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Abstract. We develop a general proof-theoretic framework for various classes of set-valued operators, including

maximally as well as cyclically monotone and rectangular operators and we discuss a treatment for sums of set-

valued operators A,B in that context such that all of the previous fits into logical metatheorems on bound
extractions. In particular, we introduce quantitative forms for A being (weakly) uniformly rectangular with

witnessing moduli. Based on this we give quantitative forms of the Brezis-Haraux theorem which use such

moduli as input. It turns out that a modulus for weak uniform rectangularity, which can be extracted even
from noneffective proofs of rectangularity, is sufficient while the bound gets simpler in the case of a modulus

for A being uniform rectangular which can be extracted from semi-constructive proofs. We use our results to
explain recent proof minings in the context of Bauschke’s solution to the zero displacement conjecture and its

extensions to other classes of functions than metric projections as instances of logical metatheorems.
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1. Introduction

During the past 15-20 years, proof-theoretic methods have been used to extract explicit effective and uniform
bounds from numerous proofs in mainly nonlinear analysis (‘proof mining’, see e.g. [18] and - for a more recent
survey - [21]). In most of the resulting papers abstract metric structures are used alongside with concrete repre-
sented Polish spaces such as R or C[0, 1]. General logical metatheorems have been established which explain why
these bounds only depend on general metric upper estimates on the data from the abstract metric structures
even in the absence of any compactness assumptions (see e.g. [10, 12, 17, 18]). This is due to the fact that the
proofs being analyzed do not use the separability of these structures.

In recent years, some case studies have been carried out which make use of set-valued monotone or accretive
operators on Hilbert or more general Banach spaces and their resolvents (see e.g. [22, 23, 24]) and use properties
such as being maximally monotone, cyclic or rectangular and facts like the fundamental theorem of Minty for
maximally monotone operators or the Brezis-Haraux theorem for rectangular operators (as in [20, 34]).

The case studies were successful in extracting low complexity uniform bounds even though the existing frame-
works of proof mining did not include set-valued operators, general resolvents and the tools to prove the
aforementioned theorems. A first important step to extend things to this setting was done by the second author
in [31], where (maximally) monotone and accretive operators together with their resolvents were axiomatized
in an admissible way so that the existing logical metatheorems can be adapted.

In this paper, building upon [31], we for the first time include the theory of cyclic and rectangular operators in
this setting of logical metatheorems, add suitable axioms for treating the sum A+B of two monotone operators
A,B as well as for treating conditions such as domA ⊆ domB with necessary moduli such that all the previous
is admissible in these extraction theorems. All this then plays a crucial role in a quantitative treatment of the
Brezis-Haraux theorem which in turn depends on appropriate quantitative moduli witnessing the property of
an operator being rectangular. W.r.t. the latter we introduce two new notions of being ‘uniformly rectangular’
and ‘weakly uniformly rectangular’ with respective moduli. If A is provably rectangular, then one can always
extract a modulus for A being weakly uniformly rectangular and, if the proof can be carried out in some semi-
constructive framework, one can even extract a modulus for A being uniformly rectangular. We then establish
two quantitative versions of the Brezis-Haraux theorem. The first one uses that one has a modulus for A being
uniformly rectangular which is the case in the recent applications [20, 34] and explains these applications as
instances of a general logic metatheorem. The second quantitative version only uses that one has a modulus of
A being weakly uniformly rectangular on the expense of a more complicated bound but is applicable even in
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situations where the property of A being rectangular is only established noneffectively and may pave the way
towards new applications.

2. Logical systems and bound extraction theorems for monotone operators

To give a formal framework for the treatment of set-valued operators and resolvents, we follow the approach
taken in [31]. We focus on the new aspects of the logical systems introduced there and rely on the formal
setup presented in detail in [18] for background, in particular on the there presented language and systems
of finite type arithmetic1 and the representation of real numbers in them by objects of type NN = (N → N),
resulting in respective formulas <R,=R and so on. In particular, let Aω = WE-PAω + DC + QF-AC be weakly
extensional classical analysis formulated in the language of functionals of finite type with the axiom schemas of
dependent choice and of quantifier-free choice in all types and Aω[X, 〈·, ·〉] be its extension with a new base type
X with operations +X ,−X , ·X , ‖·‖X , 〈·, ·〉X for a real abstract inner product space together with corresponding
characterizing axioms, both as defined in [17] (see also [18]).

Remark 2.1. As shown in [18], one can also add the assumption that X is complete (and hence a Hilbert space)
to Aω[X, 〈·, ·〉] in a way so that the logical metatheorems on uniform bound extractions from [18] apply and this
also holds for the extensions considered in [31] and this paper, but we refrain from doing so since completeness
is mostly not needed in the context of proof mining which exhibits quantitative results on approximations.

A set-valued operator A : X → 2X (which may be identified with a subset of X ×X) is treated via introducing
a constant for its characteristic function χA which we consider to be of type X → (X → N). In that vein, we
write u ∈ Ax or (x, u) ∈ graA as an abbreviation for χA(x, u) =N 0. In that language, monotonicity of A is
immediately expressed via the universal axiom

∀xX , yX , uX , vX (u ∈ Ax ∧ v ∈ Ay → 〈x−X y, u−X v〉X ≥R 0) .

Further, the resolvent JAγ := (Id + γA)−1 of a monotone operator A is a single-valued function JAγ : ran(Id +

γA) → dom(A) and is treated via a constant JχA of type NN → (X → X) with the parameter of type NN

representing the real index γ > 0 in JAγ . If ran(Id+ γA) is strictly contained in X, we call JAγ partial.

2.1. Maximal monotone operators. We treat maximal operators by employing Minty’s theorem:

Theorem 2.2 (essentially [28]). Let X be a (real) Hilbert space. Then A : X → 2X is maximally monotone if
and only if its resolvent JAγ := (Id+γA)−1 is single-valued, firmly nonexpansive and dom(JAγ ) = ran(Id+γA) =
X for some (or any) γ > 0.

So we can avoid the non-universal maximality statement by instead posing totality of the resolvent (see [31]
for more background information on all of this). Since JχA is of type NN → (X → X), any interpretation of
the constant JχA is total just by the type and this provides the basis for our treatment of operators with total
resolvents: If we can provide a suitable resolvent axiom expressing the defining equality JAγ := (Id + γA)−1,
then the interpretation of this constant will be forced to be a total resolvent which in turn forces the operator
to be maximally monotone by Minty’s theorem.

Following [31], one suitable choice for such an axiom is

∀γN→N, xX
(
γ >R 0→ γ−1(x−X JAγ x) ∈ A(JAγ x)

)
which is essentially an intensional variant of one direction of the resolvent equality. In particular, this axiom is
universal. The other direction follows from the provable uniqueness of JAγ , see [31, Proposition 3.5].

The system for a monotone operator A : X → 2X with total resolvents over an inner product space X then
takes the following form:

Definition 2.3. The system T ω is the extension of Aω[X, 〈·, ·〉] with the previously discussed constants together
with the following axioms:

(I) ∀xX , yX(χAxy ≤N 1),
(II) ∀γN→N, xX

(
γ >R 0→ γ−1(x−X JAγ x) ∈ A(JAγ x)

)
,

(III) ∀xX , yX , uX , vX (u ∈ Ax ∧ v ∈ Ay → 〈x−X y, u−X v〉X ≥R 0) .

1Throughout, we write N for the base type and given types ρ, τ , we denote their function type by ρ→ τ .



PROOF THEORY AND NONSMOOTH ANALYSIS 3

Axiom (I) formalizes the fact that χA codes a characteristic function and, further, immediately results in χA
being majorizable. Axiom (III) is the immediate formalized version of monotonicity for A mentioned before.
For further discussions on the intuition and particularities of this axiomatization, we refer to [31].

