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Abstract. We utilize a proof-theoretically tame approach to the dual of an abstract Banach
space in systems amenable to methods from proof mining, as recently introduced by the author,
to provide similar such systems with accompanying logical metatheorems on the extraction of
uniform quantitative information from proofs pertaining to the theory of monotone set-valued
operators on Banach spaces as introduced by Browder. With that, we finally extend proof
mining methods to this important class of objects which are at the heart of many seminal
results from nonlinear functional analysis and the metatheorems presented here in particular
provide the first logical basis for a range of recent applications of proof mining methods to this
branch of mathematics. Further, we provide a characterization of the extensionality principle
for these operators using the analytical notion of maximality, extending previous analogous
results for accretive operators on Banach spaces and monotone operators on Hilbert spaces,
and with that further illustrate the central importance and special position of extensionality
issues in proof mining applications dealing with set-valued operators.
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1. Introduction

The quest for describing the computational content and strength of a mathematical theorem
and developing tools to exhibit such content has been and is one of the main driving interests
of proof theory. The program of proof mining, which emerged as a subfield of mathematical
logic in the 1990s through the work of Ulrich Kohlenbach and his collaborators (rooting in
Georg Kreisel’s program of “unwinding of proofs”, see in particular [51, 52]), aims at answering
exactly this question and so is concerned with exhibiting the computational content of a math-
ematical theorem by analyzing its proofs as they are found in the mainstream mathematical
literature using proof-theoretic tools. As such proofs are prima facie noneffective, e.g. involving
full use of classical logic as well as many non-computational principles, this is a highly non-
trivial task. However, relying on a comprehensive theoretical underpinning developed using a
wide range of methods from proof theory like functional interpretations and majorizability, this
research program has been very successful in a wide variety of areas of mathematics, and even
more noticeably so in the area of nonlinear analysis and optimization. We refer to [36] for the
comprehensive monograph on proof mining and its applications until 2008 and we refer to the
survey article [47] for details on the earlier development of proof mining as well as the more
recent survey articles [37, 39] for more current developments.

While the case studies of this research program are presented using the usual mathematical
means of the area of application in question and without any apparent use of logical methods,
they nevertheless all rely on central logical results explaining and governing these extractions.
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These substrata of proof mining, often called logical metatheorems or bound extraction theorems,
utilize a composition of various proof-theoretic devices like negative translations (see e.g. [54]),
Kreisel’s modified realizability [53] or Gödel’s functional (Dialectica) interpretation [24] and
their variants to provide both a logical system and a general theorem, the so-called logical
metatheorem, about that system so that

(1) the system tethered to the metatheorem is suitably designed so that it allows for the
formalization of large classes of objects and proofs from the core mathematical literature
of the intended area of application;

(2) the associated logical metatheorem guarantees that for large classes of proofs (e.g. poten-
tially involving a wide range of non-computational ‘ideal principles’ and using classical
logic) carried out in this system, one can extract effective, tame and highly uniform
computational information for the theorem proved thereby.

Even further, the proof of the logical metatheorems provides an algorithm to (in principle)
extract this information from a given proof. Also, the complexity of this extracted informa-
tion will faithfully represent the logical strength of the key principles used in the (formal) proof.

On the basis of these metatheorems, the research program of proof mining has lead to hun-
dreds of new results in the respective areas of application over the last three decades, in partic-
ular substantiating item (1) above that the systems designed in the context of such metatheo-
rems really are practically usable. Examples of such metatheorems can in particular be found
in [21, 23, 25, 35, 36, 46, 55, 56, 65, 66, 69, 72, 73, 84].

As mentioned before, one main focus for the applications in the proof mining program in the
recent years has been on proofs from nonlinear analysis and optimization that utilize so-called
monotone set-valued operators in Hilbert spaces. These operators go back to the fundamental
work of Minty [63, 64] and are today one of the main cornerstones of a modern operator-
theoretic approach to convex analysis on Hilbert spaces as is particularly well illustrated by
the seminal monograph of Bauschke and Combettes [6]. Notable examples of proof mining case
studies concerned with these operators in particular are [38],1 providing a low-complexity and
highly uniform rate of asymptotic regularity in the context of Bauschke’s solution [2] to the
zero displacement conjecture, and the many case studies on (variants of) the influential prox-
imal point algorithm (going back to the seminal work of Martinet [62] and Rockafellar [80])
as e.g. treated in [18, 19, 41, 42, 43, 45, 57, 58, 67], among many others. If one moves down
from Hilbert to Banach spaces, the notion of a monotone operator generalizes in distinct ways
based on the multiple variants of equivalently phrasing monotonicity in the context of Hilbert
spaces. One such generalization leads to the notion of accretive operators which go back to
the seminal work of Kato [30] and are central e.g. to the study of differential equations and
semigroup theory (with a range of proof mining case studies dedicated to this class of opera-
tors already carried out, where we in particular want to mention the works [22, 44, 49, 68, 75]
besides some of the papers on the proximal point algorithm mentioned before that are actually
phrased in terms of these accretive operators). The other central avenue for generalizing the
concept of monotonicity leads to the notion of a monotone operator in Banach spaces in the
sense of Browder [14, 15] which are central e.g. to many parts of convex analysis over Banach
spaces.

1We refer to [48] for a discussion of the logical details of this proof mining application and to [85, 86] for
further extensions of that work.
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While the accretive operators on Banach spaces and the monotone operators on Hilbert
spaces have previously received a logical treatment in terms of associated metatheorems in the
style of proof mining in [72], thereby providing the first logical footing for all of the previously
mentioned case studies, the monotone operators on Banach spaces in the sense of Browder have
so far remained elusive from such a treatment, which is in particular due to the heavy use made
in their theory of the dual of the associated Banach space, an object that itself evaded any type
of proof-theoretically tame2 treatment in the style of proof mining until it was recently treated
in [73].

It is now the aim of this paper to provide such a treatment in the style of proof mining
for the monotone operators on Banach spaces in the sense of Browder by defining associated
formal systems and proving a corresponding logical metatheorem, and in that way paving the
way for many further applications of methods from proof mining to this central area of modern
convex analysis on Banach spaces. This is achieved by carefully combining and extending the
ideas of the systems presented in [72] for the treatment of monotone operators in Hilbert spaces
with those presented in [73] for the treatment of the dual of a Banach space. In that way, the
present paper also further elucidates the naturalness and applicability of the methods devel-
oped in the above mentioned papers to treat set-valued operators of various types as well as
to treat the dual of a Banach space and that these approaches are indeed as flexible as hoped for.

Besides treating these operators, this paper also provides a proof-theoretic treatment of other
central surrounding objects that are crucial for developing their theory, like in particular the
so-called resolvents of such operators defined relative to a convex function f as first considered
in the seminal work of Eckstein [20] in the context of finite-dimensional spaces and then high-
lighted as a central tool of monotone operators in general Banach spaces in particular in the
work of Bauschke, Borwein and Combettes [5]. These resolvents can then in particular be used
for a characterization of maximally monotone operators similar as in Minty’s theorem which
will be crucial for the systems devised in this paper for these operator. Further, they also are
the essential objects for many central applications of these operators to convex analysis like
in approaches to iterative methods used in mathematical programming. In that way, to illus-
trate the usability of the defined systems for these objects, we show that the main properties
of the operator and the associated relativized resolvents are provable therein. Also, we show
that the equivalence between maximality of the operator and extensionality, which was one
of the central theoretical results established in [72] for monotone operators on Hilbert spaces
and which illustrates some theoretical limitations of such systems, extends to these new objects.

The applicability of the systems defined in the present paper is then in particular confirmed
from the practical perspective through the recent new case studies given in [71, 76],3 situated
in the area of convex analysis on Banach spaces. However, we expect that these metatheorems
allow for many further new case studies to be carried out in the areas discussed above and
for that, we want to also in particular mention the works [1, 3, 7, 13, 16, 17, 29, 50, 83,

2The notion of proof-theoretic tameness is here understood in the sense of [40], i.e. referring to the fact that
although an area of mathematics could be subject to well-known Gödelian phenomena, they nevertheless “seem
to be tame in the sense of allowing for the extraction of bounds of rather low complexity” (as phrased in [40]).
We refer also to [59, 60] for further discussions of these types of phenomenas and their implications for logic
and mathematics.

3We also want to note the work [70] here where the formal treatment of monotone operators on Banach
spaces presented here was instrumental for introducing novel analogous notions in a nonlinear setting.
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90] as promising future applications since, by inspection of the proofs, they also seem to be
formalizable in (suitable extensions of) the systems introduced here.

2. Logical and mathematical preliminaries

In this section, we briefly survey both the mathematical and logical objects and results that
will play a key role in developing the new formal systems of this paper.

2.1. Monotone operators on Banach spaces and relativized resolvents. We begin by
discussing the (very minimal) mathematical background of the theory of monotone operators
in Banach spaces as well as of related objects relevant for this paper. Further definitions will
be given throughout the sections as needed and we refer to the standard works [79, 81, 89] for
further results and references.

2.1.1. A primer on convex analysis. Throughout, if not specified otherwise, let X be a Banach
space with norm ‖¨‖ and dual space X˚ with the associated dual norm (also denoted by) ‖¨‖,
defined via

‖x˚‖ :“ sup
‖x‖ď1

xx, x˚y,

for x˚ P X˚, where we write xx, x˚y for the function value of x˚ applied to x P X.

Let f : X Ñ p´8,`8s be a given function with extended real values. In the following, we
will always at least assume three properties for f :

(1) f is proper, i.e.
domf :“ tx P X | fpxq ă `8u ‰ H,

(2) f is lower-semicontinuous, i.e.

@x P domf@y ă fpxqDδ ą 0@z P Bδpxq pfpzq ą yq ,

(3) f is convex, i.e.

@x, y P domf@λ P r0, 1s pf pλx` p1´ λq yq ď λfpxq ` p1´ λq fpyqq .

Crucial to the study of convex functions in nonlinear analysis and optimization is the use of
so-called subgradients.

Definition 2.1 (Subdifferential). Let x P intdomf , where intdomf denotes the interior of
domf . We define Bfpxq, the subdifferential of f at x, via

Bfpxq :“ tx˚ P X˚
| fpxq ` xy ´ x, x˚y ď fpyq for all y P Xu.

A subgradient of f at x, i.e. a point x˚ P Bfpxq, can in many places be substituted for a
gradient of the function when it is not differentiable. In this work however, the focus will be
on convex functions which are actually differentiable in the following ways:

Definition 2.2 (Gâteaux and Fréchet differentiability). The function f is called Gâteaux
differentiable at x P intdomf if there exists a ∇fx P X˚ such that

xh,∇fxy “ lim
tÑ0`

fpx` thq ´ fpxq

t

for any h P X. The function f is called Fréchet differentiable at x P intdomf if there exists a
∇fx P X˚ such that

lim
‖h‖Ñ0

|fpx` hq ´ fpxq ´ xh,∇fxy|
‖h‖

“ 0.
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The function f is called Fréchet (or Gâteaux) differentiable on a set D Ď X if it is Fréchet (or
Gâteaux) differentiable at every point x P D and f is called uniformly Fréchet differentiable on
D if the above limit is attained uniformly in x P D.

