Proof. By the Lemma 3.7 above, we have

p1´ βnq ‖Uyn`1 ´ yn`1‖ ď 2 ‖yn ´ yn`1‖` αn`1 ‖Uyn`1 ´ u‖` ‖δn‖
pointwise everywhere for any n P N. After taking expectations, we have

Er‖Uyn`1 ´ yn`1‖s ď
1

Λ
p2Er‖yn ´ yn`1‖s ` αn`1K0 ` Er‖δn‖sq

and from that the first rate immediately follows. The second rate follows rather similarly from
the above relation: Using Markov’s inequality, it holds that

P
ˆ

Dn

ˆ

‖Uyn`1 ´ u‖ ě
K0

λ

˙˙

ď P
ˆ

Y ě
K0

λ

˙

ď λ

for all λ ą 0. Let now λ, ε ą 0 be given. Take then ω such that ‖ynpωq ´ yn`1pωq‖ ă Λε{4 for all
n ě ψpλ{3,Λε{4q and ‖δnpωq‖ ă Λε{4 for all n ě φpλ{3,Λε{4q as well as ‖Uyn`1pωq ´ upωq‖ ď
K0

λ
for all n. Then for n ě ζpλ, εq ´ 1, it follows from the above inequality that

‖Uyn`1pωq ´ yn`1pωq‖ ă ε.

Therefore we immediately have

P pDn ě ζpλ, εq p‖Uyn ´ yn‖ ě εqq ă λ

which completes the proof. �
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3.2.2. The general case. We now discuss an alternative scenario where, in particular, a random
variable Y satisfying (Hyp1) can be explicitly construction if our mappings possess a common
fixed point. To be more precise, let us assume that FixT X FixU ‰ H and that p is a common
fixed point of T and U . Further, instead of making the assumptions (Hyp) or (Hyp1), for the
rest of this section we now fix

D ě

8
ÿ

n“0

Er‖δn‖s and E ě
8
ÿ

n“0

Er‖ξn‖s

as well as a K0 such that K0 ě Er‖x0 ´ p‖s,Er‖u´ p‖s. Using these data, we immediately get
the following extended result on bounds:

Lemma 3.9. For all n P N, ‖xn ´ p‖ ď Y 1 ď 2Y 1 “: Y pointwise everywhere, where

Y 1 :“ ‖x0 ´ p‖` ‖u´ p‖`
8
ÿ

i“0

p‖ξn‖` ‖δn‖q

and furthermore ErY s ď K :“ 4K0 ` 2D ` 2E. The sequences

‖yn ´ p‖ , ‖xn`1 ´ xn‖ , ‖yn`1 ´ yn‖ , ‖Txn ´ u‖ , ‖Uyn ´ yn‖ , ‖Uyn ´ u‖
are “L1-dominated” by Y in a similar way.

Proof. Pointwise everywhere it holds that

‖xn`1 ´ p‖ “ ‖p1´ βnqpUyn ` δnq ` βnyn ´ p‖
ď p1´ βnq ‖Uyn ´ p‖` βn ‖yn ´ p‖` ‖δn‖
ď ‖yn ´ p‖` ‖δn‖
“ ‖p1´ αnqpTxn ` ξnq ` αnu´ p‖` ‖δn‖
ď p1´ αnq ‖Txn ´ p‖` αn ‖u´ p‖` ‖ξn‖` ‖δn‖
ď p1´ αnq ‖xn ´ p‖` αn ‖u´ p‖` ‖ξn‖` ‖δn‖ .

It follows immediately by induction that

‖xn`1 ´ p‖ ď Y 1n :“ ‖x0 ´ p‖` ‖u´ p‖`
n
ÿ

i“0

p‖ξn‖` ‖δn‖q

holds pointwise everywhere. Since the Y 1n are pointwise monotone, defining Y 1 :“ supnPN Y
1
n

yields that ‖xn ´ p‖ ď Y 1n ď Y 1 pointwise everywhere for all n P N, and by the monotone
convergence theorem we have

ErY 1s “ Er‖x0 ´ p‖s ` Er‖u´ p‖s `
8
ÿ

i“0

pEr‖ξn‖s ` Er‖δn‖sq ď 2K0 `D ` E.

Therefore immediately ErY s ď K. By the above inequalities, one also has ‖yn ´ p‖ ď Y 1n ď Y 1,
and the rest of the bounds follow by the triangle inequality. �

For the rest of this section, we will always assume the existence of a fixed point as above and
use Y and K to refer to the quantities in Lemma 3.9. Note that these in particular validate
the assumptions (Hyp) and (Hyp1).

We now move on to the asymptotic regularity relative to U of the sequence pynq. For that, we
initially establish ‖Uyn ´ yn‖ Ñ 0 almost surely using geometric properties of the underlying
space and then use quantitative uniform integrability assumption for this random variables to
recover the asymptotic regularity relative to U of pynq in expectation. First, we will make the
following geometric assumption on the underlying normed space pX, ‖¨‖q:
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Definition 3.10. We say that pX, ‖¨‖q is uniformly convex ([9]) if for any ε P p0, 2s, there exists
a δ P p0, 1s such that for all x, y P B1p0q:

‖x´ y‖ ě ε implies
∥∥∥x` y

2

∥∥∥ ď 1´ δ.

We call a modulus η : p0, 2s Ñ p0, 1s witnessing such a δ in terms of ε a modulus of uniform
convexity for X.

The above modulus also applies to closed balls of any radius centered at any point in the
space and for arbitrary convex combinations:

Lemma 3.11. Let η be a modulus of uniform convexity. For any r ą 0 and ε P p0, 2s, if
x, y P Brpaq for a P X with ‖x´ y‖ ě ε ¨ r, then for all λ P r0, 1s:

‖p1´ λqx` λy ´ a‖ ď p1´ 2λp1´ λqηpεqqr.

The proof is straightforward and we hence omit it (but refer e.g. [27] for a proof of such a
property even in the context of nonlinear uniformly convex hyperbolic spaces).

The proof of the following theorem now follows the outline of the proof of an analogous result
for the Halpern-Mann iteration in uniformly convex hyperbolic spaces as given in [29] (though
without errors, even nonstochastic ones):

Theorem 3.12. Let pX, ‖¨‖q be uniformly convex with modulus η. Let ‖xn`1 ´ xn‖Ñ 0 almost
surely with rate ∆. Also, let ρ be a rate for αn Ñ 0 and assume that

8
ÿ

n“0

Er‖ξn‖s,
8
ÿ

n“0

Er‖δn‖s ă 8

with rates of convergence χ1, χ2, respectively. Lastly, let Λ ą 0 be such that Λ ď βn ď 1 ´ Λ.
Then ‖Uyn ´ yn‖Ñ 0 almost surely with rate

Γpλ, εq :“ maxt∆pλ{9, pε{4q, ρppε{4K 1
q, χ1pλpε{36q, χ2pλpε{36qu

for pε :“ ε ¨ Λ2 ¨ ηpε{K 1q and K 1 :“ 3K{λ.

