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1. Introduction

In [17], Moudafi introduced an algorithm for approximating critical points of differences of two maximally
monotone operators by generalizing the method of proximity operators in DC programming (see below). Specif-
ically, given two maximally monotone operators T, S on a real Hilbert space X, one wants to find points

x∗ ∈ Γ := {x∗ ∈ X | T (x∗) ∩ S(x∗) 6= ∅}.
If T and S are both subdifferentials of convex functions f, g, respectively, this covers the prominent case of

DC programming, i.e. mathematical programming for differences of convex functions (see e.g. [5, 26]) and the
solution will be a critical point of f − g.

The algorithm given in [17] is motivated by noting that graTλ → graT for λ → 0 where Tλ(x) =
x−JTλ x

λ is

the Yosida approximate of T and JTλ = (Id+λT )−1 is the resolvent of λT . This leads to regularizing the above
problem to finding points xλ with

Tλ(xλ) ∈ S(xλ)

for λ→ 0. This inclusion can be equivalently phrased as a fixed point problem

xλ = JSµ (xλ + µTλxλ)

with parameter µ > 0. This then leads to the iteration scheme

xn+1 = JSµn(xn + µnTλnxn)

given initial data x0 and parameters µn, λn > 0 which, under suitable assumptions on the parameters, can be
shown to be convergent:

Theorem 1.1 ([17]). Let T, S be two maximally monotone operators on a finite dimensional Hilbert space X
such that Γ 6= ∅, T is bounded on bounded sets and domS ⊆ domT as well as

(1) limn→∞ λn = 0,
(2)

∑∞
n=0

µn
λn

<∞,

(3) limn→∞ ‖xn − xn+1‖ /µn = 0,

for λn, µn > 0. Then (xn) converges to a point x∗ ∈ Γ.

Moudafi’s results does not give any quantitative information on the convergence. However, by inspection of
the proof given in [17], it becomes apparent that it relies on a standard argument via establishing (quasi-)Fejér
monotonicity (see [3]) and then inferring convergence from that.1 In terms of quantitative results, this opens
the door for applying the recent results of Kohlenbach, Leuştean and Nicolae [10] as well as of Kohlenbach,

Date: May 4, 2022.
1Although Fejér monotonicity is not mentioned explicitly in [17].
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López-Acedo and Nicolae [12] on the finitary content of convergence of (quasi-)Fejér monotone sequences, which
has been successfully applied in many other contexts of nonlinear analysis, in particular for the asymptotic reg-
ularity of compositions of two mappings [11], the proximal point algorithm in uniformly convex Banach spaces
[9] and subgradient methods for equilibrium problems [22].

The results of the papers [10, 12] were obtained via the general methodological approach of ‘proof mining’, a
subdiscipline of mathematical logic which aims at the extraction of quantitative information from prima facie
nonconstructive proofs by logical transformations (see [7] for a book treatment and [8] for a recent survey).
This approach has also been instrumental for obtaining the present results.

In terms of quantitative information, even for computable Fejér monotone sequences of real numbers, in
general, there exists no computable rate of convergence which follows from fundamental results in recursion
theory (see [10, 18]).2

However, in very general situations, one can extract effective rates of so-called metastability from non-
effective proofs of convergence which are, moreover, highly uniform. This notion of metastability originates
from a (noneffectively) equivalent reformulation of the Cauchy property in some metric space (X, d)

∀k ∈ N∃n ∈ N∀i, j ≥ n
(
d(xi, xj) <

1

k + 1

)
into

∀k ∈ N∀g ∈ NN∃n ∈ N∀i, j ∈ [n;n+ g(n)]

(
d(xi, xj) <

1

k + 1

)
where [n;n+m] := {n+ i | i ∈ N∧0 ≤ i ≤ m}. From a logical perspective, this reformulation can be recognized
as the so-called Herbrand normal form of (a slightly tweaked version of) the above Cauchy property which is
in particular of the general form ∀∃ (considering the leading two universal quantifiers as one and disregarding
the last universal quantifier as it is bounded) and for statements of the above form, the logical metatheorems
of proof mining guarantee the extractability of a rate of metastability, that is a (highly uniform and effective)
bound on ‘∃n ∈ N’ in the above reformulation (see [7]). This notion has also been recognized as an important
finitary version of the Cauchy property from a non-logical perspective by Tao (see e.g. [24, 25]) who actually
coined the term metastability.

In this paper, we provide a further case study to illustrate how the abstract approach from [10, 12] can
be used in a particular scenario by obtaining an explicit quantitative version of Theorem 1.1 in the form of
a fully effective and highly uniform rate of metastability. Moreover, in the latter parts of the paper, we even
give a rate of convergence, modulo an additional metric regularity assumption in the sense of [12]. For this, we
extend the main result from [12] to the case of quasi-Fejér monotone sequences. The quantitative analysis in
particular relies on a mild form of uniform continuity of a set-valued operator T similar to that introduced in
[14] and we expect that this quantitative notion and its use, together with the whole approach, detailed here will
provide a guideline for future analyses of other convergence results from monotone operator theory, especially
works dealing with differences of monotone operators like [1, 16, 19, 23]. In fact, the analysis presented here
immediately generalizes to the extensions for Moudafi’s result considered in [23] where one similarly obtains a
simple rate of metastability and even a rate of convergence under a metric regularity assumption but we omit
any details regarding this.

2. Quasi-Fejér monotonicity, uniform continuity and rates of metastability

As mentioned in the introduction, the proof of Theorem 1.1 given in [17], and with that the following
quantitative analysis, relies on the notion of quasi-Fejér monotonicity (see again [3]) which we want to briefly
recall. For this, we actually rely on the following generalized version introduced in [10].

Definition 2.1 ([10]). Let G : R+ → R+ and H : R+ → R+ be functions where

an → 0 implies G(an)→ 0 and H(an)→ 0 implies an → 0

2These results extend the phenomena of ‘arbitrary slow convergence’ from optimization.



QUANTITATIVE RESULTS ON DIFFERENCES OF MONOTONE OPERATORS 3

for any sequence (an) from R+ and let (X, d) be a metric space, F ⊆ X be nonempty and (xn) be a sequence
in X. (xn) is called quasi-(G,H)-Fejér monotone with respect to F , if

∀n,m ∈ N∀p ∈ F

(
H(d(xn+m, p)) ≤ G(d(xn, p)) +

n+m−1∑
i=n

εi

)
,

where (εi) ⊆ R+ is such that
∑
i εi <∞.

For formulating the quantitative results, we pass from quasi-Fejér monotonicity to uniform quasi-Fejér mono-
tonicity with an accompanying modulus in the sense of [10]. To do this, we assume a corresponding stratification
of F by sets AFk s.t.

AFk ⊇ AFk+1 and F =
⋂
k∈N

AFk.

Intuitively, the sets AFk are meant to represent the set of k-good approximations of the set F and can take
many forms in an actual application.

