
RATES OF CONVERGENCE FOR THE ASYMPTOTIC BEHAVIOR OF

SECOND-ORDER CAUCHY PROBLEMS

NICHOLAS PISCHKE

Department of Mathematics, Technische Universität Darmstadt,
Schlossgartenstraße 7, 64289 Darmstadt, Germany,

E-mail: pischke@mathematik.tu-darmstadt.de

Abstract. We provide a quantitative version of a result due to Poffald and Reich on the asymptotic behavior

of solutions of a second-order Cauchy problem generated by an accretive operator in the form of a rate of
convergence. This quantitative result is then used to generalize a result of Xu on the asymptotic behavior of

almost-orbits of the solution semigroup of a first-order Cauchy problem to this second-order case.

Keywords: Accretive operators; Nonlinear semigroups; Second-order Cauchy problems; Rates of convergence;
Proof mining
MSC2010 Classification: 47H06; 35F25; 47H20; 03F10

1. Introduction

One of the fundamental questions in the theory of differential equations is that of the asymptotic behavior of
the solutions to a particular system, e.g., for the well-studied (see [2, 15] for canonical references among many
others) first-order system

(∗)

{
u′(t) ∈ −Au(t), 0 < t <∞
u(0) = x

over a Banach space X generated by an initial value x ∈ X and an accretive set-valued operator A : X → 2X .
By the fundamental results of Brezis and Pazy [4] as well as Crandall and Liggett [5], the main tool used in the
study of such a system is the semigroup S = {S(t) | t ≥ 0} on domA generated by A via the Crandall-Liggett
exponential formula

S(t)x = lim
n→∞

(
Id +

t

n
A

)−n
x,

generalizing the solution set of the above equation (∗).

As is well-known, these semigroups do not converge asymptotically, even in the case of simple operators over
Hilbert spaces and since the late 1970s, there has been a search for suitable conditions on both spaces and
operators such that the convergence of the orbits of the solution semigroup can be guaranteed. One influential
work in that context is that of Pazy [14] where he introduced the so-called convergence condition for the operator
A: over a Hilbert space X with inner product 〈·, ·〉, a maximally monotone operator A with A−10 6= ∅ is said
to satisfy the convergence condition if for all bounded sequences (xn, yn) ⊆ A with

lim
n→∞

〈yn, xn − Pxn〉 = 0,

it holds that lim infn→∞ ‖xn − Pxn‖ = 0 where P is the projection onto the closed and convex set A−10. Under
that assumption, Pazy in [14] showed the strong convergence of S(t)x to a zero of the operator A for x ∈ domA
where S is the semigroup generated by A via the exponential formula as above. The convergence condition
and the associated result on the asymptotic behavior of S have subsequently been extended to the context
of uniformly convex and uniformly smooth Banach spaces by Nevanlinna and Reich in [13] by modifying the
premise to the assumption that

lim
n→∞

〈yn, J(xn − Pxn)〉 = 0

where J is the normalized-duality map of X.
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In this paper, we are concerned with a result due to Poffald and Reich [19] which extends the work of
Nevanlinna and Reich to incomplete second-order Cauchy problems. Namely, for the second-order system

(†)


u′′(t) ∈ Au(t), 0 < t <∞,
u(0) = x,

sup{‖u(t)‖ | t ≥ 0} <∞,
over a uniformly smooth and uniformly convex Banach space X with a strongly monotone duality map J and
A m-accretive as before, the solution set

S = {u(t) | u is a solution to (†) for some x in the sense of [19, Theorem 2.8]}
is a nonlinear semigroup for x ∈ domA as shown in [19]. Thus, by the results from [20], this semigroup
is generated via the exponential formula by some unique m-accretive operator which is denoted by A1/2 and
called the square root of A. Similarly, we write S1/2 for this semigroup. Various properties of this semigroup and
the accompanying system were exhibited in [19], generalizing previous work in the context of Hilbert spaces by
Barbu [1] as well as Brezis [3]. In particular, Poffald and Reich obtained the following result on the asymptotic
behavior of the semigroup:

Theorem 1.1 (Poffald and Reich [19]). Let X be uniformly convex and uniformly smooth with a strongly

monotone duality map J with value M > 0, i.e. 〈x − y, Jx − Jy〉 ≥ M ‖x− y‖2 for all x, y ∈ X. Let A be
m-accretive with A−10 6= ∅ and such that it satisfies the convergence condition. If S1/2 = {S1/2(t) | t ≥ 0} is the
semigroup generated by A1/2 via the exponential formula as above, then S1/2(t)x converges strongly to a zero of

A for t→∞ for any x ∈ domA.

We here exhibit the quantitative content of this result by extracting an explicit and computable transforma-
tion from the proof of Theorem 1.1 which translates a so-called modulus of the convergence condition (which
was introduced in [16] to provide a quantitative representation of the way in which the operator in question
satisfies the convergence condition), together with some minor quantitative data, into a full rate of convergence
for the strong convergence of S1/2(t)x to a zero of A.