Proof. Suppose for contradiction that

P pDn ě Γpλ, εq p‖Uyn ´ yn‖ ě εqq ě λ

and call the set inside the probability Bλ,ε. By Lemma 3.9 and Markov’s inequality, we have

P
ˆ

Dn

ˆ

‖yn ´ p‖ ą
K

λ

˙˙

ď P
ˆ

Y ě
K

λ

˙

ď
ErY s
K{λ

ď λ

for any λ ą 0 and so P pDn p‖yn ´ p‖ ą K 1qq ď λ{3 for K 1 :“ 3K{λ. Similarly for ‖u´ p‖.
Thus, using the Fréchet inequalities, we have

PpDn ě Γpλ, εqp‖Uyn ´ yn‖ ě εq ^ @n p‖yn ´ p‖ , ‖u´ p‖ ď K 1
qq

ě PpDn ě Γpλ, εqp‖Uyn ´ yn‖ ą εqq ` Pp@np‖yn ´ p‖ ď K 1
qq ` Pp@np‖u´ p‖ ď K 1

qq ´ 2

ě λ` p1´ λ{3q ` p1´ λ{3q ´ 2

“ λ{3.

We denote that set measured in the above by Aλ,ε, and let ω P Aλ,ε, i.e. there exists some
npωq ě Γpλ, εq such that∥∥Uynpωqpωq ´ ynpωqpωq∥∥ ě ε and

∥∥ynpωqpωq ´ p∥∥ , ‖upωq ´ p‖ ď K 1.
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Writing n0 for npωq, we then have ‖Uyn0pωq ´ yn0pωq‖ ď 2 ‖yn0pωq ´ p‖ ď 2K 1 so that

ε{2 ď ‖yn0pωq ´ p‖ ď K 1.

Also, we have ‖Uyn0pωq ´ p‖ ď ‖yn0pωq ´ p‖ ď K 1 as well as

‖Uyn0pωq ´ yn0pωq‖ ě ε “ ε{K 1
¨K 1

ě ε{K 1 ‖yn0pωq ´ p‖

and ε{K 1 ď 2. So, we can apply Lemma 3.11 to derive

‖xn0`1pωq ´ p‖ “ ‖p1´ βn0qpUyn0pωq ` δn0pωqq ` βn0yn0pωq ´ p‖
ď ‖p1´ βn0qUyn0pωq ` βn0yn0pωq ´ p‖` ‖δn0pωq‖
ď p1´ 2βn0p1´ βn0qηpε{K

1
qq ‖yn0pωq ´ p‖` ‖δn0pωq‖

ď ‖yn0pωq ´ p‖´ 2 ‖yn0pωq ´ p‖Λ2ηpε{K 1
q ` ‖δn0pωq‖

ď ‖yn0pωq ´ p‖´ ε ¨ Λ2
¨ ηpε{K 1

q ` ‖δn0pωq‖ .

Now, we further have

‖yn0pωq ´ p‖ ď p1´ αn0q ‖Txn0pωq ´ p‖` αn0 ‖upωq ´ p‖` ‖ξn0pωq‖
ď ‖xn0pωq ´ p‖` αn0 ‖upωq ´ p‖` ‖ξn0pωq‖

so that we can in particular derive

‖xn0`1pωq ´ p‖ ď ‖xn0pωq ´ p‖` αn0K
1
` ‖ξn0pωq‖` ‖δn0pωq‖´ ε ¨ Λ2

¨ ηpε{K 1
q.

So, in the end we have

pε “ ε ¨ Λ2
¨ ηpε{K 1

q

ď ‖xn0pωq ´ p‖´ ‖xn0`1pωq ´ p‖` αn0K
1
` ‖ξn0pωq‖` ‖δn0pωq‖

ď ‖xn0`1pωq ´ xn0pωq‖` αn0K
1
` ‖ξn0pωq‖` ‖δn0pωq‖ .

Letting Vn :“ ‖xn`1 ´ xn‖` αnK 1 ` ‖ξn‖` ‖δn‖, we have shown that

Aλ,ε Ď tDn ě Γpλ, εq pVn ě pεqu.

Similarly to in the proof of Theorem 3.5, we now have that χ1pλεq, χ2pλεq are rates for
‖ξn‖ , ‖δn‖Ñ 0, respectively. So we have

λ{3 ď PpAλ,εq
ď PpDn ě Γpλ, εq pVn ě pεqq

ď P pDn ě Γpλ, εq pp‖xn`1 ´ xn‖ ě pε{4q Y pαnK
1
ě pε{4q Y p‖ξn‖ ě pε{4q Y p‖δn‖ ě pε{4qqq

ď P pDn ě ∆pλ{9, pε{4qp‖xn`1 ´ xn‖ ě pε{4qq ` P pDn ě ρppε{4K 1
qpαnK

1
ě pε{4qq

` P pDn ě χ1pλpε{36qp‖ξn‖ ě pε{4qq ` P pDn ě χ2pλpε{36qp‖δn‖ ě pε{4qq

ă
λ

9
` 0`

λ

9
`
λ

9
“
λ

3
,

a contradiction. �

Remark 3.13. Using a slightly different argument first devised in [18, Theorem 3.4] (see also
[25, Remark 15] or [29, Remark 3.7] for similar remarks in the context of nonlinear spaces), we
can slightly optimize the above rate in the context of moduli of uniform convexity of a special
form: Let ηpεq “ ε ¨ η̃pεq where η̃ is increasing. Then above rate Γ holds even with pε defined as

pε :“ ε ¨ Λ2
¨ η̃pε{K 1

q.
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To see this, follow the proof of Theorem 3.12 but replace ε{K 1 with ε{ ‖yn0pωq ´ p‖. Then also
ε{ ‖yn0pωq ´ p‖ ď 2 as well as

‖Uyn0pωq ´ yn0pωq‖ ě ε{ ‖yn0pωq ´ p‖ ¨ ‖yn0pωq ´ p‖
and this leads to

‖xn0`1pωq ´ p‖ ď ‖yn0pωq ´ p‖´ 2 ¨ ε ¨ Λ2
¨ η̃pε{ ‖yn0pωq ´ p‖q ` ‖δn0pωq‖

ď ‖yn0pωq ´ p‖´ ε ¨ Λ2
¨ η̃pε{ ‖yn0pωq ´ p‖q ` ‖δn0pωq‖

ď ‖yn0pωq ´ p‖´ ε ¨ Λ2
¨ η̃pε{K 1

q ` ‖δn0pωq‖ .
using that η̃pε{K 1q ď η̃pε{ ‖yn0pωq ´ p‖q as η̃pε{ ‖yn0pωq ´ p‖q ď K 1 and since η̃ is increasing.
Then the proof continuous as before.