Crucial for a formal approach to such derivatives later on will be an equivalent characteri-
zation of Gâteaux and Fréchet derivatives presented in the following proposition that does not
rely on the use of limits per se.

Proposition 2.3 (see e.g. [89]). Let x P intdomf . Then, the following are equivalent:

(1) f is Fréchet (respectively Gâteaux) differentiable at x.
(2) There exists a selection of Bf that is norm-to-norm (respectively norm-to-weak) contin-

uous at x.

Further, it holds that if f is Gâteaux differentiable at x, then Bfpxq “ t∇fpxqu.
Further, also the uniform Fréchet differentiability connects to a continuity property of the

gradient:

Proposition 2.4 (essentially [77]). If f is uniformly Fréchet differentiable on bounded sets and
∇f is bounded on bounded sets, then ∇f is uniformly norm-to-norm continuous on bounded
sets.

The main object for the duality theory of a convex function f in Banach spaces is the Fenchel
conjugate f˚ : X˚ Ñ p´8,`8s, concretely defined by

f˚px˚q :“ sup
xPX

pxx, x˚y ´ fpxqq .

Crucial for a formal treatment of this derived object later on will be the following result that
characterizes when f˚ is bounded on bounded sets.

Proposition 2.5 (see e.g. [4]). Call f supercoercive if

lim
‖x‖Ñ`8

fpxq

‖x‖
“ `8.

Then, the following are equivalent:

(1) f is supercoercive.
(2) f˚ is bounded on bounded subsets.

In particular, both imply that domf˚ “ X˚.

We now introduce the main class of functions considered in this paper, first in the way as it
is commonly introduced in the convex analysis literature:

Definition 2.6 ([4]). A function f is called:

(1) essentially smooth if Bf is locally bounded and single-valued on its domain,
(2) essentially strictly convex if pBfq´1 is locally bounded and f is strictly convex on every

convex subset of domBf ,
(3) Legendre if it is both essentially smooth and essentially strictly convex.

Over reflexive spaces, the class of Legendre functions can be equivalently recognized via a
particularly nice differentiability property for both f and its conjugate f˚ which serves as the
central definition of this class of functions in this paper.

Proposition 2.7 ([4]). If X is reflexive, then f is Legendre if, and only if both

(1) It holds that intdomf ‰ H, that f is Gâteaux differentiable on intdomf , and dom∇f “
intdomf .
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(2) It holds that intdomf˚ ‰ H, that f˚ is Gâteaux differentiable on intdomf˚, and dom∇f˚ “
intdomf˚.

Also crucial for the study of such functions and related objects, in particular regarding
analytical aspects of associated iterations, is the notion of the Bregman distance Df : domf ˆ
intdomf Ñ r0,`8q as introduced in the seminal work [13] and which is defined by

Df px, yq :“ fpxq ´ fpyq ´ xx´ y,∇fpyqy.
Dual to this distance notion is the function Wf : domf ˆ domf˚ Ñ r0,`8q defined by

Wf px, x
˚
q :“ fpxq ´ xx, x˚y ` f˚px˚q.

For this function, we will rely later on a few further properties: If f is Legendre and if X is
reflexive, one in particular has that

Wf px,∇fpyqq “ Df px, yq

for all x P domf and y P intdomf as well as that Wf is convex in its right argument and
satisfies the inequality

Wf px, x
˚
q ď Wf px, x

˚
` y˚q ´ x∇f˚px˚q ´ x, y˚y

for any x P domf and any x˚, y˚ P domf˚ (see [61]).

2.1.2. Monotone operators, maximality and relativized resolvents. We now introduce one of
the two main objects of concern for this paper, the so-called monotone set-valued operators.
Operator-theoretic monotonicity arose in the 1960’s with the work of Minty [63, 64] as a crucial
concept in the context of convex analysis on Hilbert spaces. Minty’s notion was subsequently
extended to Banach space by Browder [14, 15], where the use of the inner product in the
characterizing condition was replaced by the use of functionals from the dual space, and it
has since then become one the prime notions in convex analysis on Banach spaces (recall the
discussion in the introduction).

Definition 2.8 ([14, 15]). Let A : X Ñ 2X
˚

be a set-valued operator. The operator A is called
monotone if

xx´ y, x˚ ´ y˚y ě 0

for all px, x˚q, py, y˚q P A.
Further, A is called maximally monotone if its graph is not strictly contained in the graph

of another monotone operator.

Monotone operators are generally studied through the use of a certain derived object called
the resolvent which in the case of a set-valued monotone operator A : X Ñ 2X on a Hilbert
space X commonly takes the form of

ResA :“ pId` Aq´1.

In the context of monotone operators A : X Ñ 2X
˚

on Banach spaces X, where the image
space makes crucial use of the dual X˚ of X, one is lead to replacing the use of the identity in
the above definition by a suitable function mapping from X to X˚. In the context of smooth
Banach spaces, such a function is often taken to be the (in this context single-valued) normalized
duality map

Jpxq :“ tx˚ P X˚
| xx, x˚y “ ‖x‖2 “ ‖x˚‖2u,

with the resolvent then defined as

ResA :“ pJ ` Aq´1 ˝ J.



A BOUND EXTRACTION THEOREM FOR MONOTONE OPERATORS IN BANACH SPACES 7

Abstracting from this concrete choice, one can consider a notion where J is replaced by the
gradient ∇f of a (mostly) general convex function f . This even has impact already in finite-
dimensional spaces where such resolvents where originally considered by Eckstein [20] as the
gradient of a suitably chosen function f may ease the computations required to evaluate the
resolvent. Subsequently, these relativized resolvents were also studied by Bauschke, Borwein
and Combettes [5] under the name of “D-resolvents” and Reich and Sabach [78] under the name
of “resolvents of A relative to f”.

Concretely, the f -resolvents of A (as we will also call them in this paper) are now defined as
follows.

Definition 2.9 ([5, 20]). Let A : X Ñ 2X
˚

be a set-valued operator. If f is Gâteaux differen-

tiable on intdomf , the f -resolvent ResfA : X Ñ 2X of A is the operator defined by

ResfApxq :“
`

p∇f ` Aq´1 ˝∇f
˘

pxq

for x P intdomf and by ResfApxq :“ H otherwise.

The following properties are essential for the resolvent relative to f :

Proposition 2.10 ([5]). Let f be Gâteaux differentiable and strictly convex on intdomf and let
A be a monotone operator such that intdomf X domA ‰ H. Then following statements hold:

(1) dompResfAq Ď intdomf and ranpResfAq Ď intdomf ,

(2) ResfA is single-valued on its domain,

(3) FixpResfAq “ intdomf X A´10 where FixpResfAq is the set of fixed points of ResfA,

(4) ResfA is Bregman firmly nonexpansive on its domain, i.e. for any x, y P dompResfAq:

xResfAx´ ResfAy,∇fResfAx´∇fResfAyy ď xResfAx´ ResfAy,∇fx´∇fyy.

Further, the classical result for monotone operators in Hilbert spaces established by Minty
[64] that maximal monotonicity is equivalent to the totality of the resolvents extends to these
resolvents relative to f under suitable assumptions on f :

Proposition 2.11 ([8]). Let X be reflexive. Let A be monotone and assume that f : X Ñ R is
Gâteaux differentiable, strictly convex and cofinite (i.e. dom f˚ “ X˚). Then A is maximally
monotone if and only if ranpA`∇fq “ X˚.

Important for the study of resolvents are their corresponding Yosida approximates defined
by

Afγpxq :“
1

γ

´

∇fpxq ´∇fResfγApxq
¯

for a given γ ą 0.

It follows essentially by the definitions of ResfγA and Afγ (see e.g. [78]) that

pResfγAx,A
f
γxq P A

for any γ ą 0 and any x P dompResfγAq.
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2.2. A formal system for a normed space and its dual as well as uniformly Frechét
differentiable functions and conjugates. We now move to the logical preliminaries and in
this subsection discuss the central systems for proof mining relevant for the paper. The central
system for all of these considerations will be the system Dω as introduced in [73] that allows
for a simultaneous treatment of a normed space and its dual, as well as its extensions as also
discussed in [73] which allow for the treatment of a convex function together with its conjugate
and the associated Fréchet derivatives. In the following, we therefore sketch the key aspects of
these systems together with some of the other underlying formal background.

2.2.1. A system for classical analysis in all finite types. At first, as is the case for essentially all
other modern systems of proof mining, also the system Dω and its extensions rely on a suitably
strong system Aω “ WE-PAω

` QF-AC ` DC for classical analysis in all finite types. In the
following, we first give a brief overview of this system and its main features relevant to this
paper but otherwise refer to [23, 35, 36, 88] for any further details. Further, we in particular
follow [36] in regards to our conventions for denoting types.

At first, the underlying set of types T is defined recursively via

0 P T, ξ, τ P T ñ τpξq P T

and the finite types are stratified by their degrees defined by

degp0q :“ 0, degpτpξqq :“ maxtdegpτq, degpξq ` 1u.

Pure types, i.e. types τ that either are 0 or are of the form τ “ 0pρq where ρ is another pure
type, are abbreviated as usual by natural numbers via recursively defining n` 1 :“ 0pnq.

The language of the finite type systems WE-PAω/Aω is then a many-sorted language, with
variables and quantifiers for all finite types, that is extended with constants 0 for zero, S for
successor, Σξ,τ ,Πδ,ξ,τ for the so-called combinators (which originate from Schönfinkel [82] as well
as Curry and Howard, see e.g. [28] for the latter) as well as constants Rξ “ pR1qξ, . . . , pRkqξ for

simultaneous primitive recursion in the sense of Gödel [24] and Hilbert [26] (see also [36]) for
tuples of types ξ.

The only relation symbol is “0 for equality at type 0 and new terms are formed only via
application: if t is a term of type τpξq and s a term of type ξ, then tpsq is a term of type τ .
Higher type equality is treated as a defined notion via

s “ξ t :“ @yξ11 , . . . , y
ξk
k psy1 . . . yk “0 ty1 . . . ykq

for terms s, t of type ξ “ 0pξkq . . . pξ1q.

The system WE-PAω then arises from a usual finite-type variant of Peano arithmetic (see
[36, 88]) together with only the following weak rule of quantifier-free extensionality

(QF-ER)
Fqf Ñ s “ξ t

Fqf Ñ rrs{xξs “τ rrt{xξs

where Fqf is a quantifier-free formula, s, t are terms of type ξ, r is a term of type τ and rrs{xξs
denotes the simultaneous substitution of s for all occurrences of x in r (and similarly with t).
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Remark 2.12. As Fqf in the formulation can actually be a formula with free variables, the rule
pQF-ERq actually allows one to derive the seemingly stronger rule

(Σ1-ER)
DyσFqf pyq Ñ s “ξ t

DyσFqf pyq Ñ rrs{xξs “τ rrt{xξs

with Fqf , s, t, ξ, τ as before and where σ is an additional finite type and y is a variable of that
type that is not free in r, s, t (see also [72]).