This result was established through the use of methods developed in proof mining, a program in mathematical
logic which aims at the extraction of quantitative information from prima facie nonconstructive proofs. This
proof mining program goes back conceptually to Kreisel’s program of unwinding of proofs from the 1950’s and, in
its modern form, has been systematically developed since the 1990’s by Ulrich Kohlenbach and his collaborators
and by now comprises a large number of applications, in particular in nonlinear analysis and optimization (see
[8] for a book treatment and [9] for a recent survey).

In that vein, this work can in particular be viewed as a new case study in this program for the theory of
differential equations and abstract Cauchy problems, an area which so far has only seen applications by methods
from proof mining in the early work by Kohlenbach and Koutsoukou-Argyraki [10] and the work by Pinto and
the author [16].

Going beyond the range of proof mining however, we are here further concerned with new generalizations
of the theorem of Poffald and Reich. In [24], Xu studied the behavior of almost-orbits associated with the
semigroup generated by A as introduced by Miyadera and Kobayasi [12]: an almost-orbit of S is a continuous
function u : [0,∞)→ domA such that

lim
s→∞

sup{‖u(t+ s)− S(t)u(s)‖ | t ≥ 0} = 0.

Concretely, Xu obtained the following result which generalizes the result of Nevanlinna and Reich to almost-
orbits in the sense of the above:

Theorem 1.2 (Xu [24]). Let X be uniformly convex and uniformly smooth and A be m-accretive with A−10 6= ∅
and such that it satisfies the convergence condition. If S = {S(t) | t ≥ 0} is the semigroup generated by A via
the exponential formula, then every almost-orbit u(t) of S converges strongly as t→∞.

By combining the ideas of the quantitative analysis obtained in [16] of this result for the first-order case
together with the quantitative version of the result of Poffald and Reich established in the first part of this
paper, we here obtain a quantitative version of a result on almost-orbit convergence for the semigroup S1/2.
This result, while finitary in nature, in particular also implies back the following “infinitary” result for S1/2

which is similar to Xu’s result above:
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Theorem 1.3. Let X be uniformly convex and uniformly smooth with a strongly monotone duality map J with
value M > 0, i.e. 〈x − y, Jx − Jy〉 ≥ M ‖x− y‖2 for all x, y ∈ X. Let A be m-accretive such that it satisfies
the convergence condition and that A−10 6= ∅. Let S1/2 = {S1/2(t) | t ≥ 0} be the semigroup generated by A1/2

via the exponential formula as above. Then every almost-orbit u(t) of S1/2 converges strongly as t→∞.

This result on the behavior of almost-orbits in the case of S1/2 seems to be new to the literature and the
approach taken here to establish it in particular exhibits the strength of quantitative analyses obtained in the
proof mining program as these exhibit the real finitary core of a mathematical proof, stripped of any non-
essential notions and arguments, which sometimes allows for easy generalizations that lead to new results.

However, as common in applications of the proof mining program, the results given here are presented without
any use of logical tools.

2. Preliminaries

As in the context of the work of Poffald and Reich [19], we throughout consider a Banach space (X, ‖·‖) with
dual space X∗ which is uniformly convex, i.e.

∀ε ∈ (0, 2]∃δ ∈ (0, 1]∀x, y ∈ X
(
‖x‖ , ‖y‖ ≤ 1 ∧ ‖x− y‖ ≥ ε→

∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ
)
,

and uniformly smooth, i.e.

∀ε > 0∃δ > 0∀x, y ∈ X (‖x‖ = 1 ∧ ‖y‖ ≤ δ → ‖x+ y‖+ ‖x− y‖ ≤ 2 + ε ‖y‖) .
Associated with X is the normalized duality mapping J : X → X∗ , defined by

J(x) :=
{
x∗ ∈ X∗ | 〈x, x∗〉 = ‖x‖2 and ‖x∗‖ = ‖x‖

}
,

for all x ∈ X and this mapping is single-valued and uniformly continuous if, and only if, X is uniformly smooth.
We will further assume that J is strongly monotone with value M > 0, i.e. 〈x − y, Jx − Jy〉 ≥ M ‖x− y‖2
for all x, y ∈ X. This, by Proposition 2.11 of [19], amounts to X being uniformly convex with a modulus of
convexity of power type 2.

Further, we assume that we are given an accretive set-valued operator A : X → 2X , i.e.

∀(x1, y1), (x2, y2) ∈ A (〈y1 − y2, J(x1 − x2)〉 ≥ 0) ,

which is further m-accretive, i.e. ran(Id + γA) = X for all γ > 0. We write dom(A) := {x ∈ X | Ax 6= ∅} for
the domain and ran(A) :=

⋃
x∈X Ax for the range of A.

Lastly, we henceforth write P for the nearest point projection onto the set A−10 which will be assumed to
be non-empty and therefore this projection is well-defined as the space is uniformly convex.