We now discuss the assumptions from the quantitative theory of expected values that we
require to establish an analogous result on the asymptotic regularity relative to U of pynq in
mean.

Definition 3.14. Let X be an integrable random variable. We call a function µ : p0,8q Ñ
p0,8q such that

@ε ą 0 @A P F pPpAq ď µpεq Ñ Er|X|1As ď εq

a modulus of absolute continuity for X.

Lemma 3.15. Let X be an integrable random variable and µ a modulus of absolute continuity
for X. For any a, ε P p0,8q, we have that

Er|X|s ě a` ε implies Pp|X| ą aq ą µpε{2q.

In particular, we have that Er|X|s ě ε implies Pp|X| ą ε{2q ą µpε{4q.

Proof. Suppose Pp|X| ą aq ď µpε{2q. Then we have

Er|X|s “ Er|X|1|X|ďas ` Er|X|1|X|ąas ď a` ε{2 ă a` ε

which is the claim. �

Definition 3.16. A sequence of random variables pXnq is called uniformly integrable if both
supnPN Er|Xn|s ă 8 and for any ε ą 0, there exists a δ ą 0 such that

@n P N @A P F pPpAq ď δ Ñ Er|Xn|1As ď εq .

We call a function µ that witnesses such a δ in terms of ε a modulus of uniform integrability
for pXnq.

Note µ is a modulus of uniform integrability for pXnq exactly when µ is a modulus of absolute
continuity for any Xn. The main use that a modulus of uniform integrability has for a stochastic
process is that with it, we can transfer a rate of almost-sure convergence to a rate of convergence
in mean:

Lemma 3.17. Let pXnq be a sequence of nonnegative random variables such that Xn Ñ 0
almost surely with rate ϕ and such that µ is modulus of uniform integrability for pXnq. Then
ErXns Ñ 0 with rate

Γpεq :“ ϕ
´

µ
´ε

4

¯

,
ε

2

¯

.

Proof. Suppose for contradiction that there exists some n0 ě Γpεq with ErXn0s ě ε. Then by
Lemma 3.15 we have PpXn0 ą ε{2q ą µpε{4q and hence P pDn ě ΓpεqpXn ě ε{2qq ě PpXn0 ą

ε{2q ą µpε{4q, a contradiction. �
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Theorem 3.18. Let pX, ‖¨‖q be uniformly convex with modulus η. Under the assumptions of
Theorem 3.2, let Er‖xn`1 ´ xn‖s Ñ 0 with rate ∆ from Theorem 3.2. Also, let ρ be a rate for
αn Ñ 0 and assume that

8
ÿ

n“0

Er‖ξn‖s,
8
ÿ

n“0

Er‖δn‖s ă 8

with rates of convergence χ1, χ2, respectively. Also, let Λ ą 0 be such that Λ ď βn ď 1 ´ Λ.
Lastly, let µ be a modulus of uniform integrability for p‖Uyn ´ yn‖q. Then Er‖Uyn ´ yn‖s Ñ 0
with rate

Γpεq :“ maxt∆pεq, ρppε{4K 1
q, χ1pεq, χ2pεqu

where ε :“ pεµpε{4q{36 for pε :“ ε{2 ¨ Λ2 ¨ ηpε{2K 1q and K 1 :“ 3K{µpε{4q.

Proof. By Theorem 3.2, ∆pλε{2q is a rate of almost sure convergence for ‖xn`1 ´ xn‖ Ñ 0.
Therefore by Theorem 3.12, a rate of almost sure convergence for ‖Uyn ´ yn‖Ñ 0 is given by

Γ̃pλ, εq :“ maxt∆pλε̃{36q, ρpε̃{4K 1
q, χ1pλε̃{36q, χ2pλε̃{36qu

for ε̃ :“ ε ¨ Λ2 ¨ ηpε{K 1q and K 1 :“ 3K{λ. By Lemma 3.17 we have Er‖Uyn ´ yn‖s Ñ 0 with
rate

Γpεq :“ Γ̃
´

µ
´ε

4

¯

,
ε

2

¯

“ maxt∆pεq, ρppε{4K 1
q, χ1pεq, χ2pεqu

where ε :“ pεµpε{4q{36 now for pε :“ ε{2 ¨ Λ2 ¨ ηpε{2K 1q and K 1 :“ 3K{µpε{4q. �

Remark 3.19. Using Remark 3.13, it follows that also here, if ηpεq “ ε¨η̃pεq where η̃ is increasing,
then above rate Γ holds even with pε defined as pε :“ ε{2 ¨ Λ2 ¨ η̃pε{2K 1q.

Before moving on to the case of fast rates for special choices of scalars and errors, we briefly
discuss some natural conditions under which the previous additional assumption of a modulus
of uniform integrability for the sequence p‖Uyn ´ yn‖q can be obtained (cf. [14, Chapter 5.4]),
and indicate how a modulus arises from these.

A first common assumption to establish uniform integrability is to assume a uniform finite
p-th moment for p ą 1. Now, in terms of an upper bound K witnessing that assumption, i.e.
supnPN Er‖Uyn ´ yn‖

p
s ă K for p ą 1, we can actually compute a corresponding modulus µ.

To see this, note that for any ε ą 0, setting Xn :“ ‖Uyn ´ yn‖, we have

Er|Xn|1As ď Er|Xn|1AXp|Xn|ďaqs ` Er|Xn|1AXp|Xn|ąaqs ď aPpAq ` a1´pEr|Xn|
p
s ď aPpAq ` ε{2

for a :“ p2K{εq1{pp´1q and A P F and thus a modulus of uniform integrability is given by

µpεq :“
ε

2

´ ε

2K

¯1{pp´1q

.

Another growth condition commonly imposed is to assume uniform finite expectation of
the random variables under a supercoercive function. Then, in terms of an upper bound
K witnessing that property, i.e. supnPN Ergp‖Uyn ´ yn‖qs ă K where g : r0,8q Ñ r0,8q is
supercoercive, i.e.

gpxq

x
Ñ 8 as xÑ 8,

with a rate of divergence κ : p0,8q Ñ p0,8q, i.e.

@a ą 0 @x ě κpaq

ˆ

gpxq

x
ě a

˙

,

a corresponding modulus µ can again be easily computed: Similarly to above we have

Er|Xn|1As ď κpaqPpAq ` Erg p|Xn|qs{a ď κpaqPpAq ` ε{2
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for a :“ 2K{ε and thus a modulus of uniform integrability is now given by

µpεq :“
ε

2κ p2K{εq
.