Remark 2.4. For technical reasons (see [31]), the system T ω actually contains three additional constants and a
further axiom: γ̃ of type N→ N, mγ̃ of type N and cX of type X as well as the axiom

(IV) γ̃ ≥R 2−mγ̃ .

Their purpose lies in the majorization of the constant JχA : bounding
∥∥x− JAγ x∥∥ for some x and some γ > 0

suffices to majorize JχA and cX , γ̃ designate such an arbitrary point and index. We use mγ̃ to stipulate γ̃ > 0
in a universal way via the axiom (IV). In our paper we will, however, always use γ̃ := 1,mγ̃ := 0 and mostly set
cX := 0X (with some necessary exceptions in the context of the systems for operators with partial resolvents
introduced later, see Remark 2.6).

By T ω− we denote the fragment of T ω where DC is dropped.

Our system T ω and all its variants and extensions based on classical logic only contain a weak quantifier-free
extensionality rule instead of the full extensionality axiom (see [10, 17, 18] for extensive discussions on this).
For the operator A this means that only from a proof of Fqf → s1 =X t1 ∧ s2 =X t2 we can conclude that
Fqf → ((s1, t1) ∈ graA → (s2, t2) ∈ graA), where Fqf is a quantifier-free formula. By the full extensionality
of A we mean that x1 =X x2 ∧ y1 =X y2 → ((x1, y1) ∈ graA → (x2, y2) ∈ graA) which is not provable in our
systems.

Although totality of the resolvent as well as its extensionality (both in x w.r.t. =X as well as in γ > 0 w.r.t.
=R) is provable in T ω (see [31, Proposition 3.1]), the maximality statement remains unprovable as it turns out
to be equivalent to the extensionality statement of A:

Theorem 2.5 ([31]). Over T ω, the following are equivalent:

(1) Extensionality of A, i.e.

∀xX1 , xX2 , yX1 , yY2 (x1 =X x2 ∧ y1 =X y2 → χAx1y1 =N χAx2y2) .

(2) Maximal monotonicity of A, i.e.

∀xX , uX
(
∀yX , vX (v ∈ Ay → 〈x−X y, u−X v〉X ≥R 0)→ u ∈ Ax

)
.

This in particular has an impact on the quantitative treatment of proofs using the maximality statement for
A in an essential way (e.g. by using that the graph of a maximally monotone operator is closed) as then a
quantitative version of the extensionality statement for A has to be included, e.g. via the inclusion of a modulus
of uniform continuity for A (as e.g. defined in [29], see in particular the discussions in [24, 30, 31]).

Akin to [9], one can also introduce a ‘semi-constructive’ version T ωi of the above system T ω which can be defined
as the extension, in the spirit of the above, not of the system Aω as in the case of T ω but of Aωi = E-HAω + AC
defined as in [9]. This resulting system T ωi , potentially extended with a large class of non-constructive axioms,
allows for bound extraction results which lift the severe restrictions one has to place on the proof and theorem
if we would be working in the classical system T ω. This will be discussed in more detail later on.

2.2. Monotone operators with partial resolvents. We modify the previous approach to treat non-maximal
operators. This requires us to treat partial resolvents which can be achieved as follows: By definition, the domain
of the resolvent fulfills

domJAγ = ran(Id+ γA)

and thus inclusion in domJAγ can be existentially expressed via

x ∈ domJAγ := ∃yX
(

1

γ
(x−X y) ∈ Ay

)
.

Now, we modify the previous resolvent axiom (II) so that it just specifies the behavior of the resolvent on the
points in the domain:

(II′) ∀γN→N, xX
(
γ >R 0 ∧ x ∈ domJAγ → γ−1(x−X JAγ x) ∈ A(JAγ x)

)
.

The systems T ωp /T ωi,p are derived from T ω/T ωi , respectively, by replacing the previous (II) with the above (II′).
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Remark 2.6. Again for technical reasons, the constant cX previously used to specify an arbitrary but fixed point
in the space for majorization is now actually assumed to specify a common element of the domains of all JAγ
which we treat by adding another axiom:

(V) ∀γN→N(γ >R 0→ γ−1(cX −X JAγ cX) ∈ A(JAγ cX)).

2.3. Majorizable operators. In many situations occurring in nonlinear and nonsmooth analysis (see [7]), and
in the theory of set-valued operators in particular, specific functions selecting a certain element from Ax for
x ∈ domA appear.

One specific and motivating example for such a selection functional is the operator A◦x := PAx(0) selecting the
element of minimal norm from Ax (which is well-defined for maximally monotone operators over Hilbert spaces,
see Proposition 20.36 and Theorem 3.16 in [2]). In particular A◦x ∈ Ax for any x ∈ domA. This operator is
central, e.g., for the formulation of the dual version of the well-known Bundle method (see e.g. [33]), selecting
elements of minimal norm from (subsets of) generalized subgradients.

For a general function a : X → X, being a selection functional for A is characterized by the following axiom

(NE) ∀xX(x ∈ domA→ ax ∈ Ax)

and such an a then requires majorizing data if used in proofs which are to be analyzed using the bound extraction
theorems. Here, a majorant for a functional a : X → X is a function f : N → N which is non-decreasing and
satisfies

n ≥ ‖x‖ → fn ≥ ‖ax‖ .
We consider the following definition from [31]:

Definition 2.7. An operator A : X → 2X is called majorizable if there exists a choice for a satisfying (NE)
which is majorizable.

In the sense of the discussion above, this notion of majorizability for A is the minimal setup for treating proofs
involving selection functionals for the operator A and, in particular, A is majorizable in this sense if, and only
if, A◦ is majorizable.
Corresponding to this, we consider the following stronger notion of majorizability from [31]:

Definition 2.8. An operator A : X → 2X is called uniformly majorizable if there exists an A∗ : N → N
majorizing any functional a satisfying (NE) with ax = 0 for x 6∈ domA.

This notion will feature later in the discussion on formal treatments of the Brezis-Haraux theorem but can also
be recognized as a proof-theoretical version of a ubiquitous analytical notion from monotone operator theory:

Proposition 2.9 ([31]). An operator A is uniformly majorizable if and only if A is bounded on bounded sets,
i.e.

A(Br(0)) =
⋃

x∈Br(0)

Ax is bounded for any r > 0.

2.4. Treating sums of monotone operators in the logical metatheorems. The sum A + B of two
monotone operators A,B can be defined in terms of its graph by stipulating that

(w, h) ∈ gra(A+B)↔ ∃h1 ∈ Aw, h2 ∈ Bw(h =X h1 +X h2).

In order for this to be an admissible axiom, one needs to bound the norms of h1, h2 in terms of norm bounds
on w, h.
To be more precise, if two operators A,B : X → 2X are added to our formal systems, we obtain the extension of
the system by A+B when adding (in addition to χA+B representing the characteristic function of gra(A+B))
a constant ξ : N→ N and the two axioms

(i) ∀(w, h1) ∈ graA, (w, h2) ∈ graB ((w, h1 + h2) ∈ gra(A+B))

and

(ii)

{
∀nN, (w, h) ∈ gra(A+B) (‖w‖X , ‖h‖X <R n

→ ∃hX1 , hX2 (‖h1‖X , ‖h2‖X ≤R ξ(n) ∧ (w, h1) ∈ graA ∧ (w, h2) ∈ graB ∧ h =X h1 +X h2)).
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Such a ξ is e.g. available if at least one of A or B, say B, is uniformly majorizable, say by B∗: for n ≥ ‖w‖ , ‖h‖,
where (w, h) ∈ gra(A+B), we then get

∃h1 ∈ Aw, h2 ∈ Bw (‖h2‖ ≤ B∗(n) ∧ h = h1 + h2),

but then ‖h1‖ ≤ ‖h1 + h2‖+ ‖h2‖ ≤ n+B∗(n) =: ξ(n).
This situation is given in the implicit uses of instances of Proposition 3.1 in [20] and [34] discussed in Section
3.2 below, where - in [20] - B := M is single-valued, dom(M) = X and M is 2-Lipschitzian while in [34] both
A and B are single-valued and Lipschitz continuous.