As is well-known, the combinators can be used to define λ-abstractions in the sense that for
any term t of type τ and any variable xξ of type ξ, there is a term λxξ.t of type τpξq such that
provably

pλxξ.tqpsξq “τ trs{xs.

The system Aω then extends WE-PAω by the quantifier-free version of the axiom of choice
in finite types, i.e.

(QF-AC) @xDyFqf px, yq Ñ DY @xFqf px, Y xq

where Fqf is quantifier-free and the x, y may be of arbitrary type, and the axiom of dependent

choice DC “ tDCξ
| ξ Ď T u where

(DCξ) @x0, yξDzξF px, y, zq Ñ Df ξp0q@x0F px, fpxq, fpSpxqqq

and where F is now of arbitrary complexity.

In the language of WE-PAω/Aω, rational and real numbers are represented as usual by ob-
jects of type 0 and 1, respectively, where we follow the conventions of [36] and here only briefly
discuss the facts crucial to the presentation of the present paper. Concretely, using such codes,
the operations `Q, ¨Q, p¨q

´1
Q and relations “Q, ăQ are easily definable, with the latter given by

quantifier-free formulas, and bootstrapped on that, one can introduce Π0
1/Σ0

1-formulas “R/ăR
on type 1 objects, which define the corresponding relations of the real numbers represented by
the inputs, as well as closed terms `R, ¨R, | ¨ |R representing the usual operations of real arith-
metic on these type 1 objects. The reciprocal p¨q´1 on the reals, which crucially features in the
later theory of monotone operators, is slightly more delicate to deal with as there in fact is no
closed term of type 1p1q in WE-PAω which represents r´1 correctly for all r ‰ 0. Following [34],
we handle this by using a binary term p¨q´1¨ of type 1p1qp0q such that prq´1l correctly represents
r´1 whenever |r| ą 2´l. In the following, we omit the subscripts of the arithmetical operations
for R to avoid notational overload.

In the context of the bound extraction theorems established later, we associate a canonical
type 1 representation prq˝ with any real r P R.4 We omit the precise details of this operation
and refer to e.g. [73] for the definition thereof, which anyhow is an immediate extension of the
analogous operation only defined on the non-negative reals as originally introduced in [35] (see
also [23, 36]). For the purpose of this paper, we only note the following lemma containing exactly
the properties that we later need for this notion to be useful in the context of majorizability
(trivially extending Lemma 2.10 from [35] to the full reals):

Lemma 2.13 (see e.g. [73]). Let r P R. Then:

(1) prq˝ is a representation of r in the sense of the above (see again e.g. [36]).
(2) For s P r0,8q, if |r| ď s, then prq˝ ď1 psq˝ (with ď1 as defined in e.g. [36]).

4Such an association will be non-effective but it will suffice for all intents and purposes that it behaves nice
enough w.r.t. majorization.
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(3) prq˝ is nondecreasing (as a type 1 function).

Lastly, in the context of the metatheorems, we will write rα for the real represented by some
type 1 functional α similar as in [36].

2.2.2. A system for abstract normed spaces. In this section, we briefly discuss the extension
AωrX, ‖¨‖s of Aω as introduced in [23, 35] which provides a suitable system for the treatment
of abstract normed spaces, extended later to treat corresponding dual spaces and notions from
convex analysis. All these approaches crucially utilize the seminal paradigm of abstract types
introduced in [35] that is prevalent in all modern approaches to proof mining. Namely, while
the first logical metatheorems in proof mining relied on bare systems of arithmetic in all finite
types and consequently only covered applications involving representable Polish metric spaces,
these additional abstract types allow for the treatment of spaces which are not separable and
thus not representable in the (pure) language of finite type arithmetic.

As such, the system AωrX, ‖¨‖s operates over an extended set of types TX defined by

0, X P TX , ξ, τ P TX ñ τpξq P TX

where the additional abstract type X can then be utilized to represent an abstract and generic
(in general non-separable) normed space. For that, we add additional constants to the resulting
extended language to induce a linear and normed structure on X. Concretely, we add the
constants 0X , 1X of type X, `X of type XpXqpXq, ´X of type XpXq, ¨X of type XpXqp1q
and ‖¨‖X of type 1pXq. It should be noted that “0 is still the only primitive relation and in
particular, identity on X is treated as a defined predicate via

xX “X yX :“ ‖x´X y‖X “R 0,

with equality at higher types defined similar to before. The theory AωrX, ‖¨‖s then arises from
Aω by formulating the latter over the resulting extended language by extending the constants
(if appropriate) to take arguments and produce values in those new types and by trivially
extending the axiom schemes and rules to allow formulas from the new language and then
adding the above new constants related to X together with the relevant defining axioms stating
that X with these operations is a real normed vector space with 1X such that ‖1X‖X “R 1 and
´Xx being the additive inverse of x (see [23, 35, 36] for further details on all of this). Note
that the extensionality of all those operations is provable in AωrX, ‖¨‖s.

2.2.3. Systems for dual spaces, uniformly Fréchet differentiable functions and conjugates. The
system Dω introduced in [73] now extends the system AωrX, ‖¨‖s with an additional abstract
type X˚ used to intensionally and abstractly specify the dual of the space represented by X.
We refer to [73] for a discussion of the underlying intuition and here only briefly present the
main technical aspects of the theory as they are relevant to the present paper. At first, the
system Dω operates over a further extended set of types TX,X

˚

defined by

0, X,X˚
P TX,X

˚

, ξ, τ P TX,X
˚

ñ τpξq P TX,X
˚

and the resulting extended finite-type language is further enriched by a selection of constants
restoring the linear and normed structure of X˚, similar as with X. Concretely, using this
new type, we add constants `X˚ of type X˚pX˚qpX˚q, ´X˚ of type X˚pX˚q, ¨X˚ of type
X˚pX˚qp1q, 0X˚ and 1X˚ of type X˚ and ‖¨‖X˚ of type 1pX˚q as before and, crucially, another
constant x¨, ¨yX˚ of type 1pXqpX˚q which serves as an abstract application functional, restoring
the application character of X˚ relative to X (similar as in the theory of topological vector
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spaces, see [73] for a further discussion). We do not add further relations and so, still, equality
is a defined notion at types other than 0, with “X defined as before, “X˚ defined via

x˚ “X˚ y
˚ :“ ‖x˚ ´X˚ y˚‖X˚ “R 0

and the higher-type equality defined similar to before.

The system Dω, and all systems considered in this paper for that matter, result from
AωrX, ‖¨‖s as formulated over that extended language by adding suitable additional axioms
and rules (and even further constants in the case of a few systems discussed later). In that
context, it should be noted that all the axioms that are being considered, and similarly all
conclusions of rules, are of a particular logical form that later guarantees that these axioms and
rules are admissible in the context of proof-theoretic bound extraction theorems in the style
of proof mining. Concretely, all axioms considered here are “at most” of type ∆ as originally
introduced in [31, 32] (and then lifted to abstract types in [25]): A formula of type ∆ is any
formula of the form

@aδDb ďσ ra@c
γFqf pa, b, cq

where Fqf is quantifier-free, the types in δ, σ and γ are “low enough” (later made formal by
the notion of admissible types, see Section 5 for further details), which in particular includes
X and X˚, r is a tuple of closed terms of appropriate type and where ď is defined by recursion
on the type via

(1) x ď0 y :“ x ď0 y,
(2) x ďX y :“ ‖x‖X ďR ‖y‖X ,
(3) x˚ ďX˚ y

˚ :“ ‖x˚‖X˚ ďR ‖y˚‖X˚ ,
(4) x ďτpξq y :“ @zξpxz ďτ yzq,

and with x ďσ y being an abbreviation for x1 ďσ1 y1 ^ ¨ ¨ ¨ ^ xk ďσk yk where x, y and σ are
k-tuples of terms and types, respectively, such that xi, yi are of type σi. While encompassing
a multitude of highly nontrivial mathematical statements, as in particular also evidenced by
the axioms discussed in this paper, these sentences nevertheless have a very simple monotone
functional interpretation and hence are admissible as axioms as will also be discussed in further
detail later on.

In any way, the first crucial group of axioms for the system Dω that we consider is the
following pair

p˚q1,2

#

@x˚X
˚

, xX p|xx, x˚yX˚ | ďR ‖x˚‖X˚ ‖x‖Xq ,
@x˚X

˚

, k0Dx ďX 1X
`

‖x˚‖X˚ ´ 2´k ďR |xx, x
˚yX˚ |

˘

,

which specify the norm of X˚ as coded by ‖¨‖X˚ to be the actual supremum of xx, x˚yX˚ over
the unit ball.5

5These axioms actually arise through a general approach to treating suprema over certain bounded sets as
introduced in [73] and we refer to that paper for a further discussion on the particularities and practicalities of
these axioms.
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For a second crucial group of axioms, we further specify the application functional to be a
bilinear map:

#

@xX , x˚X
˚

, y˚X
˚

, α1, β1 pxx, αx˚ `X˚ βy
˚yX˚ “R αxx, x

˚yX˚ ` βxx, y
˚yX˚q ,

@xX , x˚X
˚

, y˚X
˚

, α1, β1 pxx, αx˚ ´X˚ βy
˚yX˚ “R αxx, x

˚yX˚ ´ βxx, y
˚yX˚q ,

p˚q3

#

@xX , yX , x˚X
˚

, α1, β1 pxαx`X βy, x
˚yX˚ “R αxx, x

˚yX˚ ` βxy, x
˚yX˚q ,

@xX , yX , x˚X
˚

, α1, β1 pxαx´X βy, x
˚yX˚ “R αxx, x

˚yX˚ ´ βxy, x
˚yX˚q .

p˚q4

Also, as a third group of axioms p˚q5, we add the vector space axioms for X˚ formulated with the
operations`X˚ , ´X˚ , ¨X˚ , 0X˚ , 1X˚ w.r.t.“X˚ and we also axiomatically specify ‖1X˚‖X˚ “R 1.

The last additions to the system concern the relationship between the bounded linear func-
tionals represented in 1pXq (where elements of the dual of X, if naively specified, live) and
the elements of X˚. While it will of course not be permissible meanwhile aiming for bound
extraction theorems to include an axiom that guarantees the existence of a representing element
in X˚ for every element of 1pXq which is a continuous linear functional (which is why the dual
X˚ was intensionally approached in the first place, see [73] for a further discussion), we resort
to the next best thing available in this situation by including a rule guaranteeing that at least
all terms of type 1pXq which provably are continuous linear functionals indeed are represented
by a corresponding element of type X˚ and thus consider the rule

(QF-LR)
Fqf Ñ

`

@xX , yX , α1, β1 ptpαx`X βyq “R αtx` βtyq ^ @x
X p|tx| ďR M ‖x‖Xq

˘

Fqf Ñ Dx˚ ďX˚ M1X˚@xX ptx “R xx, x˚yX˚q

where Fqf is a quantifier-free formula and where t and M are terms of type 1pXq and 1, respec-
tively. Also, to ease formal development of the theory of X˚, we further axiomatically populate
X˚ by adding the crucial consequence of the Hahn-Banach theorem that the normalized duality
map J discussed previously has non-empty values, i.e. that Jpxq ‰ H for x P X, which we
achieve by the following axiom:

p˚q6 @xXDx˚ ďX˚ ‖x‖X 1X˚
`

xx, x˚yX˚ “R ‖x‖2X “R ‖x˚‖2X˚
˘

.