3. The convergence condition from a quantitative perspective

As discussed in the introduction, the central notion for the asymptotic results of Poffald and Reich is the
notion of the convergence condition for the operator A inducing the differential equation.

Definition 3.1 (Nevanlinna and Reich [13], generalizing Pazy [14]). Let A be an m-accretive operator A on a
uniformly convex and uniformly smooth space X with (single-valued) duality map J and let A−10 6= ∅ and P
be the projection onto A−10. Then A is said to satisfy the convergence condition if for all bounded sequences
(xn, yn) ⊆ A with

lim
n→∞

〈yn, J(xn − Pxn)〉 = 0,

it holds that lim infn→∞ ‖xn − Pxn‖ = 0.

In the analysis of Theorem 1.1, we will rely on a particular quantitative representation of that condition
introduced in [16] based on logical considerations on different formal versions of the convergence condition (see
[16] for details). Concretely, this quantitative representation is given by the following modulus:1

Definition 3.2 ([16]). A modulus for the convergence condition of an operator A is a function Ω : N× N→ N
satisfying that for all k,K ∈ N and all x, y ∈ X: if y ∈ Ax and ‖x‖ , ‖y‖ ≤ K, then

〈y, J(x− Px)〉 ≤ 1

Ω(k,K) + 1
⇒ ‖x− Px‖ ≤ 1

k + 1
.

1These moduli are called full moduli in [16].
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Clearly, any operator A which posses such a modulus satisfies the convergence condition but, in and of itself,
the requirement that Ω translates local errors of 〈y, J(x−Px)〉 into local errors of ‖x− Px‖ in such a uniform
manner seems to be potentially stronger than that of the convergence condition. However, the following result
was established in [16]:

Proposition 3.3 ([16]). An operator A satisfies the convergence condition if, and only if, it posses a modulus
for the convergence condition.

So: the convergence condition, although formulated via sequences, is indeed a uniform transformation of
local errors in the sense of the previous.

Regarding further explorations of the naturalness of such moduli, we refer to [16] for various explicit construc-
tions of such moduli for certain classes of operators which do satisfy the convergence condition (in particular
covering strongly accretive operators and operators which are uniformly accretive at zero in the sense of [10]).

Before we move to the quantitative treatment of Theorem 1.1, we collect some pointers for interesting logical
features of the above modulus in the following remark.

Remark 3.4 (For logicians). The above modulus is the natural quantitative reformulation of the convergence
condition as guided by the monotone functional interpretation together with the negative translation and in
particular as established in [16], general logical metatheorems established in [17, 18] (relying on the previous
seminal works [6, 7]) guarantee both

(1) the extractability of a computable full modulus for the convergence condition from a wide range of
noneffective proofs of the already much weaker property

∀(x, y) ∈ A (〈y, J(x− Px)〉 = 0→ ‖x− Px‖ = 0) ,

(2) that from a noneffective proof using the convergence condition as a premise, a transformation can be
extracted that transforms a full modulus into quantitative information on the conclusion.

We refer to [16] for sketches of proofs for these and further logical remarks.

4. An analysis of Poffald’s and Reich’s result

To derive a quantitative version of the convergence result contained in Theorem 1.1, depending on a modulus
for the convergence condition, we first have to extract from the proof given in [19] explicit quantitative bounds
on the norms of the orbits and their derivatives involved.

For that, we follow the way a solution for the associated system (†) is constructed in [19] (which differs in
comparison to the construction of Barbu [1] (see also [3]) who considered this problem in the context of Hilbert
spaces before Poffald and Reich). To solve (†), Poffald and Reich first solve the system

(†)p


u′′(t) ∈ Au(t) + pu(t), 0 < t <∞,
u(0) = x,

u ∈ L2(0,∞;X),

in W 2,2(0,∞;X) for p→ 0+ which in turn is solved by studying the approximate system

(†)rp


u′′(t) = Aru(t) + pu(t), 0 < t <∞,
u(0) = x,

u ∈ L2(0,∞;X),

for r → 0+ where Ar is the Yosida approximate.

In the latter case, they conclude that the unique solution urp of (†)rp converges in L2(0,∞;X) and C([0,∞);X)
to a (unique) solution up of (†)p. For the approximate solutions urp, the following bounds on urp and its derivatives
are obtained in [19]:

•
∥∥urp(t)

∥∥ ≤ ‖x‖ for all t ≥ 0 (p. 521, (2.7));

•
∫∞

0

∥∥urp′(t)∥∥2
dt ≤ 2/M2(d(0, Ax) + p ‖x‖)1/2 ‖x‖3/2

(p. 522, (2.17));

•
∫∞

0

∥∥urp′′(t)∥∥2
dt ≤ 2/M2(d(0, Ax) + p ‖x‖)3/2 ‖x‖1/2

(p. 522, (2.14)).
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As remarked in [19], these bounds immediately transfer to the solution up of (†)p by applying Lemma 2.6 of
[19] to urp → up for r → 0+.