In the Brezis-Haraux theorem we consider the operator A+B under the assumption that domA ⊆ domB. For
two operators A,B to state domA ⊆ domB in a form which makes this an admissible axiom in our bound
extraction theorems we have to use the following witnessing modulus:

Definition 2.10. We say that β : N→ N is a modulus witnessing uniformly that domA ⊆ domB if

(β) ∀(w, w̃) ∈ graA ∀n ∈ N (‖w‖ , ‖w̃‖ < n→ ∃v ((w, v) ∈ graB ∧ ‖v‖ ≤ β(n))) .

Remark 2.11. Let in the situation of the definition above B be majorizable with a (not necessarily uniform)
majorant B∗, then we can take the axiom (β) formulated with β := B∗.

2.5. Cyclically monotone operators. A particular stronger notion of monotonicity featuring prominently in,
e.g., the context of rectangular operators and Rockafellar’s characterization of subgradients of convex functions
is that of cyclic monotonicity:

Definition 2.12 (cyclic monotonicity, see e.g. [2, Definition 22.13]). An operator A : X → 2X is n-cyclically
monotone for n ≥ 2 if for any x1, . . . , xn+1 ∈ X and any u1, . . . , un ∈ X: if ui ∈ Axi and xn+1 = x1, then

n∑
i=1

〈xi+1 − xi, ui〉 ≤ 0.

An operator A is cyclically monotone if it is n-cyclically monotone for any n ≥ 2.

Obviously, A is 2-cyclically monotone if and only if A is monotone. Further, cyclically monotone operators
behave nice with respect to maximality in the sense of the following proposition.

Proposition 2.13 (see e.g. [2]). An operator A is maximally monotone and cyclically monotone if and only if
A is maximally cyclically monotone.

Correspondingly, the previous approach to formally treating maximal and non-maximal monotone operators
immediately extends to the cyclic case in the sense that we can treat (maximally) cyclically monotone operators
by just adding the cyclic monotonicity assumption to the previous system T ω (or T ωp , respectively).
Concretely, for any fixed n ∈ N the condition of A being n-cyclically monotone can be immediately expressed
in the language of T ω by the purely universal axiom

(c(n)) ∀xX1 , . . . , xXn , uX1 , . . . , uXn

(
n∧
i=1

(ui ∈ Axi)→
n−1∑
i=1

〈xi+1 −X xi, ui〉X + 〈x1 −X xn, un〉X ≤R 0

)
and cyclic monotonicity is a straightforward extension of that by setting

(c) ∀xN→X , uN→X , nN
(
n ≥N 2 ∧ ∀i ≤N n(ui ∈ Axi)→

n−1∑
i=1

〈xi+1 −X xi, ui〉X + 〈x1 −X xn, un〉X ≤R 0

)
where the iterated summation is definable by the recursor R0 contained in the language of Aω[X, 〈·, ·〉] (R0

instead of R1 is sufficient by using rational approximations of the reals being added, see [15] for details).

Without indulging in the details of the proof, we note that by an immediate extension of the proof given in
[31, Theorem 3.11], one can obtain the following analogous characterization of maximally cyclically monotone
operators.

Theorem 2.14. Over T ωc , extensionality of A is equivalent to a suitable formulation of maximal cyclic mono-
tonicity, where T ωc is the extension of T ω by the axiom (c).

As mentioned before, we will discuss a particular use of cyclic monotone operators later on in the context of
rectangular operators but we want to hint on a potential use of them here already. Consider the following
classical result of Rockafellar (see also [2, Theorem 22.18]):
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Theorem 2.15 ([32]). A set-valued operator A on a Hilbert space X is maximally cyclically monotone if and
only if A = ∂f for some proper lower semicontinuous convex function f : X → (−∞,+∞], where ∂f denotes
the subdifferential of f.

In that way, the above systems may be used in combination with the corresponding bound extraction theorems
to extract quantitative information from proofs involving subgradients of convex functions which only use
properties of the subgradient seen as maximal cyclically monotone operator.

2.6. Rectangular operators. The central notion in the context of the Brezis-Haraux theorem is that of
rectangular operators (sometimes also called 3∗ monotone operators).

Definition 2.16 (Fitzpatrick function, see e.g. [2]). For a monotone operator A, the Fitzpatrick function
FA : X ×X → [−∞,+∞] of A is defined by

(x, u) 7→ 〈x, u〉 − inf
(y,v)∈graA

〈x− y, u− v〉.

Definition 2.17 (Rectangular operator, see e.g. [2]). A monotone operator A is called rectangular if for any
x ∈ domA and any u ∈ ranA:

sup
(y,v)∈graA

〈x− y, v − u〉 <∞.

Alternatively, A is called rectangular if domA × ranA ⊆ domFA where (x, u) ∈ domFA means FA(x, u) < ∞
(see [2, Definition 25.10]).

We now introduce a uniform strengthening of the property of being rectangular together with a modulus
function:

Definition 2.18 (Uniformly rectangular operator). A monotone operator A : X → 2X is called uniformly
rectangular with modulus α : N→ N if

(∗) ∀n ∈ N, (x, x̂), (ǔ, u), (y, v) ∈ graA (‖x‖ , ‖x̂‖ , ‖u‖ , ‖ǔ‖ < n→ 〈x− y, v − u〉 ≤ α(n)) .

Note that (∗) is purely universal and implies that A is rectangular where a bound for

sup
(y,v)∈graA

〈x− y, v − u〉 <∞

is given via α(n) in terms of a norm upper bound for x and u as well as for x̂ and ǔ witnessing that x ∈ domA
and u ∈ ranA. In that way, (∗) is a uniform quantitative version of stating that A is rectangular via

∀x ∈ domA ∀u ∈ ranA ((x, u) ∈ domFA)

with ‘uniform’ here referring to the fact that the bound α(n) depends only on norm upper bounds on the points
involved but not on the points themselves.

Remark 2.19. If A is majorizable and A∗ is a majorant for A, then x ∈ domA with ‖x‖ ≤ n implies that there
exists an x̂ ∈ Ax with ‖x̂‖ ≤ A∗(n) and if A∗ is a uniform majorant for A, then for u ∈ ranA, if ǔ exists with
u ∈ Aǔ and ‖ǔ‖ ≤ n, then this implies that ‖u‖ ≤ A∗(n).
So it suffices to assume that ‖x‖ , ‖ǔ‖ ≤ n to conclude that α(max(n,A∗(n))) is an upper bound for

sup
(y,v)∈graA

〈x− y, v − u〉

in that case.

The following is an immediate quantitative version of Proposition 25.12 from [2] where the latter proof can be
carried out in T ωi,p,c(3) := T ωi,p + (c(3)).

Proposition 2.20. If A is 3-cyclically monotone, then A is uniformly rectangular with modulus α(n) = 4n2.

Proof. By the proof of [2, Proposition 25.12], one has that for all (x, x̂), (ǔ, u) ∈ graA:

FA(x, u) ≤ |〈ǔ, u〉|+ |〈ǔ− x, x̂〉|
≤ ‖ǔ‖ ‖u‖+ ‖ǔ‖ ‖x̂‖+ ‖x‖ ‖x̂‖
≤ 3n2
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if ‖x‖ , ‖x̂‖ , ‖ǔ‖ , ‖u‖ ≤ n. Thus, we have

sup
(y,v)∈graA

〈x− y, v − u〉 ≤ 3n2 − 〈x, u〉 ≤ 3n2 + ‖x‖ ‖u‖ ≤ 4n2.

�

2.7. The bound extraction theorem. The following theorem is an adaptation and extension due to the
second author of metamathematical bound extraction theorems from [10, 12, 17, 18] to the additional constants
and axioms for monotone operators and their resolvents discussed above.