The system Dω for the abstract dual space of an abstract normed space is now officially
defined as the extension of AωrX, ‖¨‖s, formulated over the extended language using the types
TX,X

˚

, by the above constants, axioms and rules.

Various essential properties of the space X˚ are immediately provable in the system (includ-
ing simple but crucial aspects like that ‖¨‖X˚ is indeed a norm) and we refer to [73] for further
details.

Over this system, convex functions are then introduced as objects of type 1pXq and we in
particular consider a system where a constant f of type 1pXq is added to the language which
is axiomatically specified to be convex via the axiom6

pfq1 @xX , yX , λ1
´

f
´

rλx`X

´

1´ rλ
¯

y
¯

ďR rλfpxq `
´

1´ rλ
¯

fpyq
¯

.

In that way, for the system which we are in the process of specifying, and throughout this paper
for that matter, we will only consider convex functions that are total, i.e. where domf “ X.
We refer to [73] for some discussions on how non-total convex functions might be approached

6Here, r̈ is defined as e.g. in [36], allowing for implicit quantification over r0, 1s.
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formally.

Gradients of uniformly Fréchet differentiable functions are then introduced via introducing
suitably continuous selection functions of the subgradient, utilizing the characterization result
presented in Propositions 2.3 and 2.4. Concretely, we in that way treat a uniformly Fréchet
differentiable f with a (total) gradient by adding another constant ∇f of type X˚pXq to the
system together with the axioms that ∇f is a selection of Bf , i.e.

p∇fq1 @xX , yX pfpxq ` xy ´X x,∇fpxqyX˚ ďR fpyqq ,

and that ∇f is uniformly continuous on bounded subsets, i.e.

@xX , yX , b0, k0
´

‖x‖X , ‖y‖X ăR b^ ‖x´X y‖X ăR 2´ω
∇f pk,bq

p∇fq2

Ñ ‖∇fpxq ´X˚ ∇fpyq‖X˚ ďR 2´k
¯

,

where ω∇f is another additional constant of type 0p0qp0q representing the modulus of uniform
continuity.

We denote the theory resulting from Dω by extending it with the previous constants and
axioms by Dωrf,∇f s.

Crucially, we now also want to treat the associated Fenchel conjugate f˚ and if this map is
to be treated in any way amenable to the metatheorems, it has to be majorizable which means
that it in particular has be bounded on bounded sets. By the result collected in Proposition
2.5, this is exactly the case if, and only if, f is supercoercive in which case f˚ is total. In that
case however, as shown in [73], if f is supercoercive, then the supremum defining it is already
attained over a suitably large ball around on the origin and that corresponding radius can be
computed in terms of a given modulus witnessing the supercoercivity of f quantitatively:

Lemma 2.14 (essentially [73]). Let α : NÑ N be a modulus of supercoercivity, i.e.

@K P N, x P X p‖x‖ ą αpKq Ñ fpxq ě K ‖x‖q

and let c ě |fp0q|. Then for x˚ P X˚ with ‖x˚‖ ď b, we have

f˚px˚q “ sup
xPBrpα,c,bqp0q

pxx, x˚y ´ fpxqq

where rpα, c, bq “ maxtαpb` 1q ` 1, c` 1u.

This in turn allows one to utilize the abstract approach developed in [73] on the formal treat-
ment of suprema over certain bounded sets in systems amenable for proof mining to introduce
corresponding axioms that, given another constant f˚ of type 1pX˚q, specify that this constant
is really the conjugate corresponding to f (we again refer to [73] for a further discussion of
this): The first axiom specifies that f supercoercive with modulus αf via

pfq2 @K0, xX
`

‖x‖X ąR α
f
pKq Ñ fpxq ěR K ‖x‖X

˘

where αf is an additional constant of type 1. The two further axioms specify that f˚ is actually
given by the respective supremum which is achieved by first specifying that f˚ is a pointwise
upper bound for all affine functionals gxpx

˚q “ xx, x˚y ´ fpxq via

pf˚q1 @x˚X
˚

, xX pxx, x˚yX˚ ´ fpxq ďR f
˚
px˚qq
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and another axioms specifying that f˚ is indeed the pointwise supremum of all these affine
functionals via

@x˚X
˚

, b0, k0Dx ďX maxtαf pb` 1q ` 1, r|fp0q|sp0q ` 2u1Xpf˚q2
`

‖x˚‖X˚ ăR bÑ
`

f˚px˚q ´ 2´k ďR xx, x
˚
yX˚ ´ fpxq

˘˘

.

Here, maxtαf pb` 1q ` 1, r|fp0q|sp0q ` 2u immediately arises as a bound restricting the defining
supremum of f˚ via Lemma 2.14 since r|fp0q|sp0q ` 1 ě |fp0q|.

If f˚ is uniformly Fréchet differentiable on bounded sets as well, its gradient can now be
introduced as before by adding a constant ∇f˚ of type XpX˚q together with the axioms that
∇f˚ is a selection of Bf˚, i.e.

p∇f˚q1 @x˚X
˚

, y˚X
˚

pf˚px˚q ` x∇f˚px˚q, y˚ ´X˚ x˚yX˚ ďR f
˚
py˚qq ,

and that ∇f˚ is uniformly continuous on bounded subsets, i.e.

@x˚X
˚

, y˚X
˚

, b0, k0
´

‖x˚‖X˚ , ‖y
˚‖X˚ ăR b^ ‖x˚ ´X˚ y˚‖X˚ ăR 2´ω

∇f˚ pk,bq
p∇f˚q2

Ñ ‖∇f˚px˚q ´X ∇f˚py˚q‖X ďR 2´k
¯

,

where ω∇f˚ is another additional constant of type 0p0qp0q, coding the respective modulus of
uniform continuity.

As outlined in the previous section, in the context of the above axioms whereby the functions
f and f˚ are Fréchet differentiable, the function f is a Legendre function and thus the gradients
∇f and ∇f˚ are inverses of each other. Correspondingly, we add this fact as a last axiom

(L) @xX , x˚X
˚

p∇f∇f˚px˚q “X˚ x˚ ^∇f˚∇fpxq “X xq .

We write Dωrf,∇f, f˚,∇f˚s for the system Dωrf,∇f s extended with the above constants and
axioms regarding the function f˚ and its gradient ∇f˚.

We finally just quote a few properties that are immediately provable in this system:

Lemma 2.15 ([73]). The theory Dωrf,∇f s proves:

(1) f is uniformly Fréchet differentiable on bounded subsets, i.e.

@b0, k0Dj0@xX , yX
`

‖x‖X ăR b^ 0 ăR ‖y‖X ăR 2´j

Ñ |fpx` yq ´ fpxq ´ xy,∇fpxqyX˚ | ďR 2´k ‖y‖X
˘

,

where in fact one can choose

j “ ω∇f
pk, b` 1q.

(2) ∇f is bounded on bounded subsets, i.e.

@b0Dc0@xX p‖x‖X ăR bÑ ‖∇fpxq‖X˚ ďR cq ,

where in fact one can choose

c “ Cpbq “ b2ω
∇f p0,bq

` r‖∇fp0q‖X˚sp0q ` 2.

(3) f is uniformly continuous on bounded subsets, i.e.

@k0, b0Dj0@xX , yX
`

‖x‖X , ‖y‖X ăR b^ ‖x´X y‖X ďR 2´j Ñ |fpxq ´ fpyq| ďR 2´k
˘

,
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where in fact one can choose

j “ ωf pk, bq “ k ` Cpbq.

(4) f is bounded on bounded sets, i.e.

@b0Dd0@xX p‖x‖X ăR bÑ |fpxq| ďR dq ,

where in fact one can choose

d “ Dpbq “ b2ω
f p0,bq

` r|fp0q|sp0q ` 2.

Correspondingly, the theory Dωrf,∇f, f˚,∇f˚s proves similar properties appropriately formu-
lated for f˚ and ∇f˚. Also, this latter system proves that f˚ is convex.

Also, clearly, the Bregman distance

Df px, yq “ fpxq ´ fpyq ´ xx´ y,∇fpyqy
and its associated dual

Wf px, x
˚
q “ fpxq ´ xx, x˚y ` f˚px˚q.

can now just be given via closed terms in the language of Dωrf,∇f, f˚,∇f˚s and this system
immediately proves the three and four point identities:

Lemma 2.16 ([73]). The system Dωrf,∇f, f˚,∇f˚s proves the three and four point identities
(see e.g. [5]):

(1)

#

@xX , yX , zX
`

Df px, yq `Df py, zq ´Df px, zq

“R xx´X y,∇fpzq ´X˚ ∇fpyqyX˚
˘

.

(2)

#

@xX , yX , zX , wX
`

Df py, xq ´Df py, zq ´Df pw, xq `Df pw, zq

“R xy ´X w,∇fpzq ´X˚ ∇fpxqyX˚
˘

.

3. Logical systems for operators and their resolvents

We now turn to the main aim of this paper which is to extend the previously discussed
systems for convex functions, their derivatives and conjugates over Banach spaces with their
duals with a treatment for monotone operators on Banach spaces in the sense of Browder as in-
troduced before, together with the relativized resolvents in the style of Eckstein, both of which
are approach similarly as monotone operators and their usual resolvents in Hilbert spaces as
developed in [72].

For that, as mentioned before already, we will assume that the function f is total and Fréchet
differentiable everywhere with a gradient that is uniformly continuous on bounded sets and
where additionally f is also supercoercive and f˚ is similarly Fréchet differentiable everywhere
with a gradient that is uniformly continuous on bounded sets. Presumably, many of the con-
siderations made here could be extended mutatis mutandis to the case where we only consider
partial convex functions f with an intensional treatment of the domain as discussed in [73] but
we do not discuss this any further.

Also, while the treatment for monotone operators over Hilbert spaces presented in [72] was
divided on whether the resolvents are partial or total, we in the following will only consider
systems for monotone operators on Banach spaces where the (relativized) resolvents are all to-
tal. In particular, we thereby exactly treat maximally monotone operators by Proposition 2.11
which is hence analogous to the approach to maximal monotone operators in Hilbert spaces
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taken in [72] which in that way leads to a proof-theoretically tame system for such objects
while direct considerations of maximality are in general not feasible (as will be explored further
in Section 4 later on). Also, we want to remark that if one would want to treat operators
with partial resolvents, then a similar approach as presented in [72] could presumably also be
followed here.