Following [19], these bounds can then be used to establish bounds on the respective norms of a solution u to
(†) by applying Lemma 2.7 of [19] to the convergence up → u for p→ 0+ which immediately yields the following
bounds for the solution of (†) corresponding to the initial value x:

• ‖u(t)‖ ≤ ‖x‖ for all t ≥ 0;

•
∫∞

0
‖u′(t)‖2 dt ≤ 2/M2d(0, Ax)1/2 ‖x‖3/2

;

•
∫∞

0
‖u′′(t)‖2 dt ≤ 2/M2d(0, Ax)3/2 ‖x‖1/2

.

Besides of these bounds, we will make use of the following lemma:

Lemma 4.1 (folklore, see [16]). If f : [0,∞)→ [0,∞) is Lebesgue integrable with∫ ∞
0

f(t) dt ≤ L,

then for any Lebesgue null set N ⊆ [0,∞) and any k, n ∈ N:

∃t ∈ [n, (L+ 1)(k + 1) + n] \N
(
f(t) ≤ 1

k + 1

)
.

The quantitative version of Theorem 1.1 now takes the following form for the case of x ∈ domA.

Theorem 4.2. Let X be uniformly convex and uniformly smooth with a strongly monotone duality map J with
value M > 0, i.e. 〈x − y, Jx − Jy〉 ≥ M ‖x− y‖2 for all x, y ∈ X. Let A be m-accretive with A−10 6= ∅ and
p ∈ A−10 and such that it satisfies the convergence condition with a modulus for the convergence condition Ω.
Let S1/2 = {S1/2(t) | t ≥ 0} be the semigroup generated by A1/2 via the exponential formula. For any x ∈ domA,
we have

∀k ∈ N∀t, t′ ≥ χ((Ω(2k + 1,max{1, d}) + 1)2−· 1)

(∥∥S1/2(t)x− S1/2(t′)x
∥∥ ≤ 1

k + 1

)
with χ(k) = (D + 1)(k + 1) and where

D ≥ (1 + b2)
2

M2
d(0, Ax)3/2d1/2

as well as b ≥ ‖x− Px‖ and d ≥ ‖x‖.

Proof. We write u(t) = S1/2(t)x. Then u′′ exists almost everywhere, say on [0,∞) \ N . As outlined in the
discussion before Lemma 4.1, we have ‖u(t)‖ ≤ ‖x‖ for all t ≥ 0 as well as∫ ∞

0

‖u′′(t)‖2 dt ≤ 2

M2
d(0, Ax)3/2 ‖x‖1/2

.

Now, using the defining property of the projection P and the definition of u, we have

‖u(t+ h)− Pu(t+ h)‖ ≤ ‖u(t+ h)− Pu(t)‖ ≤ ‖u(t)− Pu(t)‖
which in particular implies that∫ ∞

0

〈u′′(t), J(u(t)− Pu(t))〉2 dt ≤
∫ ∞

0

‖u′′(t)‖2 ‖J(u(t)− Pu(t))‖2 dt

=

∫ ∞
0

‖u′′(t)‖2 ‖u(t)− Pu(t)‖2 dt

≤
∫ ∞

0

‖u′′(t)‖2 ‖u(0)− Pu(0)‖2 dt

≤ 2

M2
d(0, Ax)3/2 ‖x‖1/2 ‖x− Px‖2 .

Therefore also ∫ ∞
0

(
‖u′′(t)‖2 + 〈u′′(t), J(u(t)− Pu(t))〉2

)
dt

≤ (1 + ‖x− Px‖2)
2

M2
d(0, Ax)3/2 ‖x‖1/2

≤ D.
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Lemma 4.1 now implies that for any k ∈ N:

∃t ∈ [0, χ(k)] \N
(

max
{
‖u′′(t)‖2 , 〈u′′(t), J(u(t)− Pu(t))〉2

}
≤ 1

k + 1

)
.

Thus in particular, we have

∃t ∈ [0, χ((k + 1)2−· 1)] \N
(

max {‖u′′(t)‖ , 〈u′′(t), J(u(t)− Pu(t))〉} ≤ 1

k + 1

)
which yields

∃t ≤ χ((Ω(k,max{1, d}) + 1)2−· 1)(
max {‖u′′(t)‖ , 〈u′′(t), J(u(t)− Pu(t))〉} ≤ 1

Ω(k,max{1, d}) + 1

)
and thus, as ‖u′′(t)‖ ≤ 1 for such a t, the properties of Ω yield that

∃t ≤ χ((Ω(k,max{1, d}) + 1)2−· 1)

(
‖u(t)− Pu(t)‖ ≤ 1

k + 1

)
.

But as discussed above, ‖u(t)− Pu(t)‖ is decreasing and thus actually

∀t ≥ χ((Ω(k,max{1, d}) + 1)2−· 1)

(
‖u(t)− Pu(t)‖ ≤ 1

k + 1

)
.