These bound extraction results allow for the inclusion of non-constructive principles ∆ in the sense of [18] (see
also [12]), i.e. of sentences of the form

∀aδ∃b �σ ra∀cγBqf (a, b, c)

where Bqf is quantifier-free, r is a tuple of closed terms of suitable types and all types in δ, σ, γ are admissible,
i.e. they are of the form

σ1 → . . .→ σk → X or σ1 → . . .→ σk → N,

including N, X (with σ1 → . . . → σk → τ to be read as σ1 → (σ2 → (. . . → τ) . . .)), where each σi is of
the form N → . . . → N → N or N → . . . → N → X (also including N, X). Here � is defined pointwise with
x �X y := ‖x‖X ≤R ‖y‖X for the base type X.
As shown in [13], e.g. the binary (‘weak’) König’s lemma WKL can be written in the form of a sentence ∆ and
thus can be added to these systems to obtain mathematically strong systems even without the use of DC.

A formula is called a ∀-formula (respectively ∃-formula) if it has the form ∀aFqf (a) (respectively ∃aF0(a)),
where Fqf is quantifier-free and a are variables of admissible types.

In the next theorem z∗ & z denotes the strong majorization relation from the definition of the model Mω,X as
defined for the finite types over N in [5] and extended to the finite types over N, X in [10]. For a finite type τ
over N, X, the type τ̂ is the result of replacing everywhere X by N.

Theorem 2.21 ([31]). Let τ be admissible, δ be of the form N→ . . .→ N→ N and s be a closed term of T ω of
type δ → σ for admissible σ. Let B∀(x, y, z, u)/C∃(x, y, z, v) be ∀-/∃-formulas of T ω with only x, y, z, u/x, y, z, v
free. Let T ω− be T ω without DC2. If

T ω− + ∆ ` ∀xδ∀y �σ s(x)∀zτ
(
∀uNB∀(x, y, z, u)→ ∃vNC∃(x, y, z, v)

)
,

then one can extract a primitive recursive (in the sense of Gödel’s T ) Φ : Sδ × Sτ̂ × N → N such that for all
x ∈ Sδ, z ∈ Sτ , z∗ ∈ Sτ̂ and all n ∈ N, if z∗ & z and n ≥R

∥∥JA1 (0)
∥∥
X

, then

Sω,X |= ∀y �σ s(x) (∀u ≤N Φ(x, z∗, n)B∀(x, y, z, u)→ ∃v ≤N Φ(x, z∗, n)C∃(x, y, z, v))

holds for all (real) Hilbert spaces (X, 〈·, ·〉) with χA interpreted by the characteristic function of a maximally
monotone operator A and JχA by corresponding resolvents JAγ for γ > 0 whenever Sω,X |= ∆.

Remark 2.22. (i) If the proof also uses DC, then Φ : Sδ ×Sτ̂ ×N⇀ N is a partial functional which is total
and (bar-recursively) computable on Sδ ×Mτ̂ × N.
If τ̂ is of the form N→ . . .→ N→ N in that case, then Φ is again a total computable functional.

(ii) We may have tuples instead of single variables x, y, z, u, v and a finite conjunction instead of a single
premise ∀uNB∀(x, y, z, u).

(iii) Instead of T ω, we may use T ωp , where the conclusion is then drawn over the appropriate operators such

that, in particular,
⋂
γ>0 domJAγ 6= ∅. In this case we have to interpret cX by an element of

⋂
γ>0 domJAγ

and need to replace n ≥ ‖JA1 (0)‖ by n ≥ ‖cX − JA1 (cX)‖, ‖cX‖.
(iv) If we assume that the resolvents of A are total, then the conclusion even holds in all inner product

spaces (in Hilbert spaces this is a consequence of A being maximally monotone by Minty’s theorem).

2In the absence of DC, one can actually allow τ and σ as well as the types of the quantified variables in B∀, C∃ and in the

sentences contained in ∆ to be arbitrary. In that case, & is defined as the interpretation of the syntactic majorizability relation in
Sω,X .
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Proposition 2.23. Instead of T ω or T ωp we may use variants of those obtained by adding the formalized
versions of cyclic monotonicity or being uniformly rectangular with modulus α or adding the axioms (i), (ii)
for defining A + B with a bounding function ξ or also the assumption that domA ⊆ domB with a witnessing
modulus β where then the extracted bound will additionally depend on α or ξ or β (or any combination thereof).

Proof. The proposition is a consequence of the fact that the axioms expressing that A is cyclically monotone
and uniformly rectangular with modulus α are purely universal and so, in particular, of the form ∆, and involve
only admissible types. Furthermore, the axiom (i) in defining A+B is purely universal while axiom (ii) as well
as the axiom (β) on β is equivalent to a statement of the form ∆. �

The statement that A : X → 2X is rectangular can be written as

(2.1) ∀(x, x̂), (ǔ, u) ∈ graA∃m ∈ N ∀(y, v) ∈ graA (〈x− y, v − u〉 < m)

and hence formally (disregarding that we actually have tuples of variables and implicitly using some rational
approximation to the scalar product to avoid the existential quantifier hidden in ‘<’ between reals3) in the
logical form

(2.2) ∀xX ∃mN ∀yXFqf (x,m, y),

where Fqf is quantifier free. Using classical logic and QF-AC (which is stated for tuples, see [18]) the latter is
equivalent in T ω to its Herbrand normal form

(2.3) ∀xX ,ΓN→X ∃mN Fqf (x,m,Γm)

which is implied by

(2.4) ∀xX , γN→N ∃mN ∀yX (‖y‖X <R γ(m)→ Fqf (x,m, y))

and in turn by

(2.5) ∃ϕX→(NN→N) ∀xX , γN→N, yX (‖y‖X <R γ(ϕ(x, γ))→ Fqf (x, ϕ(x, γ), y)) .

Note that noneffectively, (2.2) - (2.5) are all equivalent.

Now in a proof using that A is rectangular as an implicative assumption, we can instead use (2.5) (given that
T ω is based on classical logic and contains QF-AC), pull ∃ϕ as a universal quantifier out of the implication and
apply Theorem 2.21 which then produces a bound which no longer depends on α but only on a strong majorant
ϕ∗ for some ϕ satisfying (2.5), i.e. a self-majorizing functional ϕ∗ such that

(2.6) ∀nN, γN→N, xX
(
‖x‖X ≤R n→ ∃m ≤N ϕ

∗(n, γ)∀yX (‖y‖X <R γ(m)→ Fqf (x,m, y))
)
.

This motivates the following:

Definition 2.24. We say that A is weakly uniformly rectangular with modulus ϕ (short: ϕ wur A) if{
∀n ∈ N ∀γ : N→ N∀(x, x̂), (ǔ, u) ∈ graA (‖x‖ , ‖x̂‖ , ‖u‖ , ‖ǔ‖ ≤ n

→ ∃m ≤ ϕ(n, γ)∀(y, v) ∈ graA (‖y‖ , ‖v‖ ≤ γ(m)→ 〈x− y, v − u〉 < m)).

Theorem 2.25. Under the assumptions of Theorem 2.21 we have the following: If

T ω− + ∆ ` ∀xδ∀y �σ s(x)∀zτ
(
A rectangular → ∃vNC∃(x, y, z, v)

)
,

then one can extract a primitive recursive functional Φ : Sδ × Sτ̂ × SN→NN→N ×N→ N such that for all x ∈ Sδ,
z ∈ Sτ , z∗ ∈ Sτ̂ , ϕ ∈ SN→NN→N and all n ∈ N, if z∗ & z and n ≥R

∥∥JA1 (0)
∥∥
X

, then

Sω,X |= ∀y �σ s(x) (ϕ wur A→ ∃v ≤N Φ(x, z∗, ϕ, n)C∃(x, y, z, v))

holds for all (real) Hilbert spaces (X, 〈·, ·〉) with χA interpreted by the characteristic function of a maximally
monotone operator A and JχA by corresponding resolvents JAγ for γ > 0 whenever Sω,X |= ∆.
The theorem also extends to the systems formulated in Proposition 2.23 and Remark 2.22 applies here as well
(where then the bound depends on a (strong) majorant ϕ∗ of ϕ instead of the latter).