Most importantly, we want to show that the required modulus of uniform integrability can
be obtained through quantitative integrability assumptions on the errors. Concretely, note that
we have ‖Uyn ´ yn‖ ď Y pointwise everywhere by Lemma 3.9, so a modulus of integrability
for Y immediately yields a modulus of uniform integrability for p‖Uyn ´ yn‖q. In particular,
if u and x0 are chosen to be constant and K ą 0 is such that ‖x0 ´ p‖ , ‖u´ p‖ ă K, and in
addition both

ř8

i“0 ‖ξi‖ and
ř8

i“0 ‖δi‖ are integrable with moduli of absolute continuity µ1 and
µ2 respectively, by Lemma 3.9 we have

Er|Xn|1As ď 2KPpAq ` 2

˜

8
ÿ

i“0

pEr‖ξi‖ 1As ` Er‖δi‖ 1Asq

¸

and thus a modulus of uniform integrability is now given by

µpεq :“ min
! ε

4K
,µ1

´ε

8

¯

, µ2

´ε

8

¯)

.

In this way, we demonstrate that it is possible to shift the integrability condition on p‖Uyn ´ yn‖q
to appropriate integrability conditions on the sums of the error terms.

4. Fast rates of asymptotic regularity

In this section, we focus on particular instantiations of the parameters together with suitable
growth conditions on the errors that allow for fast rates of asymptotic regularity for the above
iteration(s). For that, we begin with some general results on deriving linear rates of convergence
for sequences of real numbers satisfying a general recursive inequality and we subsequently
extend this to sequences of random variables and utilize these general results then to in turn
derive the fast rates. Throughout the section, we will be very explicit about the exact kind of
assumptions (i.e. (Hyp), or (Hyp1), or the existence of common fixed points in the last part of
the previous section ) that are placed on the iterations in question.

4.1. General results on linear rates. We begin with the crucial result on deriving fast rates
of convergence for Halpern-style iterations in nonlinear optimization. This result is closely
modelled after a seminal lemma by Sabach and Shtern [36], first utilised in the context of proof
mining in [6]. Here we formulate the idea behind the lemma in a slightly different style to fit
the iterations considered in this paper, and in this way our presentation is closer to the explicit
closed-form bounds in [4].

Lemma 4.1 (essentially [36]). Suppose that psnq, pcnq are sequences of nonnegative real numbers
satisfying

sn`1 ď p1´ anqsn ` cn
for all n P N where panq Ď r0, 1s. Then for all m,K P N we have

sK`m`1 ď AK`mK sK `
K`m
ÿ

i“K

AK`mi`1 ci

for Akj :“
śk

i“jp1 ´ aiq, with Akj :“ 1 for j ą k. In the special case that an :“ αn`1 and

cn ď pαn ´ αn`1qL for some pαnq Ď r0, 1s and L ą 0 we have

sn ď Ãn1s0 ` L
n
ÿ

i“1

pαi´1 ´ αiqÃ
n
i`1
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for all n P N where Ãkj :“
śk

i“jp1 ´ αiq, with Ãkj :“ 1 for j ą k. If we furthermore define

αn :“ 2{pn` 2q and assume that s0 ď L, then

sn ď
2L

n` 2

for all n P N.

Proof. The first inequality follows for all m,K P N as in Lemma 2.2 immediately by induction.
For the second part of the above lemma, we note that Akj “ Ãk`1j`1 and thus from this first
inequality (after setting K “ 0), we have

sn`1 ď An0s0 `
n
ÿ

i“0

Ani`1ci “ Ãn`11 s0 `
n
ÿ

i“0

Ãn`1i`2 pαi ´ αi`1qL ď Ãn`11 s0 ` L
n`1
ÿ

i“1

Ãn`1i`1 pαi´1 ´ αiq

and also s0 “ Ã0
1s0 by definition. For the final part, we observe that

Ãni “
n
ź

j“i

p1´ αjq “
n
ź

j“i

j

j ` 2
“

i

i` 2
¨
i` 1

i` 3
¨ . . . ¨

n´ 1

n` 1
¨

n

n` 2
“

ipi` 1q

pn` 1qpn` 2q

for i ď n (noting that this also holds for i “ n), and therefore

sn ď
2s0

pn` 1qpn` 2q
` L

n
ÿ

i“1

ˆ

2

i` 1
´

2

i` 2

˙

pi` 1qpi` 2q

pn` 1qpn` 2q

“
2

pn` 1qpn` 2q

˜

s0 ` L
n
ÿ

i“1

ˆ

1

i` 1
´

1

i` 2

˙

pi` 1qpi` 2q

¸

ď
2L

pn` 1qpn` 2q

˜

1`
n
ÿ

i“1

1

¸

“
2L

n` 2

which completes the proof. �

The following is an adaptation of the special case of the previous lemma concerning fast rates
to sequences of random variables and as we will see in the following, it assumes a similarly
important role for deriving linear rates of almost sure convergence.

Lemma 4.2. Suppose that pXnq, pCnq are nonnegative stochastic processes satisfying

Xn`1 ď p1´ αn`1qXn ` Cn

almost surely for any n P N where αn :“ 2{pn ` 2q and where ErCns ď pαn ´ αn`1qL almost
surely for all n P N where L ě ErX0s. Then

ErXns ď
2L

n` 2
and P pDi ě n pXi ě εqq ď

1

ε

4L

n` 2

for all n P N.

Proof. From the fact that Xn`1 ď p1 ´ αn`1qXn ` Cn holds almost surely, we immediately
derive

ErXn`1s ď p1´ αn`1qErXns ` ErCns
and Lemma 4.1 yields ErXns ď 2L{pn ` 2q. Proceeding as in the proof of Lemma 2.3, noting
that we in particular have Xn`1 ď Xn ` Cn almost surely, we similarly derive

PpDn ě NpUn ě εqq ď
1

ε

˜

ErXN s `

8
ÿ

i“N

ErCis

¸
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for Un :“ Xn `
ř8

i“nCi. In particular, we have ErXN s ď 2L{pN ` 2q and

8
ÿ

i“N

ErCis ď L
8
ÿ

i“N

pαi ´ αi`1q “ LαN “
2L

N ` 2

so that

PpDn ě NpUn ě εqq ď
1

ε

4L

N ` 2
.