As in [19], we can now show

‖u(t+ h)− u(t)‖ ≤ 2 ‖u(t)− Pu(t)‖
and thus we obtain

∀t ≥ χ((Ω(2k + 1,max{1, d}) + 1)2−· 1)∀h
(
‖u(t+ h)− u(t)‖ ≤ 1

k + 1

)
which is the claim. �

By continuity of S1/2, the result for x ∈ domA extends to x ∈ domA and by an analysis of this proof, we
obtain the following quantitative result for the extension.

Theorem 4.3. Assume the conditions of Theorem 4.2. Let x ∈ domA with f : N → N be such that f is
nondecreasing and

∀k ∈ N∃z, y ∈ X
(
z ∈ Ay ∧ ‖y‖ , ‖z‖ ≤ f(k) ∧ ‖x− y‖ ≤ 1

k + 1

)
.

Then

∀k ∈ N∀t, t′ ≥ χk((Ω(6k + 5,max{1, f(3k + 2)}) + 1)2−· 1)(∥∥S1/2(t)x− S1/2(t′)x
∥∥ ≤ 1

k + 1

)
with χk(k) = (Dk + 1)(k + 1) and where

Dk ≥ (1 + b2k)
2

M2
f(3k + 2)2

as well as bk ≥ ‖x− Px‖+ ‖x‖+ f(3k + 2).

Proof. By the properties of f , we get that there exists z ∈ Ay such that ‖z‖ , ‖y‖ ≤ f(3k + 2) and ‖x− y‖ ≤
1/(3k + 3). Therefore∥∥S1/2(t)x− S1/2(t′)x

∥∥ ≤ ∥∥S1/2(t)x− S1/2(t′)y
∥∥+

∥∥S1/2(t)y − S1/2(t′)y
∥∥

+
∥∥S1/2(t′)x− S1/2(t′)y

∥∥
≤ 2 ‖x− y‖+

∥∥S1/2(t)y − S1/2(t′)y
∥∥

≤ 2

3(k + 1)
+
∥∥S1/2(t)y − S1/2(t′)y

∥∥ .
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Using the previous Theorem 4.2, we get that

∀k ∈ N∀t, t′ ≥ χk((Ω(6k + 5,max{1, f(3k + 2)}) + 1)2−· 1)(∥∥S1/2(t)y − S1/2(t′)y
∥∥ ≤ 1

3k + 3

)
since

‖y − Py‖ ≤ ‖x− Px‖+ |‖y − Py‖ − ‖x− Px‖|
≤ ‖x− Px‖+ ‖y − x‖
≤ ‖x− Px‖+ ‖x‖+ f(3k + 2)

≤ bk

as well as ‖y‖ ≤ f(3k + 2) and d(0, Ay) ≤ ‖z‖ ≤ f(3k + 2). This gives the claim. �

5. A generalization to almost-orbits

We are now concerned with establishing Theorem 1.3. As discussed in the introduction, we arrive at this
generalization of Xu’s result by means of an initial quantitative result and we arrive at this quantitative result in
turn by utilizing the above quantitative version of Poffald’s and Reich’s result together with the ideas employed
in the analysis of Xu’s result given in [16].

In that context, the (logically speaking) complicated premise of u being an almost-orbit induces two natural
quantitative versions of that property which were introduced in [10] and also feature in the finitary variants
of Xu’s result given in [16]. Concretely, in the following, we will obtain (similar to [10, 16]) two translations
converting respectively

(1) a rate of metastability Φ of the almost-orbit as introduced in [10], i.e. Φ satisfies

∀k ∈ N ∀f : N→ N ∃n ≤ Φ(k, f) ∀t ∈ [0, f(n)]

(
‖S1/2(t)u(n)− u(t+ n)‖ ≤ 1

k + 1

)
,

into a rate of metastability Γ for the Cauchy property of the almost-orbit, i.e. Γ satisfies

∀k ∈ N ∀f : N→ N ∃n ≤ Γ(k, f) ∀t, t′ ∈ [n, n+ f(n)]

(
‖u(t)− u(t′)‖ ≤ 1

k + 1

)
,

(2) a rate of convergence Φ for the almost-orbit, i.e. Φ satisfies

∀k ∈ N ∀s ≥ Φ(k)

(
sup
t≥0

∥∥u(s+ t)− S1/2(t)u(s)
∥∥ ≤ 1

k + 1

)
,

into a rate of Cauchyness of the almost-orbit of the Cauchy problem in a similar manner as before.

The need for metastability in the context of quantitative results on convergence statements in general, and
in proof mining in particular, arises from fundamental results from recursion theory due to Specker [21] whereas
even computable monotone sequences of rational numbers in [0, 1] do not have a computable rate of convergence.
By generalizing such examples, one can see that also in general a rate of convergence for an almost-orbit will
not be computable (see [10]). Even if computable rates of convergence are in general unattainable, one can,
in very general situations, provide effective rates of so-called metastability (which also has been recognized as
an important finitary version of the Cauchy property from a non-logical perspective by Tao, see e.g. [22, 23])
which are, moreover, highly uniform. In particular, metastability is (noneffectively) equivalent to the Cauchy
property. We refer to [16] as well as [10] for further (logical) discussions on these different quantitative versions
of the almost-orbit property.