Definition 2.2 ([10]). Let G,H be as before. Then (xn) is called uniformly quasi-(G,H)-Fejér monotone with
respect to F (and (AFk)) if for all r, n,m ∈ N:

∃k ∈ N∀p ∈ AFk∀l ≤ m

(
H(d(xn+l, p)) < G(d(xn, p)) +

n+l−1∑
i=n

εi +
1

r + 1

)
.

Any function χ(n,m, r) producing an upper bound on such a k ∈ N is called a modulus of uniform quasi-(G,H)-
Fejér monotonicity for (xn).

As a second ingredient, we need quantitative information on how the sequence (xn) approaches the set F
w.r.t. the stratification AFk, in the sense of the following definition:

Definition 2.3 ([10]). (xn) has the lim inf-property w.r.t. F (and (AFk)) if ∀k, n ∈ N∃N ≥ n (xN ∈ AFk). A
bound Φ(k, n) on N , which is monotone in k and n, is called a lim inf-bound for (xn).

Using the proof mining macro established in [10], one can then combine these moduli, together with some
further (minor) quantitative assumptions on the surrounding data, to a rate of metastability of the sequence.
As discussed in [10], these moduli are guaranteed to exist (in very general situation) by logical metatheorems
and can often be obtained by a separate application of corresponding logical bound extraction results of proof
mining and it is the extraction of these moduli from the proof given in [17] which we detail (without any refer-
ence to logic) in the following.

For that, we will in particular rely on a certain notion of uniform continuity for a set-valued operator T which
generalizes the usual notion of uniform continuity (as, e.g., stipulated in [15]) for a set-valued operator T

∀ε > 0∃δ > 0∀x, y ∈ domT (‖x− y‖ ≤ δ → H(Tx, Ty) ≤ ε)

where H is the Hausdorff-metric.3 Motivated by logical considerations (see Remark 2.13), [14] introduced an
‘approximate version’ of the Hausdorff metric in the form of a Hausdorff-like predicate H∗ defined via

H∗[P,Q, ε] := ∀p ∈ P∃q ∈ Q (‖p− q‖ ≤ ε) .

One can then stipulate uniform continuity w.r.t. that predicate H∗ by requiring

∀ε > 0∃δ > 0∀x, y ∈ X (‖x− y‖ ≤ δ → H∗[Tx, Ty, ε]) .

We say that $ : N→ N is a modulus of uniform continuity for T w.r.t. H∗ if

∀k ∈ N∀x, y ∈ X
(
‖x− y‖ ≤ 1

$(k) + 1
→ H∗

[
Tx, Ty,

1

k + 1

])
Our analysis will in the following rely on such a modulus of uniform continuity for T w.r.t. H∗ (see again
Remark 2.13). For convenience, we will assume that $ is monotone increasing.

Now, assume that domS ⊆ domT and let L ≥ diam{xn | n ∈ N} for a concrete sequence (xn) of the
algorithm. Throughout, we will actually work over the compact space X0 = B(x0;L) ∩ domS and all sets and

3We have used H for another object before but the context will make it clear whether the Hausdorff-metric is meant.
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moduli are to be understood as being relativized to this set. We first define appropriate instantiations Γk of
the abstract approximations AFk discussed before in the context of Moudafi’s algorithm by setting

Γk :=

{
x∗ ∈ X0 | ∃y∗

(
| ‖y∗‖ − ‖T ◦x∗‖ | ≤ 1

k + 1
∧H∗

[
y∗, Tx∗,

1

k + 1

]
∧ ∀i ≤ k

(∥∥x∗ − JSµi(x∗ + µiy
∗)
∥∥ ≤ 1

k + 1

))}
where H∗ is the previously discussed Hausdorff-like predicate (where we write y∗ for the singleton {y∗}) and
T ◦x = PTx0 is the element of minimal norm in Tx (see, e.g., [2]). We write Γk(x∗) for the set of all such y∗

realizing the existential quantifier in the above definition with parameter x∗.

The motivation for this particular stratification of the set of solutions Γ very much follows the reasoning
given by Moudafi in [17] for the algorithm as discussed in the introduction: T (x∗) ∩ S(x∗) is regularized to
Tλ(xλ) ∈ Sxλ for λ → 0, which is equivalent to solving the fixed-point equation xλ = JSµ (xλ + µTλxλ). To
formalize what it means for x∗ to be a k-good approximation of a solution in Γ, we replace Tλ(xλ), itself an
approximation for a point in the intersection, by a generic point y∗ which is supposed to be a k-good approxi-
mation of Tλ(x∗) for suitable λ, formalized via being close to Tx∗ in the sense of the Hausdorff-like predicate.
In the same way, the fixed point condition xλ = JSµ (xλ + µTλxλ) is relativized to an approximate fixed point
condition where the parameter µ is replaced by the sequence µi from the algorithm. In that way, the fixed-
point perspective of this algorithm is essential for the following quantitative analysis as it lends itself to useful
approximate versions.

We begin by showing that the Γk are appropriate approximate versions of Γ. For that, we actually show two
things. First, we have

⋂
k Γk ⊆ Γ, i.e. an arbitrarily good approximation in the sense of the Γk is actually a

solution. Second, the Γk are good approximate sets in the sense that
⋂
k Γk is uniformly closed w.r.t. the Γk in

the following sense:

Definition 2.4 ([10]). F is called uniformly closed (w.r.t. AFk) with moduli δF , ωF : N→ N if

∀k ∈ N∀p, q ∈ X
(
q ∈ AFδF (k) ∧ d(p, q) ≤ 1

ωF (k) + 1
→ p ∈ AFk

)
.

Before we can state the corresponding result on uniform closedness, we need the following lemma which
derives a modulus of continuity for T ◦ from the modulus of uniform continuity $ for T .

Lemma 2.5. (1) For all k ∈ N and x, z ∈ X, if z ∈ Tx and 〈T ◦x−z,−z〉 ≤ 1
(k+1)2 , then ‖T ◦x− z‖ ≤ 1

k+1 .

(2) For all k ∈ N and x, z ∈ X, if z ∈ Tx and ‖z‖2 − ‖T ◦x‖2 ≤ 1
(k+1)2 , then ‖T ◦x− z‖ ≤ 1

k+1 .

(3) Let x, x′ ∈ domT and B ≥ ‖T ◦x′‖ with B ∈ N∗ and let $ be a modulus of uniform continuity for T .
Then, $′(k) = $(Bk2 + 2Bk +B − 1) satisfies

(†) ‖x− x′‖ ≤ 1

$′(k) + 1
→ ‖T ◦x− T ◦x′‖ ≤ 1

k + 1

for all x.

Proof. Note that as T ◦x = PTx(0), Theorem 3.16 of [2] yields 〈y − T ◦x,−T ◦x〉 ≤ 0 for all x, y with y ∈ Tx.

(1) Let z ∈ Tx and 〈T ◦x− z,−z〉 ≤ 1
(k+1)2 . By (†), we have 〈z − T ◦x,−T ◦x〉 ≤ 0. Thus

1

(k + 1)2
≥ 〈T ◦x− z,−z〉+ 〈z − T ◦x,−T ◦x〉 = ‖T ◦x− z‖2

which implies ‖T ◦x− z‖ ≤ 1
k+1 .