3In practice we do not use such a rational approximation but the fact that we could have equivalently used ‘≤’ instead of ‘<’
and so can always choose things in such a way that the additional quantifier does not matter.
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Proof. It remains to show that we can use any modulus ϕ for A being wur instead of a majorant of such a
modulus. This due to the fact that if DC is not used in the proof we do not have to go through the model
Mω,X since we do not need bar recursion and can use throughout the proof the ordinary Howard-majorizability
relation instead of Bezem’s strong majorizability (see [5, 18]).4 But any modulus ϕ for A being weakly uniformly
rectangular is in fact a majorant (though in general not a strong one!) of some such modulus, namely of ϕ− which
selects, given n, γ, the least m satisfying the claim in the definition of A being weakly uniformly rectangular
instead of ϕ(n, γ). �

Whereas a modulus α can only be guaranteed to be extractable from (semi-)constructive proofs for A being
rectangular (see Corollary 2.30 below), such a modulus ϕ for A being weakly uniformly rectangular can be
extracted whenever the latter fact is provable in T ω + ∆ (or one of its variants considered above), i.e. also from
noneffective proofs, as we will show now: if T ω + ∆ proves that A is rectangular it, in particular, proves the
reformulation corresponding to (2.4), i.e.

(+)

{
∀n ∈ N ∀γ : N→ N ∀(x, x̂), (ǔ, u) ∈ graA (‖x‖ , ‖x̂‖ , ‖u‖ , ‖ǔ‖ ≤ n

→ ∃m ∈ N∀(y, v) ∈ graA (‖y‖ , ‖v‖ ≤ γ(m)→ 〈x− y, v − u〉 < m)).

By treating the ‘bounded’ formula

(b) ∀(y, v) ∈ graA(‖y‖ , ‖v‖ ≤ γ(m)→ 〈x− y, v − u〉 < m)

as purely existential, we can extract by Theorem 2.21 a bound ϕ such that{
∀n ∈ N ∀γ : N→ N∀(x, x̂), (ǔ, u) ∈ graA (‖x‖ , ‖x̂‖ , ‖u‖ , ‖ǔ‖ ≤ n

→ ∃m ≤ ϕ(n, γ)∀(y, v) ∈ graA (‖y‖ , ‖v‖ ≤ γ(m)→ 〈x− y, v − u〉 < m)).

It follows from the construction of ϕ as provided by the bound extraction theorem that it is a strong majorant.

Remark 2.26. To justify the treatment of (b) as a purely existential formula, we introduce (similar to [12])
‘ε-terms’ χ1, χ2 with the purely universal axiom

(χ)


∀xX , uX ,mN, γN→N︸ ︷︷ ︸

:=a

∀yX , vX (‖χ1a‖X , ‖χ2a‖X ≤R γ(m) ∧ [(y, v) ∈ graA ∧ ‖y‖X , ‖v‖X <R γ(m)∧

〈x−X y, v −X u〉X >R m→ (χ1a, χ2a) ∈ graA ∧ 〈x−X χ1a, χ2a−X u〉X ≥R m]).

The interpretation of (χ1a, χ2a) in Mω,X is to be a pair of points (y, v) ∈ graA with ‖y‖ , ‖v‖ ≤ γ(m) and
〈x− y, v − u〉 ≥ m if existent and (0, 0) otherwise. Both χ1 and χ2 are trivially majorizable via γ.
Now, if T ω + ∆ proves (+), then T ω + ∆ + (χ) proves

∀n, γ ∀(x, x̂), (ǔ, u) ∈ graA (‖x‖ , ‖x̂‖ , ‖u‖ , ‖ǔ‖ ≤ n→ ∃m ((χ1a, χ2a) ∈ graA→ 〈x− χ1a, χ2a− u〉 < m))

where 〈x− χ1a, χ2a− u〉 < m is Σ0
1. We can now extract a bound ϕ(n, γ) on ‘∃m’. With (χ), this implies

∀(y, v) ∈ graA(‖y‖ , ‖v‖ < γ(m)→ 〈x− y, v − u〉 ≤ m).

Indeed, if 〈x− y, v − u〉 > m for some (y, v) ∈ graA with ‖y‖ , ‖v‖ < γ(m), then - by (χ) -

(χ1a, χ2a) ∈ graA ∧ 〈x− χ1a, χ2a− u〉 ≥ m

which is a contradiction.

In total, we have shown:

Corollary 2.27. If T ω(−) +∆ proves that A is rectangular, then from the proof one can extract a bar-recursively

(primitive recursively, respectively) computable modulus ϕ for A being weakly uniformly rectangular which is
a strong majorant.

Now, regarding the semi-constructive variants T ωi , T ωi,p, etc., we can obtain a similar bound extraction result
by following the methods developed in [9]. Those bound extraction results, however, make it possible to allow
a much larger class of ideal principles to be used in the proof and also a more general class of theorems to be
analyzed.

4This is due to the fact that we use the monotone functional interpretation of the first author [14] in proving the bound extraction
theorem and not the bounded functional interpretation due to [8] which crucially uses strong majorizability throughout.
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Concretely, the restrictions which are lifted are (without indulging in the precise details, see [9] for a more
detailed discussion), that for one, instead of requiring the formula to be of the form ∀∃Aqf with Aqf quantifier-
free which is necessary in the classical setting to recover from the negative translation using Markov’s principle,
we can now allow for arbitrary formulas A.
For another, while the interpretation of the negative translation of dependent choice requires the use of bar-
recursion which forces the detour through the model Mω,X of strongly majorizable functionals in the classical
setting, this is no longer necessary in this context. In that vein, the full axiom of choice can be allowed and the
type restrictions on the quantifiers to essentially admissible types can be lifted.
Further, we can allow the full extensionality principle instead of restricting the system to the quantifier-free rule
of extensionality.

Hence, as mentioned before, the systems T ωi , T ωi,p and their extensions are based on E-HAω[X, 〈·, ·〉]+AC (de-

noted by Aωi [X, 〈·, ·〉] in [9]) and with the axioms of A and its resolvent JAγ added. While the method used for
deriving the above bound extraction result for the classical systems rests on a combination of Gödel’s functional
interpretation together with a negative translations (due to Kuroda) and majorization, the following bound
extraction result is established through the use of a monotone variant (due to the first author [16]) of Kreisel’s
modified realizability interpretation [25, 26].

In this context we can now as in [9] add an even larger class of highly non-constructive principles Γ¬ without
affecting the bound extraction results. These principles in particular include comprehension for negated formulas
CA¬ which is the union of the principles

(CA
ρ
¬) ∃Φ ≤ρ→N λx

ρ.1N∀yρ (Φ(y) =N 0↔ ¬A(y)).