In the following, we will omit types of variables whenever convenient and omit types in proofs
almost always to make everything more readable.

3.1. Further considerations on convex functions. The basic system for all extensions
considered here will be Dωrf,∇f, f˚,∇f˚s from the preceding section, treating the dual of
the abstract normed space together with a convex function, its Fenchel-conjugate and their
uniformly continuous gradients. It will be convenient to slightly extend this system so that the
theory of monotone operators can be developed smoothly. Concretely, it will be convenient to
axiomatically include a few more properties of a convex function and its Fenchel conjugate into
the previous system. Namely, by the Fenchel–Moreau theorem (see e.g. [10]), we know that if
f is proper, lower-semicontinuous and convex, then f˚ is proper and f “ f˚˚ where we define
f˚˚ : X Ñ p´8,`8s by

f˚˚pxq :“ sup
x˚PX˚

pxx, x˚y ´ f˚px˚qq.

With this definition, we follow one particular approach to biconjugates as e.g. outlined in [10].
In other works, one finds f˚˚ introduced as pf˚q˚ acting on X˚˚ and thus on X by its em-
bedding into X˚˚, which anyhow coincides with X in the context of reflexivity. As the spaces
considered in the context of Dωrf,∇f, f˚,∇f˚s are (super-)reflexive by the results of [11, 12],
these different approaches yield the same object but the above formulation will also influence
the types of objects considered later.

Naturally, a function f as axiomatized by the system Dωrf,∇f, f˚,∇f˚s satisfies the as-
sumptions of the Fenchel-Moreau theorem and the resulting fact that f “ f˚˚ is crucial for the
development of the theory of monotone operators, so we need to deal with it formally. However,
we do not treat this fact by analyzing the corresponding proof and verifying that it indeed can
be carried out in Dωrf,∇f, f˚,∇f˚s and instead hardwire this fact into the system akin to how
f˚ is treated in Dωrf,∇f, f˚,∇f˚s.

In more detail, note that, in the context of the above systems, f “ f˚˚ “ pf˚q˚ is bounded
on bounded sets and therefore f˚ is supercoercive by Proposition 2.5. In fact, by analyzing
the proof of Proposition 2.5 as e.g. given in [4], we find that a corresponding modulus of
supercoercivity for f˚ can be computed from a function witnessing that f is bounded on
bounded sets which we briefly sketch in Remark 3.1 below. In any way, in the presence of a
modulus of supercoercivity αf

˚

for f˚, the fact that f “ f˚˚ can be wired into the system with
the following axioms which are analogous to the axioms pf˚q1, pf

˚q2 from the preceding section
(and which similarly instantiate the axioms schemes introduced in [73] for treating suprema
over certain bounded sets) where the corresponding bound in the axiom pf˚˚q2 again is derived
via Lemma 2.14:

pf˚q3 f
˚ is supercoercive with modulus αf

˚

, i.e.

@K0, x˚X
˚
´

‖x˚‖X˚ ąR α
f˚
pKq Ñ f˚px˚q ěR K ‖x˚‖X˚

¯

.

Here, αf
˚

is an additional constant of type 1.
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pf˚˚q1 f is the pointwise upper bound for all affine functionals gx˚pxq “ xx, x
˚y ´ f˚px˚q, i.e.

@xX , x˚X
˚

pxx, x˚yX˚ ´ f
˚
px˚q ďR fpxqq .

pf˚˚q2 f is indeed the pointwise supremum of these affine functionals, i.e.

@xX , b0, k0Dx˚ ďX˚ maxtαf
˚

pb` 1q ` 1, r|f˚p0q|sp0q ` 2u1X˚
`

‖x‖X ăR bÑ
`

fpxq ´ 2´k ďR xx, x
˚
yX˚ ´ f

˚
px˚q

˘˘

.

With Dω
f,f˚rFMs we abbreviate the system that arises from Dωrf,∇f, f˚,∇f˚s by adding these

constants and axioms. As all these (new) axioms are again of type ∆ as discussed before, they
are also admissible while aiming for bound extraction theorems in the style of proof mining.

Remark 3.1. As shown in the proof of [4, Lemma 3.2] (which is the central ingredient of the
proof of Proposition 2.5), given α ą 0 and β P R, one has α ‖x‖ ` β ď fpxq for any x P X if,
and only if, f˚px˚q ď ιBαp0qpx

˚q ´ β for any x˚ P X˚, with Bαp0q seen in X˚ and where ιC is
the indicator function of a set C defined by

ιCpzq :“

#

0 if z P C,

`8 if z R C.

If now D : NÑ N is a modulus for f “ f˚˚ being bounded on bounded sets (as e.g. constructed
in Lemma 2.15), then we immediately have f˚˚pxq “ fpxq ď ιBbp0qpxq `Dpb` 1q for any non-

zero b P N and x P X so that the above equivalence yields b ‖x˚‖ ´Dpb ` 1q ď f˚px˚q for any
x˚ P X˚. In particular, for any K P N and x˚ ‰ 0, we have

‖x˚‖
ˆ

K ` 1´
DpK ` 2q

‖x˚‖

˙

ď f˚px˚q

so that, for ‖x˚‖ ą DpK ` 2q, we have K ‖x˚‖ ď f˚px˚q. This yields that αpKq :“ DpK ` 2q
is a modulus of supercoercivity for f˚ as in Lemma 2.14.

One crucial aspect of the theory of the conjugate function f˚ is that it provides alternative
characterizations of continuity properties of ∇f in terms of convexity properties of f˚. These
play a crucial role in the context of the theory of monotone operators in Banach spaces and so,
before moving on to these, we first formally establish some of these corresponding convexity
properties of f˚. As a byproduct, we also formally provide further quantitative properties of
the gradient ∇f .

Lemma 3.2. The system Dωrf,∇f, f˚,∇f˚s proves:

(1) The “Fenchel-Young equality”7 for any subgradient u˚ of f at x, i.e.

@xX , u˚X
˚

p@yX pfpyq ěR fpxq ` xy ´X x, u
˚
yX˚q Ñ fpxq ` f˚pu˚q “R xx, u

˚
yX˚q.

(2) The “Fenchel-Young equality” for ∇fx, i.e.

@xX pfpxq ` f˚p∇fxq “R xx,∇fxyX˚q .
(3) Approximate subgradients of f are close to the gradient of f , i.e.

@b0, k0Dj0@xX , x˚X
˚

p‖x‖X ăR b^ @y
X
`

xy ´X x, x
˚
yX˚ ` fpxq ďR fpyq ` 2´j

˘

Ñ ‖x˚ ´X˚ ∇fx‖X˚ ďR 2´kq,

7By this expression, we mean in the following that the Fenchel-Young inequality is not strict, i.e. is satisfied
with equality.
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where in fact we can take

j “ k ` 4` ω∇f
pk ` 3, b` 1q.

(4) The “Fenchel-Young equality” characterizes gradients of f , i.e.

@xX , x˚X
˚

pfpxq ` f˚px˚q “R xx, x
˚
yX˚ Ñ x˚ “X˚ ∇fxq ,

where in fact it moreover holds that

@b0, k0Dj0@xX , x˚X
˚

p‖x‖X ăR b^ fpxq ` f
˚
px˚q ´ xx, x˚yX˚ ďR 2´j

Ñ ‖x˚ ´X˚ ∇fx‖X˚ ďR 2´kq

where we can take

j “ k ` 4` ω∇f
pk ` 3, b` 1q.

(5) ∇fx is the unique subgradient of f at x, i.e.

@xX , u˚X
˚ `

@yX pfpyq ěR fpxq ` xy ´X x, u
˚
yX˚q Ñ u˚ “X˚ ∇fx

˘

.

(6) f˚ is uniformly strictly convex on bounded subsets, i.e.

@k0, i0, b0Dj0@x˚X
˚

, y˚X
˚

, t1p‖x˚‖X˚ , ‖y
˚‖X˚ ăR b^ 2´i ďR t ďR 1´ 2´i

^ tf˚px˚q ` p1´ tqf˚py˚q ´ f˚ptx˚ `X˚ p1´ tqy
˚
q ďR 2´j

Ñ ‖x˚ ´X˚ y˚‖X˚ ďR 2´kq

where we in fact can choose

j “ pk ` 4` ω∇f
pk ` 4, F pbq ` 2qq ` i

where F is a modulus for ∇f˚ being bounded on bounded sets (which can be constructed
similar to Lemma 2.15).

(7) ∇f˚ is uniformly strictly monotone on bounded subsets, i.e.

@k0, b0Dj0@x˚X
˚

, y˚X
˚

p‖x˚‖X˚ , ‖y
˚‖X˚ ăR b^ ‖x˚ ´X˚ y˚‖X˚ ąR 2´k

Ñ x∇f˚x˚ ´X ∇f˚y˚, x˚ ´X˚ y˚yX˚ ěR 2´jq.

where we in fact can choose

j “ k ` 5` ω∇f
pk ` 4, F pbq ` 2q.

with all other constants as in (6).

Proof. (1) Let u˚ be such that @y pfpyq ě fpxq ` xy ´ x, u˚yq, i.e.

xy, u˚y ´ fpyq ď xx, u˚y ´ fpxq

for all y. Using pf˚q2, we get that for any j, there exists a yj such that

f˚pu˚q ´ pxx, u˚y ´ fpxqq ď f˚pu˚q ´ pxyj, u
˚
y ´ fpyjqq ď 2´j

and thus we have f˚pu˚q ď xx, u˚y ´ fpxq. Using axiom pf˚q1, we get xx, u˚y ´ fpxq ď
f˚pu˚q and combined this gives the result.

(2) Follows immediately from (1) and p∇fq1.
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(3) Let x˚ be such that

@y
`

xy ´ x, x˚y ` fpxq ď fpyq ` 2´j
˘

for j defined as above. This yields

xy ´ x, x˚ ´∇fxy “ xy ´ x, x˚y ´ xy ´ x,∇fpxqy
ď fpyq ´ fpxq ´ xy ´ x,∇fpxqy ` 2´j.

Using Lemma 2.15, we get that for ‖y ´ x‖ ă 2´ω
∇f pl,b`1q:

fpyq ´ fpxq ´ xy ´ x,∇fpxqy ď 2´l ‖y ´ x‖

and so xy ´ x, x˚ ´∇fxy ď 2´j ` 2´l ‖y ´ x‖ for all such y which in particular yields

xz, x˚ ´∇fxy ď 2´j ` 2´l ‖z‖

for all z with ‖z‖ ă 2´ω
∇f pl,b`1q given any l. For the given k, we now show that there is

a zk such that 0 ă ‖zk‖ ď 1 and

xzk, x
˚
´∇fxy ď 2´pk`2q Ñ ‖x˚ ´∇fx‖ ď 2´k.

To see this, suppose ‖x˚ ´∇fx‖ ą 2´k “ 2´pk`1q ` 2´pk`1q. Using axiom p˚q2, we get
that there exists a zk with ‖zk‖ ď 1 and such that |xzk, x

˚ ´ ∇fxy| ą 2´pk`2q, which
also in particular implies ‖zk‖ ą 0.