(2) We skip the proof as it is an easy consequence of (1).
(3) Let ‖x− x′‖ ≤ 1

$′(k)+1 . By definition of $′, we have that

∃y′ ∈ Tx′
(
‖T ◦x− y′‖ ≤ 1

Bk2 + 2Bk +B

)
.
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Now, using (†) and the Cauchy-Schwarz inequality we obtain

〈T ◦x− T ◦x′,−T ◦x′〉 ≤ 〈T ◦x− y′,−T ◦x′〉+ 〈y′ − T ◦x′,−T ◦x′〉
= 〈T ◦x− y′,−T ◦x′〉
≤ ‖T ◦x− y′‖ ‖T ◦x′‖

≤ 1

(k + 1)2
.

Item (1) now yields ‖T ◦x− T ◦x′‖ ≤ 1
k+1 .

�

Lemma 2.6. Let $ be a modulus of uniform continuity for T w.r.t. H∗ and let M ∈ N∗ satisfy M ≥ ‖T ◦x∗‖
for all x∗ ∈ X0. Then

⋂
k Γk is uniformly closed w.r.t. Γk with moduli δ(k) = 2k + 1 and ω(k) = max{4k +

3, $(4M(k + 1)2 − 1)} and, further,

Γ ⊇
⋂
k

Γk.

Proof. Suppose q ∈ Γδ(k) and let a ∈ Γk(q), i.e. | ‖a‖ − ‖T ◦q‖ | ≤ 1
δ(k)+1 , H∗[a, Tq, 1/(δ(k) + 1)], and∥∥q − JSµi(q + µia)

∥∥ ≤ 1
δ(k)+1 for all i ≤ δ(k).

Let p ∈ X0 be such that ‖p− q‖ ≤ 1
ω(k)+1 . Then in particular ω(k) ≤ $(2k+ 1) as $ is monotone increasing

and therefore

‖p− q‖ ≤ 1

ω(k) + 1
≤ 1

$(2k + 1) + 1

and therefore

H∗
[
a, Tp,

1

δ(k) + 1
+

1

2(k + 1)

]
, and so H∗

[
a, Tp,

1

k + 1

]
.

Further, as δ(k) ≥ k, we have∥∥p− JSµi(p+ µia)
∥∥ ≤ ‖p− q‖+

∥∥q − JSµi(q + µia)
∥∥+

∥∥JSµi(q + µia)− JSµi(p+ µia)
∥∥

≤ 2 ‖p− q‖+
∥∥q − JSµi(q + µia)

∥∥
≤ 2

ω(k) + 1
+

1

δ(k) + 1

≤ 2

4(k + 1)
+

1

2(k + 1)

=
1

k + 1

for all i ≤ k using nonexpansivity of JSµi .
Lastly, we have

| ‖a‖ − ‖T ◦p‖ | ≤ | ‖a‖ − ‖T ◦q‖ |+ | ‖T ◦p‖ − ‖T ◦q‖ |

≤ 1

δ(k) + 1
+ ‖T ◦p− T ◦q‖

≤ 1

2(k + 1)
+

1

2(k + 1)

=
1

k + 1

using the modulus of uniform continuity for T ◦ derived from $ in Proposition 2.5 (where one has to note, in
particular, the definition of M). Combined, we have a ∈ Γk(p) and thus p ∈ Γk and Γ is therefore uniformly
closed w.r.t. Γk (over X0).

For the second claim, let x∗ ∈
⋂
k Γk, i.e. for any k there are y∗k ∈ Γk(x∗) such that | ‖y∗k‖ − ‖T ◦x∗‖ | ≤ 1

k+1 ,

H∗[y∗k, Tx
∗, 1/(k + 1)] and

∥∥x∗ − JSµi(x∗ + µiy
∗
k)
∥∥ ≤ 1

k+1 for all i ≤ k.

Now, item (1) yields ‖y∗k‖ → ‖T ◦x∗‖ for k →∞. Item (2) yields

∀k∃z∗k ∈ Tx∗
(
‖y∗k − z∗k‖ ≤

1

k + 1

)
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and thus in particular | ‖z∗k‖ − ‖y∗k‖ | ≤ 1
k+1 . Thus ‖z∗k‖ → ‖T ◦x∗‖ for k → ∞. Uniqueness of T ◦x∗ as the

element of minimal norm, Lemma 2.5, (2), now yields z∗k → T ◦x∗ for k →∞ (actually in a quantitative way).
Thus, in particular also y∗k → T ◦x∗ for k →∞. This yields∥∥x∗ − JSµ0

(x∗ + µ0y
∗
k)
∥∥→ ∥∥x∗ − JSµ0

(x∗ + µ0T
◦x∗)

∥∥
for k →∞ while item (3) yields

∥∥x∗ − JSµ0
(x∗ + µ0y

∗
k)
∥∥→ 0. Thus∥∥x∗ − JSµ0

(x∗ + µ0T
◦x∗)

∥∥ = 0

and therefore x∗ = JSµ0
(x∗ + µ0T

◦x∗), i.e.

T ◦x∗ = µ−1
0 (x∗ + µ0T

◦x∗ − x∗) ∈ Sx∗.

Now, as also T ◦x∗ ∈ Tx∗, we have Sx∗ ∩ Tx∗ 6= ∅, i.e. x∗ ∈ Γ. �

The next lemma gives a preliminary result for the extraction of a modulus of uniform quasi-Fejér monotonicity,
obtained by an extraction from the proof of quasi-Fejér monotonicity given by Moudafi in [17].

Lemma 2.7. Let n, r ∈ N and l ∈ N∗ be given and let x∗ ∈ X0 and y∗ be such that∥∥∥x∗ − JSµn+k
(x∗ + µn+ky

∗)
∥∥∥ ≤ 1

r + 1

for all k ∈ [0; l − 1]. Then

‖xn+l − x∗‖ ≤
l−1∏
k=0

(
1 +

µn+k

λn+k

)
‖xn − x∗‖

+ (‖T ◦x∗‖+ ‖y∗‖)
l−1∑
k=0

µn+k

l−1∏
j=k+1

(
1 +

µn+j

λn+j

)

+

l∑
k=1

1

r + 1

l−1∏
j=k

(
1 +

µn+j

λn+j

)
.