This gives

P pDn ě N pXn ě εqq ď P pDn ě N pUn ě εqq ď
1

ε

4L

N ` 2

again as in Lemma 2.3. �

Remark 4.3. Note that from the conclusions of Lemma 4.2, it is rather immediate to give
corresponding rates for ErXns Ñ 0 and Xn Ñ 0 almost surely, e.g. by setting Φpλ, εq :“ r4L{ελs

for the latter, but we prefer the above formulations in this section to make the constants very
explicit.

4.2. Linear rates of asymptotic regularity. We now begin by establishing linear rates of
asymptotic regularity for the iterations pxnq and pynq in the special case of parameters

(Par) αn “
2

n` 2
and βn “ β P p0, 1q.

Theorem 4.4. Let pxnq, pynq be the sequences generated by (sHM) for the parameters as in
(Par). Assume (Hyp) with constant K0. Also, assume that Er‖ξn‖s ď K1{pn ` 2q2 and
Er‖δn‖s ď K2{pn` 2q2. Then

Er‖xn ´ xn`1‖s ď
2L

n` 2
and P pDi ě n p‖xi ´ xi`1‖ ě εqq ď

1

ε

4L

n` 2

for all n P N where L “ 2K0 ` 2K1 ` 2K2 in both cases.

Proof. As in the proof of Theorem 3.2, we have Xn`1 ď p1´αn`1qXn`Cn for Xn :“ ‖xn ´ xn`1‖
and

Cn :“ ‖ξn`1 ´ ξn‖` ‖δn`1 ´ δn‖` pαn ´ αn`1qp‖Txn ´ u‖` ‖ξn‖q.

Also following the proof of Theorem 3.2 we have

ErX0s “ Er‖x0 ´ x1‖s ď 2K0 `K1 `K2 ď L.

So it remains to show that ErCns ď pαn ´ αn`1qL, and for this it suffices to show that

Er‖ξn`1 ´ ξn‖s ď pαn ´ αn`1q ¨ 2K1 and Er‖δn`1 ´ δn‖s ď pαn ´ αn`1q ¨ 2K2.

We conclude by observing that

Er‖ξn`1 ´ ξn‖s ď Er‖ξn`1‖s ` Er‖ξn‖s “
K1

pn` 3q2
`

K1

pn` 2q2

ď
2K1

pn` 2q2
ď

4K1

pn` 2qpn` 3q
“ pαn ´ αn`1q ¨ 2K1

and similarly for pδnq and K2. The rates then follow from Lemma 4.2. �
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Remark 4.5. Before moving to the other asymptotic regularity results, we just briefly note that
the asymptotic condition Er‖ξn‖s ď K1{pn` 2q2 naturally implies that

ř8

n“0 Er‖ξn‖s ă 8 with
a rather simple rate of convergence that can be easily calculated from the fact that

8
ÿ

n“N

Er‖ξn‖s ď K1

8
ÿ

n“N

1

pn` 2q2
ď K1

8
ÿ

n“N

1

pn` 1qpn` 2q

“ K1

8
ÿ

n“N

ˆ

1

n` 1
´

1

n` 2

˙

“
K1

N ` 1

for N ě 1. Similarly, this applies to δn and K2. In particular, as highlighted before in Remark
3.6, we have

PpDn ě Np‖ξn‖ ě εqq ď
8
ÿ

n“N

Pp‖ξn‖ ě εq ď
8
ÿ

n“N

Er‖ξn‖s
ε

ď
1

ε

K1

N ` 1
ď

1

ε

2K1

N ` 2
.

Now, in the case of sequence pynq, the above then immediately implies the following:

Theorem 4.6. Let pxnq, pynq be the sequences generated by (sHM) for the parameters as in
(Par). Assume (Hyp) with constant K0. Also, assume that Er‖ξn‖s ď K1{pn ` 2q2 and
Er‖δn‖s ď K2{pn` 2q2. Then

Er‖yn ´ yn`1‖s ď
2L

n` 2

for all n P N where L can be given as an integer linear combination of K0, K1 and K2. If we
assume (Hyp1) with K0 and Y , then

P pDi ě n p‖yi ´ yi`1‖ ě εqq ď
1

ε

4L

n` 2

for all n P N with a suitable L constructed similarly.

Proof. Using Lemma 3.1, (1), we have

‖yn`1 ´ yn‖ ď ‖xn`1 ´ xn‖` ‖ξn`1 ´ ξn‖` αn p‖Txn ´ u‖` ‖ξn‖q

for all n P N pointwise everywhere. By taking expectations, we get

Er‖yn`1 ´ yn‖s ď Er‖xn`1 ´ xn‖s ` Er‖ξn`1 ´ ξn‖s ` αnpK0 `K1q.

From Theorem 4.4, we get Er‖xn ´ xn`1‖s ď 2L{pn ` 2q and similar as in the proof thereof,
we have Er‖ξn`1 ´ ξn‖s ď 2K1{pn ` 2q2 ď 2K1{pn ` 2q. Combined with the definition of αn,
we get the first claim for a suitable L arising as an integer linear combination of K0, K1 and
K2. The second claim follows similarly, noting the above Remark 4.5 and the fact that, using
Markov’s inequality, we have

P pDn ě N pαnp‖Txn ´ u‖` ‖ξn‖q ě εqq

ď P pDn ě N pp‖Txn ´ u‖` ‖ξn‖q ě ε{αNqq

ď P pDn ě N pY ě ε{2αNqq ` P pDn ě N p‖ξn‖ ě ε{2αNqq

ď
1

ε

4K0

N ` 2
`

1

ε

8K1

N ` 2
,

which, combined with the previous, rather immediately yields the result (which we therefore
do not spell out any further). �
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Remark 4.7. Reformulated, the above results in particular state that if pxnq, pynq are the
sequences generated by (sHM) for parameters as in (Par) under the assumption (Hyp) and
Ep‖ξn‖q “ Op1{n2q as well as Ep‖δn‖q “ Op1{n2q, then

Er‖xn ´ xn`1‖s “ Op1{nq and Er‖yn ´ yn`1‖s “ Op1{nq.

4.3. Linear rates of asymptotic regularity relative to the mappings in special cases.
In the special case of the stochastic Halpern iteration, which we reobtain (as discussed before)
by setting U :“ Id as well as δn :“ 0, we get the following fast rates in the above special case:

Theorem 4.8. Let pxnq, pynq be the sequences generated by (sHM) for parameters as in (Par)
and where U :“ Id and δn :“ 0. Assume (Hyp) with constant K0. Also, assume that Er‖ξn‖s ď
K1{pn` 2q2. Then

Er‖Txn ´ xn‖s ď
2L

n` 2
for all n P N where L can be given as an integer linear combination of K0 and K1. If we assume
(Hyp1) with K0 and Y , then

P pDi ě n p‖Txi ´ xi‖ ě εqq ď
1

ε

4L

n` 2

for all n P N with a suitable L constructed similarly.