Now, using this zk, define

pzk “ 2´pω
∇f pk`3,b`1q`1qzk.

Clearly ‖pzk‖ ă 2´ω
∇f pk`3,b`1q and thus

xpzk, x
˚
´∇fxy ď 2´j ` 2´pk`3q ‖pzk‖

which yields by definition of j that

xzk, x
˚
´∇fxy “ 2pω

∇f pk`3,b`1q`1q
xpzk, x

˚
´∇fxy

ď 2pω
∇f pk`3,b`1q`1q

p2´j ` 2´pk`3q ‖pzk‖q

“ 2pω
∇f pk`3,b`1q`1q2´j ` 2´pk`3q2pω

∇f pk`3,b`1q`1q ‖pzk‖

ď 2´pk`4`ω
∇f pk`3,b`1qq2pω

∇f pk`3,b`1q`1q
` 2´pk`3q

“ 2´pk`2q

which implies ‖x˚ ´∇fx‖ ď 2´k by the properties of zk.
(4) Let x˚ be such that fpxq ` f˚px˚q ´ xx, x˚yX˚ ď 2´j with j defined as above. Then we

get f˚px˚q ď 2´j ` xx, x˚y ´ fpxq which yields through pf˚q1 that

xy, x˚y ´ fpyq ď 2´j ` xx, x˚y ´ fpxq

for all y. This is equivalent to xy ´ x, x˚y ` fpxq ď fpyq ` 2´j for all y. Then item (3)
yields the result.

(5) This follows immediately from (3).
(6) Suppose

|tf˚px˚q ` p1´ tqf˚py˚q ´ f˚ptx˚ ` p1´ tqy˚q| ďR 2´j
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for j as above. Then write z˚ “ tx˚`p1´tqy˚ and pick x “ ∇f˚z˚, i.e. ∇fx “ z˚ by pLq.
Then by item (2), the extensionality of f˚ (recall Lemma 2.15) and the extensionality
of x¨, ¨y, we get

0 “ fpxq ` f˚pz˚q ´ xx, z˚y

ě fpxq ` tf˚px˚q ` p1´ tqf˚py˚q ´ 2´j ´ xx, z˚y,

i.e. we have

2´j ě tpfpxq ` f˚px˚q ´ xx, x˚yq ` p1´ tqpfpxq ` f˚py˚q ´ xx, y˚yq

and thus, using t, 1 ´ t ě 2´i and that fpxq ` f˚px˚q ´ xx, x˚y ě 0 as well as fpxq `
f˚py˚q´ xx, y˚y ě 0 by the Fenchel-Young inequality (which follows from axiom pf˚q1),
we get

2´j2i ě fpxq ` f˚px˚q ´ xx, x˚y, fpxq ` f˚py˚q ´ xx, y˚y

By definition of j, we get

2´pk`4`ω
∇f pk`4,F pbq`2qq

ě fpxq ` f˚px˚q ´ xx, x˚y, fpxq ` f˚py˚q ´ xx, y˚y.

Noting that ‖z˚‖ ď t ‖x˚‖` p1´ tq ‖y˚‖ ă b and thus ‖x‖ ă F pbq ` 1, item (4) implies
that

‖x˚ ´∇fx‖ , ‖y˚ ´∇fx‖ ď 2´pk`1q

which yields ‖x˚ ´ y˚‖ ď 2´k.
(7) Using item (6), note that for t “ 1{2, we have

f˚
ˆ

x˚ ` y˚

2

˙

ď 1{2f˚py˚q ` 1{2f˚px˚q ´ 2´j

“ f˚px˚q ` 1{2pf˚py˚q ´ f˚px˚qq ´ 2´j

if ‖x˚ ´ y˚‖ ą 2´k. As

x∇f˚w˚, z˚y ď f˚pw˚ ` αz˚q ´ f˚pw˚q

α
,

for any α ą 0 (using p∇f˚q1), we get

x∇f˚x˚, y˚ ´ x˚y ď f˚py˚q ´ f˚px˚q ´ 2 ¨ 2´j.

Similarly, we get

x∇f˚y˚, x˚ ´ y˚y ď f˚px˚q ´ f˚py˚q ´ 2 ¨ 2´j

and this implies

x∇f˚y˚ ´∇f˚x˚, x˚ ´ y˚y ď ´4 ¨ 2´j

which gives the claim.
�

Now, the additional axioms in Dω
f,f˚rFMs can be used to carry out the above proof with the

roles of f and f˚ exchanged. We collect this in the following lemma.

Lemma 3.3. The system Dω
f,f˚rFMs proves:

(1) The “Fenchel-Young equality” for any subgradient u of f˚ at x˚, i.e.

@x˚X
˚

, uXp@y˚X
˚

pf˚py˚q ěR f
˚
px˚q ` xu, y˚ ´X˚ x

˚
yX˚q

Ñ f˚px˚q ` fpuq “R xu, x
˚
yX˚q.
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(2) The “Fenchel-Young equality” for ∇f˚x, i.e.

@x˚X
˚

pf˚px˚q ` fp∇f˚x˚q “R x∇f˚x˚, x˚yX˚q .
(3) Approximate subgradients of f˚ are close to the gradient of f˚, i.e.

@b0, k0Dj0@x˚X
˚

, xXp‖x˚‖X˚ ăR b

^ @y˚X
˚ `

xx, y˚ ´X˚ x
˚
yX˚ ` f

˚
px˚q ďR f

˚
py˚q ` 2´j

˘

Ñ ‖x´X ∇f˚x˚‖X ďR 2´kq,

where in fact we can take

j “ k ` 4` ω∇f˚
pk ` 3, b` 1q.

(4) The “Fenchel-Young equality” characterizes gradients of f˚, i.e.

@x˚X
˚

, xX pf˚px˚q ` fpxq “R xx, x
˚
yX˚ Ñ x “X ∇f˚x˚q ,

where in fact it moreover holds that

@b0, k0Dj0@x˚X
˚

, xXp‖x˚‖X˚ ăR b^ f
˚
px˚q ` fpxq ´ xx, x˚yX˚ ďR 2´j

Ñ ‖x´X ∇f˚x˚‖X ďR 2´kq

where we can take

j “ k ` 4` ω∇f˚
pk ` 3, b` 1q.

(5) ∇f˚x˚ is the unique subgradient of f˚ at x˚, i.e.

@x˚X
˚

, uX
´

@y˚X
˚

pf˚py˚q ěR f
˚
px˚q ` xu, y˚ ´X˚ x

˚
yX˚q Ñ u “X ∇f˚x˚

¯

.

(6) f is uniformly strictly convex on bounded subsets, i.e.

@k0, i0, b0Dj0@xX , yX , t1p‖x‖X , ‖y‖X ăR b^ 2´i ďR t ďR 1´ 2´i

^ tfpxq ` p1´ tqfpyq ´ fptx`X p1´ tqyq ďR 2´j

Ñ ‖x´X y‖X ďR 2´kq

where we in fact can choose

j “ pk ` 4` ω∇f˚
pk ` 4, Cpbq ` 2qq ` i

where C is a modulus for ∇f being bounded on bounded sets (which can be constructed
as in Lemma 2.15).

(7) ∇f is uniformly strictly monotone on bounded subsets, i.e.

@k0, b0Dj0@xX , yXp‖x‖X , ‖y‖X ăR b^ ‖x´X y‖X ąR 2´k

Ñ xx´X y,∇fx´X˚ ∇fyyX˚ ěR 2´jq.

where we in fact can choose

j “ k ` 5` ω∇f˚
pk ` 4, Cpbq ` 2q.

with all other constants as in (6).

In particular, in the system Dω
f,f˚rFMs we can now formally establish some of the central

properties of Bregman distances used extensively throughout the applications given in [76] and
which are also crucial for the development of the theory of the relativized resolvents. We begin
with the fact that Wf px,∇fpyqq “ Df px, yq:
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Lemma 3.4. The system Dω
f,f˚rFMs proves:

@xX , yX pDf px, yq “R fpxq ` f
˚
p∇fyq ´ xx,∇fyyX˚q .

Proof. By Lemma 3.2, (2), we have

f˚p∇fyq “ xy,∇fyy ´ fpyq
and thus

fpxq ` f˚p∇fyq ´ xx,∇fyy “ fpxq ´ fpyq ´ xx´ y,∇fyy “ Df px, yq.

�

Lemma 3.5. The system Dω
f,f˚rFMs proves that Df is uniformly bounded in the sense of [76],

i.e.
@b0, α0

Do0@xX , yX p‖x‖X ăR b^Df px, yq ăR αÑ ‖y‖X ďR oq

and o can be realized by

o “ opα, bq “ F pmaxtαf
˚

pα `Dpbq ` bq, 1u ` 1q

where D,F are moduli of f , ∇f˚ being bounded on bounded sets, respectively, and αf
˚

is a
modulus of supercoercivity for f˚ as before.

Proof. First, note that f˚px˚q ´ xx, x˚y is also supercoercive. For this, let ‖x‖ ă b. If ‖x˚‖ ą
αf

˚

pK ` bq, from axiom pf˚q3 we derive

f˚px˚q ´ xx, x˚y ě f˚px˚q ´ ‖x‖ ‖x˚‖ ě pK ` b´ ‖x‖q ‖x˚‖ ě K ‖x˚‖ .
Now, we have

f˚p∇fyq ´ xx,∇fyy “ Df px, yq ´ fpxq ă α `Dpbq

using the above Lemma 3.4. Therefore, we derive

‖∇fy‖ ď maxtαf
˚

pα `Dpbq ` bq, 1u

and thus we get ‖y‖ “ ‖∇f˚∇fy‖ ď F pmaxtαf
˚

pα `Dpbq ` bq, 1u ` 1q. �

3.2. Monotone operators and their relativized resolvents. We now move to the central
new objects, the monotone operators in the sense of Browder and their relativized resolvents.
Initially, generic set-valued operators of the form A : X Ñ 2X

˚

are, in similarity to [72], modeled
via a constant for their characteristic function. In the context of the system Dω

f,f˚rFMs, we in
that way add a constant χA of type 0pX˚qpXq and write x˚ P Ax, px, x˚q P A or px, x˚q P graA
for χAxx

˚ “0 0. The first natural axiom is

pIq˚ @xX , x˚X
˚

pχAxx
˚
ď0 1q

which witnesses that χA is a characteristic function.

Also, the treatment of the resolvent is conceptually similar to that work. For this, let A
be monotone (in the sense of Browder, recall Section 2.1) and recall Definition 2.9 for the

f -resolvents of such monotone operators whereby ResfγA : X Ñ 2X is defined by

ResfγAx :“
`

p∇f ` γAq´1 ˝∇f
˘

pxq

for any x P X and γ ą 0. It follows by our assumptions on f and Proposition 2.10 that this
map is single-valued, satisfies FixpResfγAq “ A´10 (noting that domf “ X in this paper) and
that it is Bregman firmly nonexpansive.
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So, for treating an operator A with total relativized resolvents, we add a constant ResfA of

type XpXqp1q and write ResfγA for ResfAγ. The natural axiom for the resolvent now can be
derived similar as to [72]: If seen as a set-valued operator, the resolvent satisfies

p P ResfγAxô p P p∇f ` γAq´1∇fpxq
ô ∇fpxq P ∇fppq ` γAp
ô γ´1 p∇fpxq ´∇fppqq P Ap.