Concretely, we can show the following result by adapting [9, Theorem 4.11] (where now & denotes majorization
- not necessarily strong - interpreted in the model Sω,X):

Theorem 2.28. Let δ be of the form N → . . . → N → N and σ, τ be arbitrary, s be a closed term of suitable
type. Let Γ¬ be a set of sentences of the form ∀uζ(C(u)→ ∃v �β tu¬D(u, v) with ζ, β and C,D arbitrary types

and formulas respectively and t be closed terms.
Let B(x, y, z)/A(x, y, z, u) be arbitrary formulas of T ωi with only x, y, z/x, y, z, u free. If

T ωi + CA¬ + Γ¬ ` ∀xδ ∀y �σ (x)∀zτ (¬B(x, y, z)→ ∃u0A(x, y, z, u)),

one can extract a Φ : Sδ × Sτ̂ × N → N with is primitive recursive in the sense of Gödel’s T such that for any
x ∈ Sδ, any y ∈ Sσ with y �σ s(x), any z ∈ Sτ and z∗ ∈ Sτ̂ with z∗ & z and any n ∈ N with n ≥R

∥∥JA1 (0)
∥∥
X

,
we have that

Sω,X |= ∃u ≤ Φ(x, z∗, n) (¬B(x, y, z)→ A(x, y, z, u))

holds for all (real) Hilbert spaces (X, 〈·, ·〉) with χA interpreted by the characteristic function of a maximally
monotone operator A and JχA by corresponding resolvents JAγ for γ > 0 whenever Sω,X |= Γ¬.

Remark 2.29. Similar to before, instead of T ωi , we may use T ωi,p or any modification of those obtained by
adding the formalized versions of cyclic monotonicity or being uniformly rectangular with modulus α where
the conclusion is then drawn over the appropriate operators such that, in particular,

⋂
γ>0 domJAγ 6= ∅ in the

case of the partial systems where cX then has to be interpreted by an element of
⋂
γ>0 domJAγ and we need to

replace n ≥ ‖JA1 (0)‖ by n ≥ ‖cX − JA1 (cX)‖, ‖cX‖.

Corollary 2.30. If T ωi +CA¬+Γ¬ proves that A is rectangular, then by Theorem 2.28 one can extract from the
proof a primitive recursively computable (in the extended sense of Gödel’s T ) modulus α for A being uniformly
rectangular.

Proof. Suppose that

T ωi + CA¬ + Γ¬ ` ∀xX , x̂X , uX , ǔX
(
(x, x̂), (ǔ, u) ∈ graA→ ∃mN ∀(y, v) ∈ graA (〈x− y, v − u〉 < m)

)
.

Then by Theorem 2.28 (note that (x, x̂) ∈ graA is quantifier-free and hence equivalent to its double negation,
i.e. a negated premise) we extract a primitive recursive (in the sense of Gödel’s T ) Φ such that for all n with
n &X x, x̂, u, ǔ, i.e. n ≥ ‖x‖, ‖x̂‖, ‖u‖, ‖ǔ‖, it is true in Sω,X that

(x, x̂), (ǔ, u) ∈ graA→ ∃m ≤ Φ(n)∀(y, v) ∈ graA (〈x− y, v − u〉 < m)),

i.e. α := Φ is a modulus for A being uniformly rectangular. �
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This covers the situation of Proposition 2.20 as well as the concrete proofs for being rectangular in the applica-
tions given in [20] and [34].

Note further that the above results can be immediately extended in the following ways:

(1) We may add further abstract metric and normed spaces which are treated simultaneously (see the
discussion in [18] in Section 17.6) or further constants for all previously discussed types of operators
and their resolvents which in particular may mix partial and non-partial resolvents.

(2) We may add additional constants (where corresponding defining axioms guarantee majorizability) which
are of admissible types (see the discussion in [18], Section 17.5) and corresponding ∆/Γ¬-formulas as
axioms.

3. The Brezis-Haraux theorem and its formalization in logical systems

3.1. Quantitative forms of the Brezis-Haraux theorem. We now show that the (part of the) Brezis-
Haraux theorem [6] used in Bauschke’s solution to the zero displacement conjecture [1] as well as in its gen-
eralizations to compositions of firmly nonexpansive mappings in [3] and of averaged mappings in [4] can be
formulated in an appropriate formal system to which logical bound extraction metatheorems apply. These then
also guarantee a quantitative version of this theorem as given below (which - in more special forms - is used in
analyzing quantitatively the specific situations mentioned above in [20] and [34]).

The theorem states that if A,B : X → 2X are monotone (X a real Hilbert space), A+B is maximally monotone,

domA ⊆ domB and B is rectangular, then ran(A+B) = ranA+ ranB. Since ran(A+B) ⊆ ranA+ ranB is
trivial, we only have to consider

(3.1) ranA+ ranB ⊆ ran(A+B).

Clearly x ∈ ranA+ ranB if and only if

(3.2) ∀n ∈ N∃pn ∈ domA, qn ∈ domB, p̃n ∈ Apn, q̃n ∈ Bqn
(
‖x− (p̃n + q̃n)‖ ≤ 1

n+ 1

)
and x ∈ ran(A+B) if and only if

(3.3) ∀n ∈ N∃un ∈ domA ⊆ domB, ũn ∈ Aun +Bun

(
‖x− ũn‖ ≤

1

n+ 1

)
.

By (a suitable instantiation of) Theorem 2.25 one can extract from a given proof of the Brezis-Haraux theorem
(3.1) an effective transformation of a majorant K : N→ N for (pn), (qn), (p̃n), (q̃n), i.e.

∀n ∈ N (‖pn‖ , ‖qn‖ , ‖p̃n‖ , ‖q̃n‖ ≤ K(n)) ,

a modulus ϕ for B being weakly uniformly rectangular, a modulus β for domA ⊆ domB, a bound ξ witnessing
the axiom (ii) in the representation of A+B, a bound n ≥ ‖JA+B

1 (0)‖ and a norm bound on x5 into a majorant

K̃ : N → N for (un), i.e. ∀n ∈ N
(
‖un‖ ≤ K̃(n)

)
. Note that given a norm bound on x, a majorant for (ũn)

follows trivially from ∀n ∈ N
(
‖x− ũn‖ ≤ 1

n+1

)
.

We first study this under the stronger assumption that we even have a modulus α for B being uniformly
rectangular as this simplifies the bound and is the situation given in the applications so far. Moreover, it turns
out that under this assumption the bound does not depend on ξ from the representation of A+B and also not
on n ≥ ‖JA+B

1 (0)‖.
For convenience, we use ε > 0 instead of 1

n+1 and K : (0,∞) → N \ {0}. Analyzing the proof of (3.1) from [6]

one obtains the following (compare also [20, 34]):

Proposition 3.1. Let A,B : X → 2X be monotone, A + B be maximally monotone, domA ⊆ domB with
modulus β, B uniformly rectangular with modulus α and let ε ∈ (0, 1) and K(ε) ∈ N \ {0}. Let x ∈ X be such
that

(3.4) ∃p ∈ domA, q ∈ domB, p̃ ∈ Ap, q̃ ∈ Bq
(
‖p‖ , ‖q‖ , ‖p̃‖ , ‖q̃‖ ≤ K(ε) ∧ ‖x− (p̃+ q̃)‖ ≤ 3

4
ε

)
.

5This can actually also be obtained from K by ‖x‖ ≤ ‖x− (p̃0 + q̃0)‖+ ‖p̃0‖+ ‖q̃0‖ ≤ 1 + 2K(0).
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Then

(3.5) ∃u ∈ domA ⊆ domB ∃ũ ∈ Au+Bu

(
‖u‖ ≤ 4(K(ε)2 + 2L)

ε
∧ ‖x− ũ‖ ≤ ε

)
where L := α(max{K(ε), β(K(ε))}).

Proof. Let ε, x,K(ε), α, β, p, q, p̃, q̃ be as in the proposition and assume that (3.4) holds. Since A is monotone,
we get

(3.6) ∀(z, h1) ∈ graA (〈h1 − p̃, z − p〉 ≥ 0) .

The fact that B is uniformly rectangular with modulus α implies

(3.7) ∀(w, w̃) ∈ graB (〈w̃ − q̃, w − p〉 ≥ −L)

since p ∈ domA ⊆ domB, q ∈ domB with (p, p̃) ∈ graA, (q, q̃) ∈ graB and since (p, ṽ) ∈ graB for some ṽ with
‖ṽ‖ ≤ β(K(ε)) where ‖p‖ , ‖p̃‖ , ‖q‖ , ‖q̃‖ ≤ K(ε).