Proof. Given n and r as well as x∗ and y∗, we get

‖xn+1 − x∗‖ =
∥∥JSµn(xn + µnTλnxn)− x∗

∥∥
≤
∥∥JSµn(xn + µnTλnxn)− JSµn(x∗ + µny

∗)
∥∥+

∥∥JSµn(x∗ + µny
∗)− x∗

∥∥
≤ ‖xn + µnTλnxn − x∗ − µny∗‖+

1

r + 1

≤ ‖xn − x∗‖+ µn ‖Tλnxn − Tλnx∗‖+ µn ‖Tλnx∗ − y∗‖+
1

r + 1

≤ ‖xn − x∗‖+
µn
λn
‖xn − x∗‖+ µn(‖T ◦x∗‖+ ‖y∗‖) +

1

r + 1

=

(
1 +

µn
λn

)
‖xn − x∗‖+ µn(‖T ◦x∗‖+ ‖y∗‖) +

1

r + 1
.

where we have used λ−1
n -Lipschitz continuity of Tλn (Corollary 23.11 in [2]). This generalizes to the claim by

induction on l. �

This immediately gives a modulus of uniform quasi-Fejér monotonicity when we assume certain bounds on
the objects involved. For this, we define a bounded subtraction −· by n−·m := max{0, n−m}.

Lemma 2.8. Let M ≥ ‖T ◦x∗‖ for any x∗ ∈ X0. Further, let A ≥
∑∞
n=0

µn
λn

and assume that λn ≤ B for all

n. Then
∑∞
n=0 µn < ∞ and (xn) is uniformly quasi-(eAidR+

, idR+
)-Fejér monotone w.r.t. Γk with modulus χ,

that is for all r, n,m ∈ N:

∀x∗ ∈ Γk∀l ≤ m

(
‖xn+l − x∗‖ < eA ‖xn − x∗‖+ (2M + 1)eA

n+l−1∑
i=n

µi +
1

r + 1

)
where

k = χ(r, n,m) := max{n+m−· 1, d(r + 1) ·m · eAe}.



QUANTITATIVE RESULTS ON DIFFERENCES OF MONOTONE OPERATORS 7

Proof. Assume m ≥ 1 without loss of generality. First, λn ≤ B together with
∞∑
n=0

µn
λn
≤ A <∞

gives
∑∞
n=0 µn <∞. Let x∗ ∈ Γk be arbitrary and y∗ ∈ Γk(x∗). Then∥∥x∗ − JSµi(x∗ + µiy

∗)
∥∥ ≤ 1

k + 1
≤ 1

d(r + 1) ·m · eAe+ 1

for all i ≤ n + m − 1, since k ≥ n + m−· 1 and m ≥ 1, and thus in particular for all i ∈ [n;n + l − 1] and any
l ≤ m. By the previous Lemma 2.7, using that | ‖y∗‖ − ‖T ◦x∗‖ | ≤ 1, i.e. ‖y∗‖ ≤ ‖T ◦x∗‖+ 1 ≤M + 1, we get

‖xn+l − x∗‖ ≤ eA ‖xn − x∗‖+ (2M + 1)eA
n+l−1∑
i=n

µi + eA
l∑

k=1

1

d(r + 1) ·m · eAe+ 1

< eA ‖xn − x∗‖+ (2M + 1)eA
n+l−1∑
i=n

µi + eA
l

(r + 1) ·m · eA

≤ eA ‖xn − x∗‖+ (2M + 1)eA
n+l−1∑
i=n

µi +
1

r + 1
.

�

We move on to the lim-inf-property. For that, we first show a general inequality in the spirit of the proximal
point algorithm (see [2]) which requires the following result:

Lemma 2.9 ([2], Proposition 23.31, (i)). Let A be maximally monotone, γ, λ > 0 and x a point. Then

JAγ x = JAλγ(λx+ (1− λ)JAγ x).

Lemma 2.10. For any n, i ∈ N, we have∥∥xn − JSµi(xn + µiTλnxn)
∥∥ ≤ ‖xn − xn+1‖+ |µn − µi|

‖xn − xn+1‖
µn

.

Proof. First, we have∥∥xn − JSµi(xn + µiTλnxn)
∥∥

≤ ‖xn − xn+1‖+
∥∥JSµn(xn + µnTλnxn)− JSµi(xn + µiTλnxn)

∥∥
≤ ‖xn − xn+1‖+

∥∥JSµnxnn − JSµixin∥∥
where we write xjn = xn + µjTλnxn for any j for simplicity. Then, we have∥∥JSµnxnn − JSµixin∥∥

=

∥∥∥∥JSµi ( µiµnxnn +

(
1− µi

µn

)
JSµnx

n
n

)
− JSµix

i
n

∥∥∥∥ (by Lemma 2.9)

≤
∥∥∥∥ µiµnxnn +

(
1− µi

µn

)
JSµnx

n
n − xin

∥∥∥∥ (nonexpansivity of JSµi)

=

∥∥∥∥ µiµn (xn + µnTλnxn) +

(
1− µi

µn

)
xn+1 − (xn + µiTλnxn)

∥∥∥∥
=

∥∥∥∥ µiµnxn − xn +

(
1− µi

µn

)
xn+1

∥∥∥∥
= |µn − µi|

‖xn − xn+1‖
µn

.

Combined, we have ∥∥xn − JSµi(xn + µiTλnxn)
∥∥ ≤ ‖xn − xn+1‖+ |µn − µi|

‖xn − xn+1‖
µn

.

�

Under suitable quantitative reformulations of the assumptions, we get the following result translating a
quantitative version of the assumption (3) of Theorem 1.1 into a lim inf-bound.
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Lemma 2.11. Let C ≥ 1 be an upper bound on both diam(µn) and (µn) and let M ∈ N∗ be such that
M ≥ ‖T ◦x∗‖ for any x∗ ∈ X0. Further, let φ be s.t.

∀k, n∃N ∈ [n;φ(k, n)]

(
‖xN − xN+1‖ /µN <

1

k + 1

)
and such that it is monotone w.r.t. k and n. Let θ be a rate of convergence for λn → 0, i.e.

∀k∀n ≥ θ(k)

(
λn ≤

1

k + 1

)
.

Further, let $ be a modulus of uniform continuity for T w.r.t. H∗. Then the function

Φ(k, n) = φ (d2C(k + 1)e − 1,max{θ(M$(k) +M − 1), n})

is a lim inf-bound for xn w.r.t. Γk.

Proof. Clearly, by assumption on φ, there exists an N ∈ [max{θ(M$(k) +M − 1), n}; Φ(k, n)] with

‖xN − xN+1‖
µN

<
1

d2C(k + 1)e − 1 + 1
≤ 1

2C(k + 1)
.

Thus, we have

‖xN − xN+1‖ = µN
‖xN − xN+1‖

µN
< C

1

2C(k + 1)
=

1

2(k + 1)
.