This naturally leads us to consider the axiom scheme

pIIq˚ @γ1, xX
´

γ ąR 0 Ñ γ´1p∇fx´X˚ ∇fpResfγAxqq P ApResfγAxq
¯

in similarity to axiom (II) considered in [72], stating that ResfγA is a selection map of the (a
priori set-valued) relativized resolvent. In fact, this axiom (together with the axiom specified
previously and the two axioms specified further below) will be sufficient for developing all the
main parts of the theory of relativized resolvents (e.g. immediately entailing the uniqueness
and Bregman firm nonexpansivity of the above selection map) as we will later discuss.

Remark 3.6. As in the context of the systems from [72], note that also here, the above axiom
pIIq˚ is actually an abbreviation for the following sentence where the dependence of γ´1 on a
lower bound of γ is made explicit:

@γ1, xX , k0
´

γ ąR 2´k Ñ pγq´1k p∇fx´X˚ ∇fpResfγAxqq P ApResfγAxq
¯

.

However, also similar to [72], we will still in general employ the above shorthand style of writing
where the parameter k is omitted as in this paper, the context will always make it clear how
a given statement in that style has to be expanded to yield a proper formal variant so that no
issues arise.

Also the monotonicity of A is easily specified by a universal axiom:

pIIIq˚ @xX , yX , x˚X
˚

, y˚X
˚

ppx, x˚q, py, y˚q P AÑ xx´X y, x
˚
´X˚ y

˚
yX˚ ěR 0q .

Lastly, all uses of the relativized resolvent in proof mining applications presented so far (see
in particular [76]) are made in the context of the assumption that A´10 ‰ H and we will also
assume this here as it in particular will allow us to majorize the resolvent rather immediately.
For this, we add a constant pX of type X together with a corresponding axiom stating that pX
is a zero of A:

pIV q˚ 0X˚ P ApX .

This leads us to the following system:

Definition 3.7. The theory Bω is defined as the extension of the theory Dω
f,f˚rFMs with the

above constants and corresponding axioms pIq˚ - pIV q˚.

Remark 3.8. Alternatively to adding a precise witness pX for a zero of the operator A, we could
also have added only a constant bz of type 0 representing a norm upper bound on such a zero,
which is the only numerical data on which bounds extracted through the metatheorem later
depend, together with the corresponding axiom Dp ďX bz1X p0X˚ P Apq which is of type ∆ and
hence admissible in our systems.

Now, in similarity to the systems from [72], also Bω is sufficient for formalizing the first main
aspects of the theory of monotone operators in Banach spaces and their f -resolvents as the
following proposition shows.
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Lemma 3.9. The system Bω proves:

(1) ResfγA is unique for any γ ą 0, i.e.

@γ1, pX , xX
´

γ ąR 0^ γ´1p∇fx´X˚ ∇fpq P ApÑ p “X ResfγAx
¯

.

(2) ResfγA is Bregman firmly nonexpansive for any γ ą 0, i.e.

@γ1, xX , yXpγ ąR 0 Ñ xResfγAx´X ResfγAy,∇fResfγAx´X˚ ∇fResfγAyyX˚

ďR xResfγAx´X ResfγAy,∇fx´X˚ ∇fyyX˚q.

(3) ResfγA satisfies the alternative notion of Bregman firm nonexpansivity for any γ ą 0,
i.e.

@γ1, xX , yXpγ ąR 0 Ñ Df pResfγAx,ResfγAyq `Df pResfγAy,ResfγAxq

ďR Df pResfγAx, yq `Df pResfγAy, xq ´Df pResfγAx, xq ´Df pResfγAy, yqq.

(4) A´10 Ď FixpResfγAq for any γ ą 0, i.e.

@pX , γ1
´

γ ąR 0^ 0 P ApÑ p “X ResfγAp
¯

.

Proof. (1) Suppose that γ ą 0 and that γ´1p∇fx ´ ∇fpq P Ap. Axiom pIIq˚ gives

γ´1p∇fx´∇fResfγAxq P ApResfγAxq. Axiom pIIIq˚ then implies that

0 ď xResfγAx´ p, γ
´1
p∇fx´∇fResfγAxq ´ γ

´1
p∇fx´∇fpqy

“ xResfγAx´ p, γ
´1
p∇fp´∇fResfγAxqy

where we have used extensionality of x¨, ¨y and of the arithmetical operations in X˚. In
particular, since γ´1 ą 0 as γ ą 0, we get that

xResfγAx´ p,∇fResfγAx´∇fpy ď 0.

Thus, as ∇f is provably strictly monotone (Lemma 3.3), we get
∥∥∥ResfγAx´ p

∥∥∥ “ 0, i.e.

ResfγAx “ p.
(2) Let γ ą 0. Axiom pIIq˚ gives

γ´1p∇fx´∇fResfγAxq P ApResfγAxq and γ´1p∇fy ´∇fResfγAyq P ApResfγAyq.

Axiom pIIIq˚ and γ´1 ą 0 gives

xResfγAx´ ResfγAy,∇fx´∇fy ´ p∇fResfγAx´∇fResfγAyqy ě 0

which implies

xResfγAx´ ResfγAy,∇fx´∇fyy ě xResfγAx´ ResfγAy,∇fResfγAx´∇fResfγAyy.

(3) By the provability of the three-point identity for Df (Lemma 2.16), we get

xResfγAx´ ResfγAy,∇fResfγAx´∇fResfγAyy

“ Df pResfγAx,ResfγAyq `Df pResfγAy,ResfγAxq ´Df pResfγAx,ResfγAxq

“ Df pResfγAx,ResfγAyq `Df pResfγAy,ResfγAxq.
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Further, by the provability of the four-point identity for Df (Lemma 2.16), we get

xResfγAx´ ResfγAy,∇fx´∇fyy

“ Df pResfγAx, yq ´Df pResfγAx, xq ´Df pResfγAy, yq `Df pResfγAy, xq.

Thus, using item (2), we get the claimed inequality.
(4) Let p be such that 0 P Ap. Then provably with the only assumption being γ ą 0, we

have γ´1p∇fp ´∇fpq “ 0 and thus, using Σ1-ER (recall Remark 2.12), we have that
0 P Ap implies

γ´1p∇fp´∇fpq P Ap.
Using item (1), we get p “ ResfγAp.

�

Also the boundedness and continuity properties of maps that are Bregman firmly nonexpan-
sive, already emphasized in [76] as crucial for the practice of proof mining for these objects,
can now be formally replicated in the context of the system Bω (where we here formulate these
properties just for the resolvents):

Proposition 3.10. The system Bω proves:

(1) ResfγA is bounded on bounded sets for any γ ą 0, i.e.

@γ1, b0De0@xX
´

γ ąR 0^ ‖pX‖X , ‖x‖X ăR bÑ
∥∥∥ResfγAx

∥∥∥
X
ďR e

¯

,

where in fact one can choose

e “ Epbq “ op2Dpbq ` 2bCpbq, bq

where C,D are moduli witnessing that ∇f, f are bounded on bounded sets, respectively,
and o is defined as in Lemma 3.5.

(2) ResfγA is uniformly continuous on bounded sets for any γ ą 0, i.e.

@γ1, k0, b0Dj0@xX , yXpγ ąR 0^ ‖pX‖X , ‖x‖X , ‖y‖X ăR b

^ ‖x´X y‖X ăR 2´j Ñ
∥∥∥ResfγAx´X ResfγAy

∥∥∥
X
ďR 2´kq

where in fact one can choose

j “ $pk, bq “ ω∇f
ppk ` 1` Epbq, bq

for pk “ k ` 5 ` ω∇f˚pk ` 4, Cpbq ` 2q with C being a modulus witnessing that ∇f is
bounded on bounded sets and where E is defined as in (1).

Proof. For item (1), note that by Lemma 3.9, (3) and (4), and with p “ pX from axiom pIV q˚,
we have (using the extensionality of Df which follows from that of f,∇f and x¨, ¨y):

Df pResfγAx, pq `Df pp,ResfγAxq ď Df pResfγAx, pq `Df pp, xq ´Df pResfγAx, xq ´Df pp, pq

ď Df pResfγAx, pq `Df pp, xq

and thus

Df pp,ResfγAxq ď Df pp, xq ă 2Dpbq ` 2bCpbq.

Thus, by Lemma 3.5, we get ∥∥∥ResfγAx
∥∥∥ ď op2Dpbq ` 2bCpbq, bq.
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For item (2), by Lemma 3.9, (2), we have

xResfγAx´ ResfγAy,∇fResfγAx´∇fResfγAyy

ď xResfγAx´ ResfγAy,∇fx´∇fyy

ď

∥∥∥ResfγAx´ ResfγAy
∥∥∥ ‖∇fx´∇fy‖

ď 2Epbq ‖∇fx´∇fy‖ ,

using also additionally the above item (1). So, for ‖x´ y‖ ă 2´j with the j defined above, we
have

‖∇fx´∇fy‖ ď 2´p
pk`1`Epbqq

and thus
xResfγAx´ ResfγAy,∇fResfγAx´∇fResfγAyy ă 2´

pk.

Thus by Lemma 3.3, (7), we get ∥∥∥ResfγAx´ ResfγAy
∥∥∥ ď 2´k.

�

Notice that therefore the system Bω proves that ResfγA is extensional.

4. Maximality and extensionality

Naturally, the system Bω can not prove the extensionality of A since we also deal with
potentially discontinuous operators A semantically. As mentioned in the introduction, a central
theoretical result from [72] connects this extensionality of A with the maximality statement for
A in the setting of monotone operators on Hilbert spaces. We can now extend this result to
the monotone operators over Banach spaces. In particular, as all the results are considered in
the context of a Legendre function where f and f˚ are Fréchet differentiable with gradients
that are uniformly continuous on bounded sets, we find by Proposition 2.11 that the totality of
the resolvent (as encoded in the system Bω) implies that the operators A which are considered
semantically are maximally monotone and so this maximality can then not be provable due to
this equivalence either.

Theorem 4.1. Over Bω, the following are equivalent:

(1) Extensionality of A, i.e.

@xX , x˚X
˚

, yX , y˚X
˚

px “X y ^ x˚ “X˚ y
˚
^ x˚ P AxÑ y˚ P Ayq .

(2) The strong resolvent axiom, i.e.

@xX , pX , γ1
´

γ ąR 0^ p “X ResfγAxÑ γ´1p∇fx´X˚ ∇fpq P Ap
¯

.

(3) Maximal monotonicity of A, i.e.