Proof. Using the inequalities listed in the proof of Theorem 3.4, we obtain

‖Txn ´ xn‖ ď 3 ‖xn`1 ´ xn‖` αn ‖Txn ´ u‖` ‖ξn‖
for all n P N pointwise everywhere, in this special case where U “ Id and δn “ 0. This
immediately yields the above rates (using similar arguments as in Lemma 4.6 in the case of the
almost sure convergence) using the previous Theorem 4.4 (noting that in this case K2 “ 0). �

Theorem 4.8 is closely related to [4, Theorem 3.3], but with adjusted step-sizes that now
provide exact linear rates (without logarithmic factors).

In the special case of the stochastic Krasnoselskii-Mann iteration with Tikhonov regulariza-
tion terms, which we re-obtain by setting T :“ Id as well as ξn :“ 0, we get the following fast
rates in the above special case:

Theorem 4.9. Let pxnq, pynq be the sequences generated by (sHM) for parameters as in (Par)
and where T :“ Id and ξn :“ 0. Assume (Hyp) with constant K0. Also, assume that Er‖δn‖s ď
K2{pn` 2q2. Lastly, let B ě 1{p1´ βq. Then

Er‖Uxn ´ xn‖s ď
2L

n` 2

for all n P N˚ where L can be constructed in terms of K0, K2 and B. If we assume (Hyp1) with
K0 and Y , then

P pDi ě n p‖Uxi ´ xi‖ ě εqq ď
1

ε

4L

n` 2
for all n P N˚ with a suitable L constructed similarly.

Proof. Using Lemma 3.7, we have

‖Uyn ´ yn‖ ď B p2 ‖yn´1 ´ yn‖` αn ‖Uyn ´ u‖` ‖δn´1‖q
for n ě 1 pointwise everywhere. Using the preceding Theorem 4.6, we immediately get that

Er‖Uyn ´ yn‖s ď
2L0

n` 2
and P pDi ě n p‖Uyi ´ yi‖ ě εqq ď

1

ε

4L0

n` 2
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for n ě 1 and a suitable constant L0 arising as an integer linear combination of K0 and K2.
Using the inequalities from Theorem 3.4, we then further have

‖Uxn ´ xn‖ ď 2 ‖xn`1 ´ xn‖` 3 ‖Uyn ´ yn‖` 2 ‖δn‖

for all n P N pointwise everywhere and so, using the previous results as well as Theorem 4.4,
we get the desired rates. �

4.4. Fast rates of asymptotic regularity relative to the mappings in the general case.
In the context of the above assumptions on the scalar sequences and the errors, we can still
get rather sensible complexity estimates in the general case where neither mapping necessarily
trivializes. While we could express this again using a general modulus of uniform convexity η
for the underlying space, we here focus on the case where η is of power type p for p ě 2, i.e.
there exists a constant C such that ηpεq “ Cεp. Crucially, this is the case for inner product
spaces for p “ 2:

Lemma 4.10 (essentially [25]). If X is a inner product space, then X is uniformly convex with
a corresponding modulus ηpεq “ ε2{8.

This allows for the following results on the asymptotic regularity in the general case. We
begin by instantiating Theorem 3.12 on the asymptotic regularity of the sequence pynq relative
to U almost surely and Theorem 3.18 for deriving the respective regularity result in expectation.

Lemma 4.11. Let X be uniformly convex with a modulus η of power type p with constant C.
Let pxnq, pynq be the sequences generated by (sHM) for parameters as in (Par). Let K and Y
be as in Lemma 3.9. Also, assume that Er‖ξn‖s ď K1{pn ` 2q2 and Er‖δn‖s ď K2{pn ` 2q2.
Lastly, let Λ ą 0 be such that Λ ď β ď 1´ Λ. Then ‖Uyn ´ yn‖Ñ 0 almost surely with rate

Γpλ, εq :“

R

p3Kqp´1L

CΛ2εpλp

V

for a suitable L arising as an integer linear combination of K, K1 and K2. Assuming the exis-
tence of a modulus µ of uniform integrability for p‖Uyn ´ yn‖q, we further get Er‖Uyn ´ yn‖s Ñ
0 with rate

Γ1pεq :“

R

2pp3Kqp´1L

CΛ2εpµpε{4qp

V

where L is as above.

Proof. First note that in the context of moduli η of power type p ě 2, we are actually in
the setting of the previous Remarks 3.13 and 3.19 where η̃pεq “ Cεp´1. Then the rate for
‖Uyn ´ yn‖Ñ 0 almost surely follows by instantiating the rate given in Theorem 3.12 with the
following moduli: With the above η̃, we have pε :“ CΛ2εpλp´1{p3Kqp´1 and K 1 :“ 3K{λ. Using
Theorem 4.4, we have

P pDi ě n p‖xi ´ xi`1‖ ě εqq ď
1

ε

4L0

n` 2

for all n P N and a suitable constant L0 arising as an integer linear combination ofK, K1 andK2.
So we in particular have that ∆pλ, εq “ r4L0{ελs is a corresponding rate for ‖xn ´ xn`1‖ Ñ 0
almost surely. As α “ 2{pn ` 2q, we further have rather immediately that ρpεq “ r2{εs is
a corresponding rate for αn Ñ 0. Lastly, using the assumptions on ‖ξn‖ and ‖δn‖, note
that as in Remark 4.5 we have

ř8

n“N Er‖ξn‖s ď K1{pN ` 1q so that χ1pεq “ rK1{εs is a
corresponding rate of convergence for

ř8

n“0 Er‖ξn‖s ă 8. The rate of convergence χ2pεq “
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rK2{εs for
ř8

n“0 Er‖δn‖s ă 8 follows similarly. Then instantiating Theorem 3.12 under Remark
3.13 gives us the rate

max

"R

144L0p3Kq
p´1

CΛ2εpλp

V

,

R

24Kp3Kqp´1

CΛ2εpλp

V

,

R

36K1p3Kq
p´1

CΛ2εpλp

V

,

R

36K2p3Kq
p´1

CΛ2εpλp

V*

ď
p3Kqp´1L

CΛ2εpλp

for L :“ 144L0, noting that K,K1, K2 ď L0 and so the first part follows. For the second part,
we just apply Lemma 3.17 directly. �

Using that, we can then employ the previous Theorems 3.4 and 3.5 to derive rates of asymp-
totic regularity also for the sequence pxnq relative to the mappings U and T . For simplicity, we
now focus on inner product spaces, i.e. where p “ 2 and C “ 1{8 by Lemma 4.10.