Thus, we get ∥∥xN − JSµi(xN + µiTλNxN )
∥∥ ≤ ‖xN − xN+1‖+ |µN − µi|

‖xN − xN+1‖
µN

<
1

2(k + 1)
+ C

1

2C(k + 1)

=
1

k + 1

for all i ≤ k. Now, we have H∗[TJTλNxN , TxN , 1/(k + 1)]: using accretivity of the operator T , it is easy to see
that ∥∥xN − JTλNxN∥∥ ≤ λN ‖T ◦xN‖ ≤ λNM
and as N ≥ θ(M$(k) +M − 1), we have

λN ≤
1

M($(k) + 1)

and thus
∥∥xN − JTλNxN∥∥ ≤ 1

$(k)+1 . By assumption on $, we have H∗[TJTλNxN , TxN , 1/(k + 1)]. This implies

H∗[TλNxN , TxN , 1/(k+1)] since we have H∗[TλNxN , TJ
T
λN
xN , 0] as TλNxN ∈ TJTλNxN . Therefore, in particular

we have ‖TλNxN − z‖ ≤ 1
k+1 for some z ∈ TxN and therefore

1

k + 1
≥ ‖TλNxN − z‖

≥ | ‖TλNxN‖ − ‖z‖ |
= ‖z‖ − ‖TλNxN‖
≥ ‖T ◦xN‖ − ‖TλNxN‖
= | ‖T ◦xN‖ − ‖TλNxN‖ |

since z ∈ TxN and thus ‖TλNxN‖ ≤ ‖T ◦xN‖ ≤ ‖z‖. Thus, we have shown xN ∈ Γk. �

Theorem 2.12. Let T, S be two maximally monotone operators on a finite dimensional Hilbert space X such
that domS ⊆ domT . Let M ∈ N∗ be such that M ≥ ‖T ◦x∗‖ for any x∗ ∈ X0 and let $ be a modulus of
uniform continuity for T w.r.t. H∗. Further, let A ≥

∑∞
n=0

µn
λn

and assume that limn→∞ λn = 0 with a rate of

convergence θ. Let C ≥ 1 be an upper bound on both diam(µn) and (µn). Further, let φ be s.t.

∀k, n∃N ∈ [n;φ(k, n)] ‖xN − xN+1‖ /µN <
1

k + 1
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and such that it is monotone w.r.t. k and n. Let L ≥ diam(xn) and let ξ be a Cauchy rate for
∑
n µn < ∞.

Then (xn) is Cauchy and, moreover, for any k ∈ N and any g : N→ N:

∃N ≤ Ψ(k, g,Φ, χ, ξ̃, A, L)∀i, j ∈ [N ;N + g(N)]

(
‖xi − xj‖ ≤

1

k + 1

)
where Ψ(k, g,Φ, χ, ξ̃, A, L) = Ψ0(P, k, g,Φ, χ, ξ̃) defined by recursion with{

Ψ0(0, k, g,Φ, χ, ξ̃) = 0

Ψ0(n+ 1, k, g,Φ, χ, ξ̃) = Φ(χMg (Ψ0(n, k, g,Φ, χ, ξ̃), 8k + 7, ξ̃(8k + 7))

with P = d2d8eA(k + 1)e
√
dLed + 1 where d is the dimension of X, ξ̃(n) = ξ(d(2M + 1)eA(n+ 1)e − 1) and

Φ(k, n) = φ (d2C(k + 1)e − 1,max{θ(M$(k) +M − 1), n})
as well as

χ(r, n,m) = max{n+m−· 1, d(r + 1) ·m · eAe},
χg(n, k) = χ(n, g(n), k), χMg (n, k) = max{χg(i, k) | i ≤ n}.

Further, for any k and any g as above:

∃N ≤ Ψ′(k, g,Φ, χ, ξ̃, A, L)∀i, j ∈ [N ;N + g(N)]

(
‖xi − xj‖ ≤

1

k + 1
and xi ∈ Γk

)
,

where Ψ′(k, g,Φ, χ, ξ̃, A, L) = Ψ(k0, g,Φ, χk, ξ̃, A, L) with Ψ as before and with

k0 := max

{
k,

⌈
ω(k)− 1

2

⌉}
where

ω(k) := max{$(2k + 1), 4k + 3, $(4M((k + 1)2)− 1))}
and with

χk(r, n,m) := max{δ(k), χ(r, n,m)} where δ(k) := 2k + 1

with χ as before.

Proof. The theorem arises from a direct application of Theorem 6.4 from [10] with X := X0, F := Γ ∩X0 and
AFk := Γk with G := eAidR+

and H := idR+
. Note for this that if ξ is a Cauchy modulus for

∑
n µn <∞, then

n 7→ ξ(d(2M + 1)eA(n+ 1)e − 1) is a Cauchy modulus for

(2M + 1)eA
∑
n

µn <∞

as we have
∞∑

i=ξ(d(2M+1)eA(n+1)e−1)

(2M + 1)eAµi < (2M + 1)eA
1

d(2M + 1)eA(n+ 1)e
≤ 1

n+ 1
.

Further, by Example 2.8 in [10], P is correctly defined since
⌈
2(k + 1)

√
dL
⌉d

is a modulus of total boundedness

of B(0;L) and therefore also of B(x0;L) = B(0;L) + x0 as moduli of total boundedness are easily seen to be
translation invariant over normed spaces. This clearly makes it a modulus of total boundedness for X0 as well.
Lemma 2.11 gives that Φ is a lim inf-bound and Lemma 2.8 gives that χ is a modulus of uniform quasi-Fejér
monotonicity.

The second claim can be concluded from the first claim in the same way that Theorem 5.3 in [10] is proved:
χk is still a modulus of uniform quasi-Fejér monotonicity and thus

∃N ≤ Ψ′∀i, j ∈ [N ;N + g(N)]

(
d(xi, xj) ≤

1

k0 + 1
≤ 1

k + 1

)
by the first result where actually, by inspecting the proof of Theorem 6.4 given in [10], there is an index n such
that

(1) xn ∈ Γ(χk)g(N,m) for some m,

(2) ∀i ∈ [N ;N + g(N)]
(
d(xi, xn) ≤ 1

2k0+2 ≤
1

ω(k)+1

)
.
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As (χk)g(N,m) = χk(N, g(N),m) ≥ δ(k), we get xn ∈ Γδ(k). By Lemma 2.6, as δ and ω are moduli of uniform
closedness, we get xi ∈ Γk for all i ∈ [N ;N + g(N)]. �

The above theorem is a finitization of Theorem 1.1 under the additional assumption that T is uniformly
continuous w.r.t H∗ (which is suggested by the logical metatheorems used to obtain this analysis, see Remark
2.13 for a further discussion of this): Assume that we are in the situation of the conclusion of the above theorem.
The metastability of (xn) trivially (but non-effectively) implies that (xn) is Cauchy and thus convergent to some
x.

By Lemma 2.6, we obtain that
⋂
k Γk is uniformly closed w.r.t. Γk. Further, Lemma 2.11 implies that the

above sequence has the lim inf-property with respect to the sequence (Γk).
By Lemma 3.6 of [10], we get that x ∈

⋂
k Γk ⊆ Γ and x is therefore a solution to the original problem.

There are two further interesting notes to make here:

(1) The assumption that limn→∞ ‖xn − xn+1‖ /µn = 0 was weakened to

lim inf
n→∞

‖xn − xn+1‖ /µn = 0.