We now begin with the metastable version of the generalization of which both Theorem 1.3 and a second
quantitative result on rates of convergence will be corollaries:

Theorem 5.1. Let X be uniformly convex and uniformly smooth with a strongly monotone duality map J with
value M > 0, i.e. 〈x − y, Jx − Jy〉 ≥ M ‖x− y‖2 for all x, y ∈ X. Let A be m-accretive such that it satisfies
the convergence condition with a modulus for the convergence condition Ω. Let S1/2 = {S1/2(t) | t ≥ 0} be

the semigroup generated by A1/2 via the exponential formula. Let A−10 6= ∅ with p ∈ A−10 and assume that
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P , the nearest point projection onto A−10, is uniformly continuous on bounded subsets of X with a modulus
ω : N2 → N such that2

∀r, k ∈ N ∀x, y ∈ Br(p)

(
‖x− y‖ ≤ 1

ω(r, k) + 1
→ ‖Px− Py‖ ≤ 1

k + 1

)
,

and, without loss of generality, assume that ω(r, k) ≥ k for all r, k ∈ N. Let u be an almost-orbit of S1/2 with a
rate of metastability Φ on the almost-orbit condition, i.e.

∀k ∈ N ∀f : N→ N ∃n ≤ Φ(k, f) ∀t ∈ [0, f(n)]

(
‖S1/2(t)u(n)− u(t+ n)‖ ≤ 1

k + 1

)
.

Let B ∈ N∗ be such that ‖u(t)−p‖ ≤ B for all t ≥ 0 and let fs : N→ N for s ≥ 0 be such that fs is nondecreasing
and

∀n ∈ N ∃xs,n, ys,n ∈ X
(
ys,n ∈ Axs,n

∧ ‖xs,n‖ , ‖ys,n‖ ≤ fs(n) ∧ ‖xs,n − u(s)‖ ≤ 1

n+ 1

)
.

Then we have

∀k ∈ N ∀f : N→ N ∃n ≤ Γ(k, f) ∀t, t′ ∈ [n, n+ f(n)]

(
‖u(t)− u(t′)‖ ≤ 1

k + 1

)
,

where
Γ(k, f) := max{Γ′(8k + 7, jk,f ),Φ(8k + 7, hN,f ) | N ≤ Γ′(8k + 7, jk,f )}

with

hN,f (n) := f(max{N,n}) + max{N,n} − n,
jk,f (n) := max{n,Φ(8k + 7, hn,f )} − n

gk,f (m) := Ωm(3k + 2) + f(m+ Ωm(3k + 2)),

Γ′(k, f) := Φ(ω(B, 3k + 2), gk,f ) + max{Ωm(3k + 2) | m ≤ Φ(ω(B, 3k + 2), gk,f )},
for Ωs(k) with s ≥ 0 defined by

Ωs(k) := χs,k((Ω(3k + 2,max{1, fs(ω(B + 1, 3k + 2))}) + 1)2−· 1)

with χs,k(k) := (Ds,k + 1)(k + 1) and where

Ds,k ≥ (1 + (B + 1)2)
2

M2
fs(ω(B + 1, 3k + 2))2.

Although the proof is, in essence, a careful reimplementation of the proof for the analogous quantitative result
for Xu’s theorem established in [16], we nevertheless present the following proof in a self-contained manner.

Proof. For a given s ≥ 0, note that by definition of fs there exist ys,k ∈ Axs,k with ‖xs,k‖ , ‖ys,k‖ ≤ fs(ω(B +
1, 3k + 2)) such that

‖xs,k − u(s)‖ ≤ 1

ω(B + 1, 3k + 2) + 1

(
≤ 1

3(k + 1)

)
.

Since
‖xs,k − Pxs,k‖ ≤ ‖xs,k − p‖ ≤ ‖xs,k − u(s)‖+ ‖u(s)− p‖ ≤ B + 1,

we have as in the proof of Theorem 4.2 that

∀k ∈ N ∀t ≥ Ωs(k)

(
‖S1/2(t)xs,k − PS1/2(t)xs,k‖ ≤

1

3(k + 1)

)
,

with Ωs(k) defined as above. This then yields

‖S1/2(t)u(s)− PS1/2(t)u(s)‖
≤ ‖xs,k − u(s)‖+

∥∥S1/2(t)xs,k − PS1/2(t)xs,k
∥∥

+ ‖PS1/2(t)xs,k − PS1/2(t)u(s)‖

≤ 1

3(k + 1)
+

1

3(k + 1)
+ ‖PS1/2(t)xs,k − PS1/2(t)u(s)‖

2Such a modulus can be constructed from a modulus of uniform convexity for X, see e.g. [16] for details.
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which, as ‖S1/2(t)xs,k − S1/2(t)u(s)‖ ≤ ‖xs,k − u(s)‖ ≤ 1/(ω(B + 1, 3k + 2) + 1), then yields

(1) ∀s ≥ 0 ∀k ∈ N ∀t ≥ Ωs(k)

(
‖S1/2(t)u(s)− PS1/2(t)u(s)‖ ≤ 1

k + 1

)
.