By (3.6) and (3.7), we get for f := p̃+ q̃:

(3.8) ∀(w, h) ∈ gra(A+B) (〈h− f, w − p〉 ≥ −L) .

Indeed, let h = h1 + h2 ∈ Aw +Bw with h1 ∈ Aw and h2 ∈ Bw. By (3.6), we have 〈h1 − p̃, w − p〉 ≥ 0 and so

〈h− p̃− q̃, w − p〉 = 〈h− h2 − p̃, w − p〉+ 〈h2 − q̃, w − p〉 ≥ −L
using (3.7). By (3.8), we get

(3.9) ∀(w, h) ∈ gra(A+B) (〈f − h,w − p〉 ≤ L) .

Since A+B is maximally monotone, Minty’s theorem implies that for all ε̃ > 0: ran(ε̃I + (A+B)) = X. Hence

∀ε̃ > 0∃uε̃ ∈ X (f ∈ ε̃uε̃ + (A+B)(uε̃)) ,

where f = p̃ + q̃ as before. In particular, uε̃ ∈ dom(A + B) with (uε̃, f − ε̃uε̃) ∈ gra(A + B). (3.9) applied to
w := uε̃, h := f − ε̃uε̃ yields

〈ε̃uε̃, uε̃ − p〉 ≤ L
and so

1

2
ε̃ ‖uε̃‖2 ≤

1

2
ε̃ ‖p‖2 + L ≤ 1

2
ε̃K(ε)2 + L.

Hence, for ε̃ ∈ (0, 1): √
ε̃ ‖uε̃‖ ≤

√
ε̃K(ε)2 + 2L ≤

√
K(ε)2 + 2L.

Now take ε̃ := (ε/4)2/(K(ε)2 + 2L). Then ε̃ ‖uε̃‖ ≤ ε/4 and so

‖x− (f − ε̃uε̃)‖ ≤ ‖x− f‖+ ‖ε̃uε̃‖ ≤
3

4
ε+

1

4
ε = ε

using (3.4). Hence the proposition is satisfied with u := uε̃ and ũ := f − ε̃uε̃, where

‖u‖ ≤
√
K(ε)2 + 2L√

ε̃
=

4(K(ε)2 + 2L)

ε
.

�

As predicted by Theorem 2.25, an inspection of the proof of Proposition 3.1 shows that it is sufficient to have
a modulus ϕ for A being weakly uniformly rectangular instead of α:

Theorem 3.2. Let A,B : X → 2X be monotone, A+B be maximally monotone and represented with bounding
function ξ satisfying axiom (ii), domA ⊆ domB with modulus β, B weakly uniformly rectangular with modulus

ϕ, n > ‖JA+B
1 (0)‖ and let ε ∈ (0, 1) and K(ε) ∈ N \ {0}. Let x ∈ X be such that

(3.4) ∃p ∈ domA, q ∈ domB, p̃ ∈ Ap, q̃ ∈ Bq
(
‖p‖ , ‖q‖ , ‖p̃‖ , ‖q̃‖ ≤ K(ε) ∧ ‖x− (p̃+ q̃)‖ ≤ 3

4
ε

)
.

Then

(3.5∗) ∃u ∈ domA ⊆ domB ∃ũ ∈ Au+Bu

(
‖u‖ ≤ 4(K(ε)2 + 2L∗)

ε
∧ ‖x− ũ‖ ≤ ε

)
where L∗ := ϕ(max{K(ε), β(K(ε))}, γε) with

γε(m) = max
{⌈
ε̃−12K(ε) + (2 + ε̃−1)n

⌉
, ξ
(⌈
ε̃−12K(ε) + (2 + ε̃−1)n

⌉)}
,
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where ε̃ := (ε/4)2

K(ε)2+2m .

Proof. We use the notations from the proof of Proposition 3.1. In that proof, (3.9) is applied to w := uε̃, h :=
f − ε̃uε̃ and so the uniform rectangularity (3.7) is used for w := uε̃ and some w̃ := h2 ∈ Buε̃ such that an
h1 ∈ Auε̃ exists with f − ε̃uε̃ = h1 + h2.
In order to replace the use of uniform rectangularity by its weak version we need, given m (alias L) as a
parameter, to construct a norm bound γε(m) ≥ ‖uε̃‖, ‖h2‖, where

ε̃ :=
(ε/4)2

K(ε)2 + 2m
.

Firstly, note that by definition, uε̃ can be expressed via the resolvent of A+B as

uε̃ = JA+B
ε̃−1 (ε̃−1f).

In a similar vein to [31], where a majorant for the resolvent was constructed in the context of general logical
metatheorems, an upper bound for the resolvent can be obtained (in an upper bound for the argument), using
that the resolvent is nonexpansive and satisfies the so-called resolvent equation, via∥∥JA+B

ε̃−1 (ε̃−1f)
∥∥ ≤ ε̃−1 ‖f‖+ (2 + ε̃−1)

∥∥JA+B
1 (0)

∥∥
≤ ε̃−12K(ε) + (2 + ε̃−1)

∥∥JA+B
1 (0)

∥∥
< ε̃−12K(ε) + (2 + ε̃−1)n.

The dependence on n >
∥∥JA+B

1 (0)
∥∥ is similarly explained by the bound extraction results given in Theorem 2.25.

Now, to use (3.7), we further need γε(m) to be an upper bound on some h2 ∈ Buε̃ where f − ε̃uε̃ = h1 + h2

with h1 ∈ Auε̃. For this we invoke the modulus ξ from the axiomatization of A+B in the sense of Section 2.4
which, however, needs as argument an upper bound for both ‖uε̃‖ and ‖f − ε̃uε̃‖. We now show that our upper
bound for the former also serves as an upper bound for the latter: By the above we have that

‖h1 + h2‖ ≤ ‖f‖+ ε̃‖uε̃‖ < 2K(ε) + 2K(ε) + 3n = 4K(ε) + 3n ≤ ε̃−12K(ε) + (2 + ε̃−1)n

where we used that ε ≤ 1 and consequently ε̃−1 ≥ 2. Using now the bounding function ξ satisfying axiom (ii)
on A+B we get

‖h2‖ ≤ ξ
(⌈
ε̃−12K(ε) + (2 + ε̃−1)n

⌉)
for some h2 satisfying the requirements above.

A simultaneous upper bound on the norms of uε̃ and the respective h2 can then be given via6

γε(m) = max
{⌈
ε̃−12K(ε) + (2 + ε̃−1)n

⌉
, ξ
(⌈
ε̃−12K(ε) + (2 + ε̃−1)n

⌉)}
.

Now, we use that ϕ is a modulus for B being weakly uniformly rectangular to construct an

m ≤ ϕ(max{K(ε), β(K(ε))}, γε)

satisfying the conclusion in the defining condition for this property. This m can serve as the original L := m in
the proof of Proposition 3.1 and we obtain for L∗ := ϕ(max{K(ε), β(K(ε))}, γε) ≥ L that

‖u‖ ≤ 4(K(ε)2 + 2L∗)

ε
.

�

Remark 3.3. Note that the Brezis-Haraux theorem is formulated with the assumption that A+B is maximally
monotone. By the characterization of maximality laid out in Theorem 4, this would imply a dependence on
some quantitative version of extensionality, like a modulus of uniform continuity for A as discussed in [31], in the
quantitative results formulated above. However, an inspection of the proof yields that this assumption is made
only in order to use the totality of the resolvents of A+B and it can consequently be formulated in the systems
discussed in the previous sections without the use of the extensionality axiom. This explains the absence of a
dependence on such a quantitative assumption. For the same reason, the completeness of X (needed only to
infer the totality of JA+B

γ via Minty’s theorem) is not needed in formalizing the proof.