(2) The assumption Γ 6= ∅ got weakened to the existence of a bound L ≥ diam(xn). This is indeed a
weakening as if Γ 6= ∅, let p ∈ Γ and q ∈ Tp ∩ Sp. Then we get ‖xn‖ ≤ ‖xn − p‖+ ‖p‖ and the former
term ‖xn − p‖ can be bounded using quasi-Fejér monotonicity as established in Lemma 2.7 by

‖xn − p‖ ≤ eA ‖x0 − p‖+ (‖T ◦p‖+ ‖q‖)eA
∑
k

µk <∞

with A as in the above theorem and thus ‖xn‖ is even bounded in that case.

Remark 2.13 (For logicians). The analysis of Moudafi’s result as presented above can be explained by, and
was obtained using, the general logical metatheorems for the extraction of uniform bounds from noneffective
proofs involving set-valued operators developed in [20]. Further, the main analytical tools used in the proof
of Theorem 1.1 given in [17] have interesting connections to new proof theoretic notions introduced in [20]
(where this case study was instrumental in uncovering these connections). We expect that these connections
will influence future approaches to quantitative results in monotone operator theory and we thus want to detail
them in the following, motivated by a discussion of the logical aspects of this case study of Moudafi’s algorithm.
In particular, we want to focus on

(1) the operator T ◦(x) = PTx(0),
(2) the use of the closure of the graph of both T and S,
(3) the assumption that T is bounded on bounded sets.

At first, the analysis presented in the previous parts of the paper can formalized in (extensions of) the system
T ω introduced in [20]. These extensions amount to the treatment of two monotone operators together with the
treatment of the uniform continuity of T w.r.t. H∗ and the operator T ◦ (see the discussion in [20]).

Now, the operator T ◦ can be treated in the context of the logical metatheorems by a suitable additional
constant of type X(X) where X is an additional abstract type for the respective Hilbert space (see [4, 6])
together with characterizing axioms (see [20])

(i) ∀xX(x ∈ domT → T ◦x ∈ Tx),
(ii) ∀xX , yX(y ∈ Tx→ 〈y − T ◦x,−T ◦x〉 ≤ 0).

For that, the functional T ◦ (extended to the whole space by T ◦x := 0 for x 6∈ domT ) needs to be majorizable
in the sense of [4, 6] (see also [7] for various perspectives on this), i.e. there needs to exist a function f : N→ N
such that

f is nondecreasing and ∀x ∈ X,n ∈ N (‖x‖ ≤ n→ ‖T ◦x‖ ≤ fn) .

This turns out to connect intimately with a notion of majorizability for the set-valued operator T introduced
in [20]: Call a set-valued operator T majorizable if there exists a selection function t : X → X such that

tx ∈ Tx for any x ∈ domT

and such that t is majorizable in the sense of the above. Then T is majorizable if and only if T ◦ is majorizable.
Even further, the notion of T being bounded on bounded sets can be recognized as a uniform majorizability

assumption (see also [20]): T is bounded on bounded sets if and only if it is uniformly majorizable in the sense
that there exists some f : N→ N such that any t : X → X with tx ∈ Tx for x ∈ domT and tx = 0 otherwise is
majorized by f .
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So, majorizability of T (or, equivalently, T ◦) is already guaranteed by the much stronger assumption of uni-
form majorizability in Theorem 1.1. However, as a consequence of the proof-theoretic analysis, this assumption
of T being bounded on bounded sets can be weakened to plain majorizability of T . Note that this was essentially
also observed in [23] from an analytic perspective in the context of extensions of Moudafi’s result.

In the above analysis, this majorant is represented by the bound M : The bound is defined via the property
M ≥ ‖T ◦x∗‖ for any x∗ ∈ X0 ⊆ BL(x0). Given a majorant f of T/T ◦, this is (a bound on) the value of f on
(a bound on) L+ ‖x0‖. So, we see that in this concrete situation, even only local information on the majorant
is required. Note again that this was also observed in [23] from an analytical perspective.

Further discussions regarding this new notion of (uniform) majorizability of set-valued operators as well as
its connections to other notions from monotone operator theory via a proof-theoretic perspective will be given
in [13].

Now, item (2), i.e. the closure of the graph of a maximally monotone operator, turns out to be equivalent to
the extensionality principle

∀x, y ∈ X (x = y → Tx = Ty)

of the set-valued operator T over the system T ω as shown in [20]. It is well known that extensionality can
not be provable in systems which allow for the extraction of (uniform) bounds from proofs like, e.g., T ω
and its extensions (see [7] for various general discussions of this) and thus a uniform quantitative version of
extensionality, namely some uniform continuity principle, has to be added.

As already discussed in [14], there are certain problems with formulating one of the most widely known
version of uniform continuity of a set-valued operator defined via the Hausdorff-metric H (see [15])

∀ε > 0∃δ > 0∀x, y ∈ domT (‖x− y‖ ≤ δ → H(Tx, Ty) ≤ ε) .

Motivated by this, the weaker notion of uniform continuity w.r.t. H∗ as discussed before is introduced in [14].
This uniform continuity w.r.t. H∗ can be added as an axiom to the system T ω such that one still obtains a
bound extraction result (see [20]). Even further, this was recognized in [20] to be the uniform quantitative
version of the following weak approximate extensionality principle

∀x, y ∈ X
(
x = y → ∀k ∈ N

(
H∗
[
Tx, Ty,

1

k + 1

]))
.

This principle can be used in place of the full extensionality principle in some situations, for example whenever
the rest of the proof following the application of extensionality is extensional in the variables.

Now, in Moudafi’s proof, the application of extensionality of T in form of the closure of the graph of T can
actually be recognized as just an application of this approximate extensionality principle: extensionality of T
is used to conclude y ∈ Tx given convergent subsequences Tλnkxnk → y and JTλnk

xnk → x and using that

Tλnkxnk ∈ T (JTλnk
xnk). The rest of the proof is extensional as well as continuous in y and this thus reduces to

an application of the above approximate extensionality principle. The metatheorems then immediately upgrade
T to being uniformly continuous w.r.t. H∗ and a modulus for this crucially features in the analysis presented
above.

Further, in Moudafi’s proof, extensionality of S can actually be completely avoided by instead using the
resolvent and the fact this the resolvent is itself provably extensional (see [20]).

3. Moduli of regularity and rates of convergence

3.1. General theorems on rates of convergence. As mentioned in the introduction, Fejér monotone se-
quences, in general, do not have a computable rate of convergence. However, the existence of such can be
guaranteed in some situations where additional quantitative assumptions are present. Choices for such were
extensively studied in [12] under the very general notion of moduli of regularity (generalizing moduli of unique-
ness and other regularity notions known from optimization like error bounds, weak sharp minima and metric
subregularity, see the discussion in [12]) and based on a proof theoretic perspective, [12] presents theorems
converting such moduli of regularity for Fejér monotone sequences, modulo some additional minor quantitative
assumptions, into rates of convergence for the sequence. To apply these results in our context, we first extend
the main quantitative result from [12] to the case of quasi-Fejér monotone sequences.

For that, we follow the setup and notation from [12] (which is conflicting with the notation used in the
previous section which was derived from [10], but the context will make it clear which meaning is intended): let
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(X, d) be a metric space, F : X → R with R = R∪ {−∞,+∞} be a mapping and assume zerF 6= ∅ where zerF
is the set of zeros of F .