Theorem 4.12. Let X be an inner product space. Let pxnq, pynq be the sequences generated
by (sHM) for parameters as in (Par). Let K and Y be as in Lemma 3.9. Also, assume that
Er‖ξn‖s ď K1{pn`2q2 and Er‖δn‖s ď K2{pn`2q2. Lastly, let Λ ą 0 be such that Λ ď β ď 1´Λ.
Then ‖Uxn ´ xn‖Ñ 0 and ‖Txn ´ xn‖Ñ 0 almost surely with rates

Φ1pλ, εq :“

R

24KL

Λ2ε2λ2

V

and Φ2pλ, εq :“

R

72KL

Λ2ε2λ2

V

,

respectively, where L is as in Lemma 4.11. Assuming the existence of a modulus µ of uniform
integrability for p‖Uyn ´ yn‖q, we further get Er‖Uxn ´ xn‖s Ñ 0 and Er‖Txn ´ xn‖s Ñ 0 with
respective rates

ϕ1pεq :“

R

96KL

Λ2ε2µpε{4q2

V

and ϕ2pεq :“

R

288KL

Λ2ε2µpε{4q2

V

.

Proof. The rates follow immediately by instantiating Theorems 3.4 and 3.5 with the rates
obtained from Theorem 4.4 and Lemma 4.11, noting in particular that the quadratic rates for
‖Uyn ´ yn‖Ñ 0 and Er‖Uyn ´ yn‖s Ñ 0 dominate. �

5. Further remarks

We conclude the paper with an extended discussion on two further topics: oracle complexities
and applications in reinforcement learning. While both of these topics are being explored in
greater depth in ongoing future work, we want to sketch key aspects of these developments
here.

5.1. Abstract oracle complexities. The intuition behind our abstract stochastic scheme is
that ξn and δn arise by evaluating stochastic oracles T̃ and Ũ for T and U respectively. Though
our primary focus has been on establishing direct convergence rates for our schemes, in concrete
applications the resulting oracle complexity may act as a more reliable estimate of the actual
cost of running the algorithm. To address this at a level of generality in line with our overall
approach, we propose an abstract characterisation of oracle complexity. We first introducing a
pair of sequences of natural numbers (#ξn) and (#δn), with the intuition that #ξn denotes the
number of calls made to the stochastic oracle T̃ in computing the approximation to Txn (with
output Txn ` ξn), and #δn the number of calls to Ũ in computing the approximation to Uyn.

With this intuition in mind, we say that ψ : N Ñ N is a bound on the oracle growth of the
general scheme (sHM) if

@N P N

˜

#ξN `
N´1
ÿ

n“0

p#ξn `#δnq ď ψpNq

¸
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so that the total number of oracle calls needed to compute xN and yN is bounded by ψpNq.
Then, for example, if

Er‖Txn ´ xn‖s Ñ 0 with rate ϕ,

we can compute for any ε ą 0 an approximant xN such that

Er‖TxN ´ xN‖s ă ε using at most pψ ˝ ϕqpεq queries to the stochastic oracles.

Indeed, the bounding function ψ can be used in a similar way to convert any of our convergence
results to a corresponding characterisation of the overall oracle complexity in a completely
general manner. One possible instantiation of this abstract perspective is discussed in the
following example:

Example 5.1. Assume that T̃ is evaluated via a minibatch strategy (as e.g. studied in [4]), which
would correspond to setting

ξn :“
1

kn

kn
ÿ

j“1

T̃ pxn, ζn,jq ´ Txn

for batchsizes pknq (where ζn,1, . . . , ζn,kn are i.i.d. random variables sampled from a distribution
associated with xn) and therefore #ξn “ kn. Under suitable additional variance assumptions
on the oracle T̃ , one can then show that Er‖ξn‖s ď c{

?
kn for some corresponding constant

c ą 0. Hence, in such situations, the oracle bounds then involve a payoff between the rate of
variance reduction and the oracle growth, or more concretely between the

(˚) convergence speed of 1{
a

kn Ñ 0 and growth of
N
ÿ

n“0

kn.

One concrete such situation is e.g. discussed in [4, Corollary 3.5] where, in the context of a
finite dimensional space X, the oracle T̃ is assumed to have uniformly bounded variance in the
sense that

sup
xPX

E
„∥∥∥T̃ px, ζq ´ Tx∥∥∥2

2



ď σ2

for a constant σ ą 0, where ‖¨‖2 is the Euclidean norm on the space X. Under a standard
argument involving the independence of the samples (see e.g. [4]), this assumption yields the
concrete constant c :“ µσ where µ is a constant witnessing the equivalence between the general
norm ‖¨‖ and the Euclidean norm ‖¨‖2, i.e. ‖x‖ ď µ ‖x‖2 for all x P X. In any case, if
the batchsizes are suitably chosen in such a context, e.g. via setting kn :“ pn ` 1q4 (akin to
[4]), the above estimates on the means imply Er‖ξn‖s ď K1{pn ` 2q2 for K1 ě 4c while this
choice of batchsizes immediately yields ψpNq “ N5 as a bound on the oracle growth. Similar
remarks also immediately apply to the mapping U and its oracle Ũ under analogous variance
assumptions if we similarly assume that the errors δn arise using a minibatch approach with
stepsizes sn :“ pn` 1q4.

In the special cases of the stochastic Halpern iteration (U :“ Id and δn :“ 0) or the stochas-
tic Krasnoselskii-Mann iteration with Tikhonov regularization terms (T :“ Id and ξn :“ 0),
under the additional conditions (Hyp) with constant K0 on the boundedness and (Par) on the
parameters as in Theorems 4.8 and 4.9, said theorems immediately imply

Er‖Txn ´ xn‖s ď
2L

n` 2
and Er‖Uxn ´ xn‖s ď

2L1

n` 2

for suitable L and L1 constructed from K0, K1 or K0, K2 and B ě 1{p1´βq, respectively. These
estimates correspond to rates of convergence ϕpεq :“ ε{2L and ϕ1pεq :“ ε{2L1, respectively, and



26 N. PISCHKE AND T. POWELL

therefore, in that context, we can compute an xN such that

Er‖TxN ´ xN‖s ă ε and Er‖UxN ´ xN‖s ă ε

using at most pε{2Lq5 or respectively pε{2L1q5 queries to the stochastic oracles T̃ or Ũ in
question. In this way, we in particular obtain a version of [4, Corollary 3.5] without logarithmic
factors.