6If B is uniformly majorizable with majorant B∗,, then we can simply take ξ := B∗ in the definition of γε.
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3.2. Applications of the Brezis-Haraux theorem and their logical analysis. In this section we indicate
how recent proof minings of arguments which are based on the Brezis-Haraux theorem can be logically explained
in terms of our notion of modulus for being uniformly rectangular and our general quantitative Brézis-Haraux
theorem (Proposition 3.1):

In [20]7, the first author analyzed Bauschke’s [1] solution of the zero displacement conjecture and its extension
to compositions of N -many arbitrary firmly nonexpansive mappings T1, . . . , TN in a Hilbert space X from [3]
and extracted polynomial rates of asymptotic regularity. Both proofs use the theory of strongly nonexpansive
mappings which nicely fits into the existing framework of logical metatheorems as has been shown in [19]. On
XN the maximally monotone operator

A(x) := A1(x1)× · · · ×AN (xN ), where Ai := T−1
i − Id,

is defined. In that context, we need to provide a treatment of the space XN relative to X which can, for example,
be achieved as follows: one can treat the product space XN of the space X for a variable N by combining a
treatment of finite sequences in X via elements of type N→ X with the approach explored by Günzel [11] for
the treatment of infinite product spaces X∞. Concretely, we identify elements in XN with elements of XN of
the form x,N for x ∈ XN with

x,N(i) =

{
x(i) if i < N,

0X otherwise.

Note that this ‘truncation’ can be defined via a closed term in our language. The operations ‖·‖XN ,+XN ,−XN , ·XN
on objects of type N→ X and the constant 0XN are introduced as abbreviations by

(1) ‖x‖XN :=
(∑N

i=1 ‖x(i)‖2X
)1/2

,

(2) x+XN y := λiN.(x,N(i) +X y,N(i)),
(3) −XNx := λiN.(−X(x,N(i))),
(4) α ·XN x := λiN.(α ·X (x,N(i))),
(5) 0XN := λiN.(0X).

In particular, ‖·‖XN can be defined via the recursors of the underlying language. Note that the abbreviations
(1) - (4) depend on N as a free variable. Further, we introduce equality on XN by the abbreviation

xN→X =XN yN→X := ‖x−XN y‖XN =R 0.

To characterize the spaces XN as inner product space, we add the parallelogram law (similar to [10, 17])

∀NN, xN→X , yN→X
(
‖x+XN y‖

2
XN + ‖x−XN y‖

2
XN =R 2

(
‖x‖2XN + ‖y‖2XN

))
where the inner product can then be defined as

〈xN→X , yN→X〉XN :=
1

4

(
‖x+XN y‖

2
XN − ‖x−XN y‖

2
XN

)
.

It is straightforward to see that in that case we have provably

〈x, y〉XN =R

N∑
i=1

〈x(i), y(i)〉X

for any N .

The main benefit of this kind of treatment is that by treating N as a variable, the bound extraction theorems
surveyed before actually guarantee that the extracted rates are primitive recursive (in the extended sense of
Gödel’s T ) also in N . By a ‘pointwise’ treatment of the spaces XN , e.g. in the way described in [11], the above
extraction could be carried out ‘locally’ for any N but there would be no a priori complexity information on
those rates seen as functions of N which are provided by this approach.

The second main component of the proofs is the Brezis-Haraux theorem. Based on the treatment of the latter
above we are now in the position to explain the concrete proof minings from [20] and [34] in terms of logical

7Corrections to [20]: P.94, l.-13: ‘A1x1 × . . . × ANxN ’ instead of ‘(A1x1, . . . , ANxN )’, P.95, last line: drop ‘∀ε ∈ (0, 1)’, P.97,
l.7: in the definition of αK replace ‘K(ε/4)’ by ‘K(ε/4N2)’ (3 times).
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metatheorems: in the concrete application of Proposition 3.1 in the proof Theorem 4 in [20] via [20, Lemma 8],

only a norm upper bound K(ε) on T̃ pε (playing the role of p in Proposition 3.1) is imposed where

B := M := Id−R with R(x1, x2, . . . , xN ) := (xN , x1, . . . , xN−1)

is an explicitly defined single-valued total Lipschitz-2 (and hence uniformly majorizable) operator on XN and
q being a point with ‖q‖ ≤ ε/4 ≤ 1 so that ‖q̃ := M(q)‖ ≤ ε/2 ≤ 1 since ε ≤ 1. Moreover, p̃ is taken

in this application to be q ∈ A(T̃ pε) with A = T̃−1 − I, where T̃ (x) := (T1(x1), . . . , TN (xN )). Lemma 7 in
[20] establishes that M is uniformly rectangular and provides a corresponding modulus. Note that it in fact
corresponds exactly to our definition of ‘uniformly rectangular’ since M has - as discussed above a simple
uniform majorant M∗ so that Remark 2.19 applies where x, f in [20, Lemma 7] play the role of x, ǔ (that f
is assumed to be bounded by 1 rather than some general bound n is only due to the fact that the lemma is
used in this form but the proof easily extends to a general bound). In line with Remark 2.11, [20] did not
need any extra modulus β witnessing that domA ⊆ domB since the majorant M∗ for M(= B) does the job.
The (quantitative) Brezis-Haraux theorem is applicable since, for B := M, the operator A + B is maximally
monotone by [2, Corollary 25.5(i)] which we ‘hardwire’ into our formal system by following the approach for
maximal operators described in Section 2.1, in combination with Section 2.4: For the treatment of A+M , we
add constants χA+B , JχA+B (which take N as an additional input) with the axioms expressing monotonicity of
A+B as well as that JχA+B codes the resolvents which fulfill ran(Id+ γ(A+B)) = X as discussed in Section
2.1, here now formulated by additionally quantifying over N . As mentioned before, the function M on XN can
be represented by a closed term in the underlying language, e.g. via

MNx := x−XN λiN.x(πN (i))

where x is of type N→ X and

πN (i) :=

{
N − 1 if i = 0,

i− 1 otherwise,

implements the right shift in the indices from the definition of M . To fit the format of the representation of
set-valued operators chosen in our context, we add another constant χB (with additional input N) with the
accompanying axioms {

∀NN, xN→X((χBN)(x,MNx) =N 0),

∀NN, xN→X , yN→X((χBN)(x, y) =N 0→MNx =XN y),

which express that χBN (intentionally) represents the graph of MN on XN pointwise for every N . We can then
proceed as described in Section 2.4 and use the corresponding axioms (i), (ii) with the uniform majorantM∗ ofM
(which can similarly be given by a closed term) in place of ξ to express that χA+B represents the graph of A+M .

In [34], an extension of the result in [3] to compositions of averaged mappings due to [4] is proof-theoretically
analyzed, building partly upon [20], and a rate of asymptotic regularity is extracted. [34] uses a Proposition
2.1 which ‘expresses quantitatively the fact that cocoercive operators are rectangular’. Here the operator A in
question is a total single valued β-cocoercive operator which therefore, in particular is L := 1/β-Lipschitzian
(see [34]). The bounding assumptions made are that norm upper bounds on (in our notation) x, ǔ, u = Aǔ are
given. Using the Lipschitz continuity this also gives the missing upper bound on x̂ := Ax since

‖Ax‖ ≤ ‖Ax−Aǔ‖+ ‖Aǔ‖ ≤ L‖x− ǔ‖+ ‖u‖ ≤ L(‖x‖+ ‖ǔ‖) + ‖u‖.

So [34, Proposition 2.1] states exactly that A has a modulus for being uniformly rectangular in our sense. The
proof of [34, Theorem 2.2] then uses the special case of our Proposition 3.1 for the situation at hand (just as
[20] had done in its respective setting discussed above).

Acknowledgment: The first author was supported by the ‘Deutsche Forschungsgemeinschaft’ Project DFG
KO 1737/6-2.
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[34] A. Sipoş. Quantitative inconsistent feasibility for averaged mappings. Optimimazion Letters, 16:1915–1925, 2022.