For given k ∈ N and f : N→ N, we now consider the function gk,f as defined above. Using the assumption on
Φ, there is some n0 ≤ Φ(ω(B, 3k + 2), gk,f ) such that

∀t ∈ [0, gk,f (n0)]

(
‖S1/2(t)u(n0)− u(t+ n0)‖ ≤ 1

ω(B, 3k + 2) + 1

)
.

Since ‖S1/2(t)u(n0)− p‖, ‖u(t+ n0)− p‖ ≤ B, we conclude that

∀t ∈ [0, gk,f (n0)]

(
‖PS1/2(t)u(n0)− Pu(t+ n0)‖ ≤ 1

3(k + 1)

)
.

Thus, for t ∈ [0, gk,f (n0)], we get by a simple triangle inequality that

‖u(t+ n0)− Pu(t+ n0)‖ ≤ 2

3(k + 1)
+ ‖S1/2(t)u(n0)− PS1/2(t)u(n0)‖.

Using (1), this yields

∀t ∈ [n0 + Ωn0
(3k + 2), n0 + gk,f (n0)]

(
‖u(t)− Pu(t)‖ ≤ 1

k + 1

)
which yields that

(2) ∀k ∈ N, f : N→ N ∃n ≤ Γ′(k, f) ∀t ∈ [n, n+ f(n)]

(
‖u(t)− Pu(t)‖ ≤ 1

k + 1

)
.

By assumption on Φ, there is n0 ≤ Φ(2k + 1, hN,f ) such that

∀t ≤ hN,f (n0)

(
‖S1/2(t)u(n0)− u(t+ n0)‖ ≤ 1

2(k + 1)

)
,

with hN,f (n) defined as above. Writing n := max{N,n0} ∈ [N,max{N,Φ(2k+ 1, hN,f )}], we have for t ≤ f(n)
that

‖S1/2(t)u(n)− u(t+ n)‖ ≤ ‖u(n)− S1/2(n− n0)u(n0)‖+ ‖S1/2(t+ n− n0)u(n0)− u(t+ n)‖
using simple triangle inequalities and noting that n− n0 ≤ t+ n− n0 ≤ hN,f (n0), we conclude that

∀k,N ∈ N, f : N→ N ∃n ∈ [N,max{N,Φ(2k + 1, hN,f )}]

∀t ≤ f(n)

(
‖S1/2(t)u(n)− u(t+ n)‖ ≤ 1

k + 1

)
.(3)

Let now k ∈ N and f : N → N be given. From (2) with the function jk,f (n) defined as above, there is an
n0 ≤ Γ′(8k + 7, jk,f ) such that

∀t ∈ [n0, n0 + jk,f (n0)]

(
‖u(t)− Pu(t)‖ ≤ 1

8(k + 1)

)
.

By (3), there exists n1 ∈ [n0,max{n0,Φ(8k + 7, hn0,f )}] satisfying

∀t ≤ f(n1)

(
‖S1/2(t)u(n1)− u(t+ n1)‖ ≤ 1

4(k + 1)

)
.

Since n1 ∈ [n0,max{n0,Φ(8k + 7, hn0,f )}] = [n0, n0 + jk,f (n0)], we also have ‖u(n1)− Pu(n1)‖ ≤ 1/(8(k + 1)).
Thus, by simple triangle inequalities, we get for any t ≤ f(n1):

‖u(n1)− u(t+ n1)‖ ≤ 1

2(k + 1)
.

Noting additionally that

n1 ≤ max{n0,Φ(8k + 7, hn0,f )}
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yields that

∀k ∈ N ∀f : N→ N ∃n0 ≤ Γ′(8k + 7, jk,f ), n1 ≤ max{n0,Φ(8k + 7, hn0,f )}

∀t ≤ f(n1)

(
‖u(n1)− u(t+ n1)‖ ≤ 1

2(k + 1)

)
.(4)

Lastly, by another simple triangle inequality it follows that

∀t, t′ ∈ [n1, n1 + f(n1)]

(
‖u(t)− u(t′)‖ ≤ 1

k + 1

)
for the n1 chosen by (4) which yields

∀k ∈ N ∀f : N→ N ∃n ≤ Γ(k, f) ∀t, t′ ∈ [n, n+ f(n)]

(
‖u(t)− u(t′)‖ ≤ 1

k + 1

)
since

n1 ≤ max{n0,Φ(8k + 7, hn0,f )}
≤ max{Γ′(8k + 7, jk,f ),Φ(8k + 7, hN,f )} | N ≤ Γ′(8k + 7, jk,f )}
= Γ(k, f).