As is to be expected when augmenting existing deterministic methods with noise terms, all
our convergence results require us to control the means of pξnq and pδnq in some way, and this is
intuitively achieved in concrete settings by increasing the number of oracle queries p#ξnq and
p#δnq, so that, as above with (˚), obtaining good bounds on the oracle complexity for instances
of (sHM) will generally involve a tension between variance control and oracle growth. Because
our explicit rates of convergence make completely precise how improved control on the means
through e.g. faster convergence rates for

ř8

n“0 Er‖ξn‖s and
ř8

n“0 Er‖δn‖s leads to improved
rates of convergence for the algorithm itself, we anticipate that in any given model that allows
us to explicitly describe ψ in terms of Er‖ξn‖s and Er‖δn‖s, our abstract quantitative results
would not only provide us with a general bound on the associated oracle complexity in terms of
parameters representing variance control, but might even provide insights into specific choices
of parameters that optimize oracle complexity.

5.2. Applications in reinforcement learning. Our new stochastic iteration scheme (sHM)
immediately leads to new algorithms in relevant areas of application, including reinforcement
learning, where in particular noisy methods for computing fixpoints underlie model-free learning
algorithms such as Q-learning [39]. Here, direct access to the corresponding operators T, U
would require full knowledge of the agent’s environment, so these are instead sampled, leading
to iteration schemes with noise terms. Only very recently in [4] has the special case of the
scheme (sHM) corresponding to Halpern’s iteration (obtained by setting U :“ Id and δn :“ 0
in (sHM)) been instantiated to yield a Halpern-type version of Q-learning, and in a similar way
our general method represents an expanded class of learning algorithms.

To illustrate this, suppose that pS,A, r, pq forms a Markov decision process (MDP) over some
finite set of states S and actions A, where if we choose action a in state s, rps, aq represents
an immediate reward and pps, a, tq the probability that we transition to state t. Concretely,
by appropriately instantiating our stochastic Krasnoselskii-Mann iteration with Tikhonov reg-
ularization terms (obtained by setting T :“ Id and ξn :“ 0 as well as γn :“ 1 ´ αn and u :“ 0
in (sHM)), we are lead to the following novel Q-learning method with Tikhonov regularization
terms :

(KM-T-Q) Qn`1ps, aq :“ p1´ βnq pU pγnQnq ps, aq ` δnps, aqq ` βn pγnQnps, aqq

for

pUQqps, aq :“ rps, aq `
ÿ

tPS

pps, a, tqmax
bPA

Qpt, bq ` c

for some constant c P R, where here U is clearly nonexpansive with respect to

‖Q‖
8
“ max

sPS
max
aPA

Qps, aq.

There are standard conditions on our MDP (see e.g. [35]) under which an optimal average
reward, i.e. a maximum v˚ for

vπ :“ lim inf
NÑ8

E

«

1

N

N´1
ÿ

n“0

rpsn, anq

ff

with psn, anq induced by the policy π
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exists and is independent of the initial state, and moreover, an optimal policy obtaining this
maximum can be defined as

π˚psq :“ arg max
aPA

Q˚ps, aq

where Q˚ is a fixpoint of U for c :“ ´v˚. Thus the convergence of (KM-T-Q) and similar
schemes towards fixpoints is of direct practical relevance in computing optimal policies. In
particular, instantiating the noise terms according to a regularized minibatch strategy as e.g.
discussed in [4] for a Halpern-type version of Q-learning, i.e.

δnps, aq :“ γn

˜

1

sn

sn
ÿ

j“1

max
bPS

Qnpζn,j, bq ´
ÿ

tPS

pps, a, tqmax
bPA

Qnpt, bq

¸

where ζn,1 . . . , ζn,kn are i.i.d. random variables sampled from pps, a, ¨q, (KM-T-Q) then becomes

Qn`1ps, aq :“ γn

˜

p1´ βnq

˜

rps, aq `
1

sn

sn
ÿ

j“1

max
bPS

Qnpζn,j, bq ´ v
˚

¸

` βnQnps, aq

¸

the convergence of which can then be used (as in [4]) to establish the convergence of concrete
variants of RVI-Q-learning in the style of the Krasnoselskii-Mann iteration with Tikhonov
regularization terms, where in the above iteration v˚ is replaced by some approximant fpQnq

for a suitable function f .
However, our focus in this paper is not the development of concrete learnings algorithms,

but the establishment of abstract convergence results that are of general relevance across areas
of application. In that spirit, we simply observe for now that convergence of the abstract Q-
learning scheme (KM-T-Q) follows immediately from our main convergence results and inherits
the associated rates. For example, in the case of fast rates we obtain the following:

Corollary 5.2. Let pQnq be the sequence generated by (KM-T-Q) for the case of parameters

γn “ 1´
2

n` 2
and βn “ β P p0, 1q.

Assume that ‖Qn‖8 , ‖r ` c‖8 ď K so that (Hyp) holds with constant K0 :“ 2K. Also, assume
that Er‖δn‖8s ď K2{pn` 2q2. Lastly, let B ě 1{p1´ βq. Then

Er‖UQn ´Qn‖8s ď
2L

n` 2

for all n P N˚ where L is constructed from K0, K2 and B as in Theorem 4.9.

Remark 5.3. Instantiating δn as above via a regularized minibatch strategy, under conditions
as described in Example 5.1 we would obtain the desired control of the means by defining our
batchsizes through sn :“ pn`4q4, which akin to the discussion in Example 5.1 also immediately
would allow us an estimation of the oracle complexity in that case which is of pentic complexity.

It would be very interesting to see in future work whether Q-learning could, by means of
Tikhonov regularization terms as in the scheme (KM-T-Q), benefit from the nice theoretical
and practical properties that these regularization terms induce in the non-stochastic case.

We conclude by remarking that much broader generalisations which more fully exploit the
convergence results of this paper are possible. One obvious avenue for further study would be
to consider alternating Q-learning algorithms based on our main scheme (sHM) and we want



28 N. PISCHKE AND T. POWELL

to propose on such example by considering the following scheme which represents a Halpern-
Mann-type variant of Q-learning (where the anchor point is taken to be zero):

(sHM-Q)

Q1nps, aq :“ p1´ αnq

˜

rps, aq `
ÿ

tPS

pps, a, tqmax
bPA

Qnpt, bq ` ξnps, aq

¸

Qn`1ps, aq :“ p1´ βnq

˜

r1ps, aq `
ÿ

tPS

p1ps, a, tqmax
bPA

Q1npt, bq ` δnps, aq

¸

` βnQ
1
n

where pS,A, r1, p1q is a second MDP over the same states and actions. This method bears a
passing resemblance to double Q-learning [16], which incorporates a double estimator to reduce
bias in ordinary Q-learning. Moreover, our scheme converges to a simultaneous fixpoint of
two underlying nonexpansive operators, and thus might be relevant in situations where we are
required to compute optimal policies concurrently across distinct environments. However, we
leave an exploration of the potential merits of both schemes (KM-T-Q) and (sHM-Q) as well
as similar algorithms to future work.
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