Definition 3.1 ([12]). Let z ∈ zerF and r > 0. A function φ : (0,∞) → (0,∞) is a modulus of regularity for
F w.r.t. zerF and B(z; r) if for all ε > 0 and x ∈ B(z; r):

|F (x)| < φ(ε) implies D(x, zerF ) < ε

where D is the distance function between points and sets. It is a modulus of regularity for F w.r.t. zerF if
there is a z such that it is a modulus of regularity for F w.r.t. zerF and B(z; r) for any r > 0.

Adapting [10], we introduce G- and H-moduli for the functions G,H in the generalized notion of quasi-Fejér
monotonicity: a function αG : R∗+ → R∗+ is a G-modulus for G if

∀ε > 0∀a ∈ R+ (a ≤ αG(ε) implies G(a) ≤ ε)

and βH : R∗+ → R∗+ is a H-modulus for H if

∀ε > 0∀a ∈ R+ (H(a) ≤ βH(ε) implies a ≤ ε) .

For convenience, we assume that a Cauchy rate for a sequence
∑
i εi <∞ is now a mapping taking real values,

i.e. a Cauchy rate will now be a function ξ : R∗+ → N which fulfills

∞∑
i=ξ(δ)

εi < δ

for any δ ∈ R∗+.
We then can generalize the main result of [12], i.e. Theorem 4.1, to quasi-(G,H)-Fejér monotone sequences:

Theorem 3.2. Let (X, d) be a metric space and F : X → R with zerF 6= ∅. Let (xn) be quasi-(G,H)-Fejér
monotone w.r.t. zerF . Let αG be a G-modulus for G, βH be an H-modulus for H and let β′H be such that

H(x) ≤ a implies x ≤ β′H(a).

for any x, a ∈ R+. Let b ≥ G(d(x0, z)) for some z ∈ zerF , e ≥
∑
n εn and suppose there is a τ such that

∀δ > 0∀n ∈ N∃N ∈ [n; τ(δ, n)](|F (xN )| < δ).

Let φ be a modulus of regularity for F w.r.t. zerF and B(z;β′H(b+e)) and let ξ be a Cauchy rate for
∑
i εi <∞.

Then (xn) is Cauchy with Cauchy modulus θ:

∀δ > 0∀n,m ≥ θ(δ) := τ

(
φ

(
αG

(
βH(δ/2)

2

))
, ξ

(
βH(δ/2)

2

))
(d(xn, xm) < δ).

Proof. The proof is a straightforward modification of that of Theorem 4.1 from [12]: Let δ > 0 be given. By
quasi-(G,H)-Fejér monotonicity, we have

H(d(xn, z)) ≤ G(d(x0, z)) +
∑

εi ≤ b+ e,

i.e. (xn) ⊆ B(z;β′H(b+ e)). By assumption we have

∃N ∈
[
ξ

(
βH(δ/2)

2

)
; θ(δ)

](
|F (xN )| < φ

(
αG

(
βH(δ/2)

2

)))
.

As φ is a corresponding modulus of regularity, we get

D(xN , zerF ) < αG

(
βH(δ/2)

2

)
and therefore, there exists a y ∈ zerF with d(xN , y) < αG

(
βH(δ/2)

2

)
. This yields G(d(xN , y)) ≤ βH(δ/2)

2 . Thus

for any

n ≥ N ≥ ξ
(
βH(δ/2)

2

)
,
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by quasi-(G,H)-monotonicity, we obtain

H(d(xn, y)) ≤ G(d(xN , y)) +

∞∑
i=N

εi

≤ βH(δ/2)/2 + βH(δ/2)/2

≤ βH(δ/2)

and thus d(xn, y) ≤ δ/2 for any such n, i.e. in particular d(xn, xm) ≤ δ for any n,m ≥ θ(δ). �

Remark 3.3. β′H is a quantitative version of the property (H1) from [10] (see Lemma 4.2 there). As apparent
from the statement and proof, however, we don’t need the full function but only its value at b + e. In fact,
even an upper bound B ≥ β′H(b+ e) is sufficient as long as φ is a modulus of regularity for F w.r.t. zerF and

B(z;B).

3.2. An application to Moudafi’s algorithm. In applications to problems involving zeros of set-valued
operators, [12] describes the following approach for phrasing the corresponding problems in terms of the setup
introduced above: Define FA(x) := D(0, A(x)) for a set-valued operator A : X → P(X). If we have that

(†) D(0, A(x)) = 0 implies x ∈ zerA

for all x ∈ X, then we also get zerFA = zerA which makes FA a suitable instantiations of the abstract function
F from before regarding zeros of A. This always applies to maximally monotone operators A if X is a Hilbert
space as A(x) is then closed for any x. For differences A = T − S, even with T, S maximally monotone, A may
not be maximally monotone anymore but (T −S)(x) is still closed for any x if T (x), S(x) are and thus (†) holds
in that case. Thus, we may choose FT−S if we are interested in zeros of differences of two maximally monotone
operators.

Now, as exhibited in the above analysis of Moudafi’s result, the sequence generated by the algorithm actually
converges towards some x such that T ◦x ∈ Sx under the above additional quantitative assumptions.

In fact, it is easy to see that
⋂
k Γk = {x∗ | T ◦x∗ ∈ Sx∗} for the previously used approximations Γk: if

T ◦x∗ ∈ Sx∗, then immediately x∗ ∈ Γk for any k by setting y∗ = T ◦x∗. Conversely, if x∗ ∈ Γk for any k, we
can obtain T ◦x∗ ∈ Sx∗ as in the proof of Lemma 2.6.

The above FT−S is therefore not really faithful regarding the previous analysis and we in turn consider

F1(x) :=
∥∥x− JSµ0

(x+ µ0T
◦x)
∥∥

as x = JSµ0
(x+ µ0T

◦x) if and only if T ◦x ∈ Sx. Indeed, this is in particular supported by the following lemma

which establishes a relation between the approximations Γk and the property F1(x) ≤ 1
k+1 .

Lemma 3.4. Let M ∈ N∗ be such that M ≥ ‖T ◦x∗‖ for all x ∈ X0 and let B ∈ N∗ with B ≥ µ0. If x ∈ Γκ(k),

then F1(x) ≤ 1
k+1 where

κ(k) := 4(M + 1)(B(4k + 4)− 1)2 − 1.

Proof. Let x ∈ Γκ(k), i.e. there exists a y s.t. | ‖y‖−‖T ◦x‖ | ≤ 1
κ(k)+1 , H∗[y, Tx, 1/(κ(k)+1)] and

∥∥x− JSµi(x+ µiy)
∥∥ ≤

1
κ(k)+1 for all i ≤ κ(k).

Then by item (2), there exists a w ∈ Tx s.t. ‖y − w‖ ≤ 1
κ(k)+1 , i.e.

| ‖w‖ − ‖T ◦x‖ | ≤ | ‖y‖ − ‖T ◦x‖ |+ | ‖y‖ − ‖w‖ | ≤ 2

κ(k) + 1
.