�

This finitary result now in particular implies a usual “infinitary” result on the convergence of almost-orbits of
S1/2 as formulated in Theorem 1.3 since metastability trivially (though non-effectively) implies back convergence
of the respective sequence.

Proof of Theorem 1.3. Let X be uniformly convex and uniformly smooth with a strongly monotone duality
map J with value M > 0 and let A be m-accretive such that it satisfies the convergence condition and that
A−10 6= ∅. Let u be an almost-orbit of S1/2. By Proposition 3.3, there exists a modulus for the convergence
condition Ω. As in [10], it is rather immediate to see that u has a rate of metastability Φ. Then, after naturally
fixing the other minor quantitative data as required in the above theorem (which naturally exist), we get by
Theorem 5.1 that there exists a function Γ such that

∀k ∈ N ∀f : N→ N ∃n ≤ Γ(k, f) ∀t, t′ ∈ [n, n+ f(n)]

(
‖u(t)− u(t′)‖ ≤ 1

k + 1

)
.

In particular, by forgetting about Γ, we simply have

∀k ∈ N ∀f : N→ N ∃n ∈ N ∀t, t′ ∈ [n, n+ f(n)]

(
‖u(t)− u(t′)‖ ≤ 1

k + 1

)
and this formulation implies the Cauchy property of u(t) as follows: suppose u(t) is not Cauchy for t→∞, i.e.

∃k ∈ N ∀n ∈ N ∃t, t′ ≥ n
(
‖u(t)− u(t′)‖ > 1

k + 1

)
and define f(n) non-effectively such that f(n) + n ≥ t, t′ for these two t, t′ guaranteed by this property. Then
for that k and f :

∀n ∈ N ∃t, t′ ∈ [n, n+ f(n)]

(
‖u(t)− u(t′)‖ > 1

k + 1

)
which is in contradiction to the metastability of u. �

Lastly, similar to both [10] and [16], we can also give a second quantitative version of Theorem 1.3 based on
the previously discussed strengthened premise of a rate of convergence for the almost-orbit. This then takes the
form of the following theorem.

Theorem 5.2. Let X be uniformly convex and uniformly smooth with a strongly monotone duality map J with
value M > 0, i.e. 〈x− y, Jx− Jy〉 ≥ M ‖x− y‖2 for all x, y ∈ X. Let A be m-accretive such that there exists
a weak modulus for the convergence condition Ω. Let S1/2 = {S1/2(t) | t ≥ 0} be the semigroup generated by A

via the exponential formula. Let A−10 6= ∅ with p ∈ A−10 and assume that P , the nearest point projection onto
A−10, is uniformly continuous on bounded subsets of X with a modulus ω : N2 → N, i.e.

∀r, k ∈ N ∀x, y ∈ Br(p)

(
‖x− y‖ ≤ 1

ω(r, k) + 1
→ ‖Px− Py‖ ≤ 1

k + 1

)
,



ON THE ASYMPTOTIC BEHAVIOR OF SECOND-ORDER CAUCHY PROBLEMS 11

and, without loss of generality, assume that ω(r, k) ≥ k for all r, k ∈ N. Let u be an almost orbit with a rate of
convergence Φ : N→ N on the almost-orbit condition, i.e.

∀k ∈ N ∀s ≥ Φ(k)

(
sup
t≥0

∥∥u(s+ t)− S1/2(t)u(s)
∥∥ ≤ 1

k + 1

)
.

Let B ∈ N∗ be such that ‖u(t)−p‖ ≤ B for all t ≥ 0 and let fs : N→ N for s ≥ 0 be such that f is nondecreasing
and

∀n ∈ N ∃xs,n, ys,n ∈ X
(
ys,n ∈ Axs,n

∧ ‖xs,n‖ , ‖ys,n‖ ≤ fs(n) ∧ ‖xs,n − u(s)‖ ≤ 1

n+ 1

)
.

Then we have

∀k ∈ N ∀t, t′ ≥ max{Φ(8k + 7), s∗ + Ωs∗(24k + 23)}
(
‖u(t)− u(t′)‖ ≤ 1

k + 1

)
where s∗ = Φ(ω(B, 24k + 23)) and where Ωs(k) is defined as in Theorem 5.1.

Proof. Given a rate of convergence Φ on the almost-orbit condition, it is easy to check that the function
Φ(k, f) := Φ(k) is a rate of metastability for the almost-orbit in the previous sense. Theorem 5.1 thus yields
that Γ(k, f) as constructed therein is rate of metastability for u(t). By the results of [11], Proposition 2.6, a
function ρ : (0,∞)→ N is a Cauchy rate of a sequence iff ϕ(ε, f) := ρ(ε) is a rate of metastability. By inspecting
the bound Γ(k, f) and noting that Φ(k, f) = Φ(k), we can easily see that this independence on f transfers to Γ.
Thus, by Proposition 2.6 of [11] we get that Γ(k) := Γ(k, f) is a rate of convergence and this yields the bound
given above by simplifying the expressions given in Theorem 5.1 to define Γ accordingly. �
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