Therefore

| ‖w‖2 − ‖T ◦x‖2 | ≤ | ‖w‖+ ‖T ◦x‖ || ‖w‖ − ‖T ◦x‖ |
≤ (2M + 2)| ‖w‖ − ‖T ◦x‖ |

≤ (2M + 2)
2

κ(k) + 1

≤ 1

(B(4k + 4)− 1)2
.
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By the modulus of uniqueness for T ◦, Lemma 2.5, (2), we get ‖w − T ◦x‖ ≤ 1
B(4k+4) . Thus, as κ(k) + 1 ≥

B(4k + 4):

‖y − T ◦x‖ ≤ ‖y − w‖+ ‖w − T ◦x‖

≤ 1

κ(k) + 1
+

1

B(4k + 4)

≤ 1

B(2k + 2)
.

Now using ∥∥x− JSµ0
(x+ µ0y)

∥∥ ≤ 1

κ(k) + 1
,

we get (using nonexpansivity of JSµ0
)∥∥x− JSµ0

(x+ µ0T
◦x)
∥∥ ≤ ∥∥x− JSµ0

(x+ µ0y)
∥∥+

∥∥JSµ0
(x+ µ0T

◦x)− JSµ0
(x+ µ0y)

∥∥
≤ 1

κ(k) + 1
+ µ0 ‖T ◦x− y‖

≤ 1

κ(k) + 1
+

1

2k + 2

≤ 1

k + 1

as κ(k) ≥ 2k + 1. �

Having in mind that
⋂
k Γk = {x∗ | T ◦x∗ ∈ Sx∗} as discussed before, another natural version for F is given

by
F2(x) := D(T ◦x, Sx).

Note also that F2 relates to FT−S in the following way: for any x (in X0), we have FT−S(x) ≤ F2(x). Indeed,
this function F2 can be used if we assume a further modulus of uniform continuity for S w.r.t. H∗ as the
following lemma shows:

Lemma 3.5. Let M ∈ N∗ be such that M ≥ ‖T ◦x∗‖ for all x ∈ X0, let B ∈ N∗ and B′ ∈ N with B ≥ µ0 ≥ 2−B
′
,

and let $̂ be a modulus of uniform continuity for S w.r.t. H∗. If x ∈ Γκ̂(k), then F2(x) ≤ 1
k+1 where

κ̂(k) := κ
(

max
{
$̂(2k + 1), 2B

′+1(k + 1)−· 1
})

with κ from the previous lemma.

Proof. By the previous lemma, we get∥∥x− JSµ0
(x+ µ0T

◦x)
∥∥ ≤ 1

max {$̂(2k + 1), 2B′+1(k + 1)−· 1}+ 1
.

Thus we get

H∗
[
SJSµ0

(x+ µ0T
◦x), Sx,

1

2k + 2

]
Thus, there exist a z ∈ Sx such that∥∥∥∥ 1

µ0
(x+ µ0T

◦x− JSµ0
(x+ µ0T

◦x))− z
∥∥∥∥ ≤ 1

2k + 2
.

This entails

‖z − T ◦x‖ ≤
∥∥∥∥ 1

µ0
(x+ µ0T

◦x− JSµ0
(x+ µ0T

◦x))− z
∥∥∥∥+

1

µ0

∥∥x− JSµ0
(x+ µ0T

◦x)
∥∥

≤ 1

2k + 2
+

1

µ0

1

2B′+1(k + 1)

≤ 1

2k + 2
+

1

2k + 2

≤ 1

k + 1
.

Thus, as z ∈ Sx, we have D(T ◦x, Sx) ≤ 1
k+1 . �
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As an immediate consequence of Theorem 3.2 together with the above lemmas, we get the following result
for converting the quantitative assumptions into a rate of convergence for the sequence given by Moudafi’s
algorithm.

Theorem 3.6. Let T, S be two maximally monotone operators on a Hilbert space X such that domS ⊆ domT
and zer(F ) 6= ∅ and let L ≥ diam(xn). Let A ≥

∑∞
n=0

µn
λn

. Let C ≥ 1 be an upper bound on both diam(µn) and

(µn), B ∈ N∗ with B ≥ µ0 and let M ∈ N∗ be such that M ≥ ‖T ◦x∗‖ for any x∗ ∈ X0. Further, let Φ be s.t.

∀k, n∃N ∈ [n; Φ(k, n)] ‖xN − xN+1‖ /µN <
1

k + 1

and such that it is monotone w.r.t. k and n, ξ be a Cauchy rate (with input k ∈ N) for
∑
n µn ≤ d < ∞ and

b ≥ ‖x0 − z‖ for some z ∈ zer(T − S). Let θ be a rate of convergence for λn → 0, i.e.

∀k∀n ≥ θ(k)

(
λn ≤

1

k + 1

)
.

Further, let $ be a modulus of uniform continuity for T w.r.t. H∗.
Let φ be a modulus of regularity for F1 w.r.t. zer(F1) and B(z; eAb+ d). Then (xn) is Cauchy with Cauchy

modulus

∀ε > 0∀n,m ≥ θ(ε) := Φ̂

(
κ

(⌈
1

φ
(

ε
4eA

)⌉) , ξ̃ (ε
4

))
(d(xn, xm) < ε)

where

ξ̃(ε) = ξ

(⌈
(2M + 1)eA

(⌈
1

ε

⌉
+ 1

)⌉
− 1

)
and

Φ̂(k, n) := Φ (d2C(k + 1)e − 1,max{θ(M$(k) +M − 1), n}) .

as well as

κ(k) := 4(M + 1)(B(4k + 4)− 1)2 − 1.

Moreover, if we assume $̂ to be a modulus of uniform continuity for S w.r.t. H∗ and B′ ∈ N such that
µ0 ≥ 2−B

′
, then the above claim holds for φ being a modulus of regularity for F2 (or FT−S) w.r.t zer(F2) (or

zer(FT−S)) and B(z; eAb+ d) and with κ replaced by κ̂ defined by

κ̂(k) = κ
(

max
{
$̂(2k + 1), 2B

′+1(k + 1)−· 1
})

.

Proof. The proof is a direct application of Theorem 3.2. We want to note a few things, however. Again, we
work over X0. Then Lemma 2.8 actually established quasi-(eAidR+

, idR+
)-Fejér monotonicity w.r.t. zer(F ).

Naturally, δ 7→ δ/eA is a G-modulus for eAidR+
and δ 7→ δ is a H-modulus for idR+

and β′H can just be set to
be the identity. Further, the function

(ε, n) 7→ Φ̂

(
κ

(⌈
1

ε

⌉)
, n

)
is a lim inf-modulus for F1 by Lemma 2.11 and Lemma 3.4. �

Note that it is no longer necessary for X to be finite dimensional in this case. This in particular relies on
the fact that the previous moduli do not rely on finite dimensionality either.
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