@xX , x˚X
˚
´

@yX , y˚X
˚

py˚ P Ay Ñ xx´X y, x
˚
´X˚ y

˚
yX˚ ěR 0q Ñ x˚ P Ax

¯

.

Proof. For the direction (1) ñ (3), let x, x˚ be such that

xx´ y, x˚ ´ y˚y ě 0 for all py, y˚q P A.

We consider z “ ∇f˚px˚ `∇fxq. Then

1´1p∇fz ´∇fResfAzq P ApResfAzq.
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by axiom pIIq˚. Thus by the assumption on x, x˚, axiom pLq and the extensionality of x¨, ¨y we
get

0 ď xx´ ResfAz, x
˚
´ p∇fz ´∇fResfAzqy

“ xx´ ResfAz,∇fResfAz ´∇fxy

which is equivalent to

xx´ ResfAz,∇fx´∇fResfAzy ď 0

and this yields x “ ResfAz as ∇f is (provably) strictly monotone. Further, we have

1´1
´

∇fz ´∇fResfAz
¯

“ x˚ `∇fx´∇fx “ x˚

using pLq and the extensionality of ∇f and thus the extensionality of A yields x˚ P Ax.

For the direction (3) ñ (2), assume that γ ą 0 and p “ ResfγAx. Then at first

γ´1p∇fx´∇fResfγAxq P ApResfγAxq

by axiom pIIq˚. By monotonicity (axiom pIIIq˚) together with the extensionality of x¨, ¨y and
∇f , we get

@py, y˚q P Apxp´ y, γ´1p∇fx´∇fpq ´ y˚y ě 0q.

By (3), we get

γ´1p∇fx´∇fpq P Appq.

For (2) ñ (1), let x “ y and x˚ “ y˚ with x˚ P Ax. Define

z “ ∇f˚py˚ `∇fyq.

By pIIq˚, we get

1´1p∇fz ´∇fResfAzq P ApResfAzq.

Axiom pIIIq˚ together with the extensionality of x¨, ¨y and ∇f˚ as well as using pLq yields

0 ď xx´ ResfAz, x
˚
´ p∇fz ´∇fResfAzqy

“ xy ´ ResfAz,∇fResfAz ´∇fyy

and this is equivalent to

xy ´ ResfAz,∇fy ´∇fResfAzy ď 0

which yields y “ ResfAz by provable strict monotonicity of ∇f . Using (2), we have

1´1p∇fz ´∇fyq P Ay

which yields by the quantifier-free extensionality rule that y˚ P Ay as 1´1p∇fz ´ ∇fyq “ y˚

holds without any additional assumptions. �

Similar to [72] however (see Theorem 3.2 therein), the system Bω does support a weakened,
so-called intensional, maximality principle as in the following theorem:

Theorem 4.2. The system Bω proves the following intensional maximality principle:

@xX , x˚X
˚`

@yX , y˚X
˚

py˚ P Ay Ñ xx´X y, x
˚
´X˚ y

˚
yX˚ ěR 0q

Ñ Dx1
X
, x1

˚X˚ `
x “X x1 ^ x˚ “X˚ x

1˚
^ x1

˚
P Ax1

˘ ˘

.
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Proof. As in the proof of the direction (1) ñ (3) from the above Theorem 4.1, we get that

1´1p∇fz ´∇fResfAzq P ApResfAzq

together with x “ ResfAz and 1´1p∇fz ´ ∇fResfAzq “ x˚ for z “ ∇f˚px˚ ` ∇fxq without

any use of extensionality. This gives the claim by setting x1 “ ResfAz and x1˚ “ 1´1p∇fz ´
∇fResfAzq. �

We end this section by presenting a result analogous to Theorem 4.1 but phrased specifically
for the zero set of the operator A. At first, recall Lemma 3.9, (4), by which the system Bω
proves

@xX
´

0 P AxÑ @γ1
´

γ ąR 0 Ñ ResfγAx “X x
¯¯

.

Further, we even provably have

@xX , zX
˚
´

z P Ax^ z “X˚ 0 Ñ @γ1
´

γ ąR 0 Ñ ResfγAx “X x
¯¯

.

To see this, note that by the quantifier-free extensionality rule we have from z P Ax that
γ´1p∇f∇f˚pγz `∇fxq ´∇fxq P Ax and thus

x “X ResfγAp∇f
˚
pγz `∇fxqq “X ResfγAx

using uniqueness and extensionality of the resolvent as well as z “ 0.

As we will see now, the converse assertions are connected to the extensionality of the set of
zeros of A.

Theorem 4.3. Over Bω, the following are equivalent:

(1) @xX , zX
˚
´

ResfAx “X x^ z “X˚ 0 Ñ z P Ax
¯

,

(2) @xX , zX
˚
´

@γ1
´

γ ąR 0 Ñ ResfγAx “X x
¯

^ z “X˚ 0 Ñ z P Ax
¯

,

(3) @xX , yX , zX
˚

, z1X
˚

px “X y ^ z “X˚ z
1 “X˚ 0^ z P AxÑ z1 P Ayq.

Proof. The implication from (1) to (2) is clear. For (2) ñ (3), let x “ y and let z “ z1 “ 0
with z P Ax. Then using (2) and the provability of

@xX , zX
˚
´

z P Ax^ z “X˚ 0 Ñ @γ1
´

γ ąR 0 Ñ ResfγAx “X x
¯¯

as established above, we get

z P AxØ @γ
´

γ ą 0 Ñ ResfγAx “ x
¯

Ø @γ
´

γ ą 0 Ñ ResfγAy “ y
¯

Ø z1 P Ay

by the extensionality of ResfγA (recall Proposition 3.10). Lastly, for (3) ñ (1), assume that

ResfAx “ x and z “ 0. Then by axiom pIIq˚, we get

1´1p∇fx´∇fpResfAxqq P ApResfAxq.

By (3) and 1´1p∇fx´∇fpResfAxqq “ 0 “ z, we get z P Ax. �

Further, as we will see now, this form of the extensionality of the zero set of A is even
equivalent to a corresponding fragment of the maximality principle:

Theorem 4.4. Over Bω, the following are equivalent:
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(1) @xX , yX , z˚X
˚

, z1˚
X˚
px “X y ^ z˚ “X˚ z

1˚ “X˚ 0^ z˚ P AxÑ z1˚ P Ayq,

(2) @xX , z˚X
˚
´

@yX , y˚X
˚

py˚ P Ay Ñ xx´X y,´X˚y
˚yX˚ ěR 0q ^ z˚ “X˚ 0 Ñ z˚ P Ax

¯

.

Proof. For the direction (1) ñ (2), assume @py, y˚q P A pxx´ y,´y˚y ě 0q. By axiom pII˚q, we

have 1´1p∇fx´∇fpResfAxqq P ApResfAxq. Therefore, we have

xx´ ResfAx,∇fx´∇fpResfAxqy ď 0

and since ∇f is strictly monotone (recall Lemma 3.3), we get x “ ResfAx as well as 1´1p∇fx´
∇fpResfAxqq “ 0. Thus (1) yields z˚ P Ax for any z˚ “ 0.

Conversely, for (2) ñ (1), assume that x “ y and z˚ “ z1˚ “ 0 as well as z˚ P Ax. Then by
pIIIq˚, we have for all py, y˚q P A:

xx´ y,´y˚y “ xx´ y, z˚ ´ y˚y ě 0.

Thus (2) yields that z1˚ P Ay. �

Naturally, also the extensionality of the zero set of A as formulated above, and hence the
other principles equivalent to it, can not be provable in Bω by virtue of the upcoming bound
extraction theorems. However, akin to Theorem 4.2 above, we have the provability of the
following intensional representation of the inclusion of the fixed point set of the resolvent in the
zero set of the operator:

Theorem 4.5. The system Bω proves the following principle:

@xX
´

ResfAx “X xÑ Dx1
X
, zX

˚

px1 “X x^ z “X˚ 0^ z P Ax1q
¯

.

Proof. By axiom pIIq˚, we get that 1´1p∇fx ´ ∇fResfAxq P ApResfAxq. This gives the claim

by setting x1 “ ResfAx and z “ 1´1p∇fx´∇fResfAxq as by ResfAx “ x, we have x1 “ x as well
as z “ 0 using the extensionality of ∇f . �

Remark 4.6. Similar results as the above for the zero set of the operator A naturally also hold
for the systems and operators considered in [72].

5. A bound extraction theorem

We now prove the central results of this paper, the bound extraction theorem for the theory
Bω. As discussed before, this bound extraction theorem arises from and extends those for Dω

and its extensions proven in [73] as well as those proven in [72] for the systems dealing with
monotone operators in Hilbert spaces. In that vein, we keep the proofs short and only briefly
discuss the key ingredients, it being implied that all considerations thus abbreviated and that
regard the dual space can be made similar to [73] and those that regard the operator A can be
made similar to [72].

The high-level outline of the proof of the metatheorem for Bω given here is now very much
standard, following that of essentially all other such metatheorems: At first, one extracts
realizers from proofs of (essentially) @D-theorems using a combination of Gödel’s functional
interpretation with a negative translation. The resulting realizers have types from TX,X

˚

and
we then use majorizability to construct bounds with types from T for these realizers, depend-
ing only on majorants of the parameters, which are validated in a model based on Mω,X,X˚ ,
the structure of all strongly majorizable functionals defined using a Banach space X and its
dual X˚. In a final step, we can then recover to the truth in a model based on the usual full
set-theoretic structure Sω,X,X˚ if the types occurring in the axioms and the theorem are “low
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enough” (later called admissible).

We now discuss the first major ingredient of this approach, the functional interpretation and
its corresponding soundness result. Originally introduced in Gödel’s seminal paper [24], the
functional interpretation assigns to every formula F paq another formula FDpaq “ Dx@yFDpx, y, aq,
where FDpx, y, aq is quantifier-free (and the length of the tuples x, y and their types depend on
the structure of F ), via the following recursive definition (where we for simplicity omit the free
variables a):

Definition 5.1 ([24]). The Dialectica interpretation FD “ Dx@yFDpx, yq of a formula F in
the language of AωrX, ‖¨‖s (and its extensions) is defined via the following recursion on the
structure of the formula:

(1) FD :“ FD :“ F for F being a prime formula.

If FD “ Dx@yFDpx, yq and GD “ Du@vGDpu, vq, we set

(2) pF ^GqD :“ Dx, u@y, vpF ^GqD
where pF ^GqDpx, u, y, vq :“ FDpx, yq ^GDpu, vq,

(3) pF _GqD :“ Dz0, x, u@y, vpF _GqD
where pF _GqDpz

0, x, u, y, vq :“ pz “ 0 Ñ FDpx, yqq ^ pz ‰ 0 Ñ GDpu, vqq,

(4) pF Ñ GqD :“ DU, Y @x, vpF Ñ GqD
where pF Ñ GqDpU, Y , x, vq :“ FDpx, Y xvq Ñ GDpUx, vq,

(5) pDzτF pzqqD :“ Dz, x@ypDzτF pzqqD
where pDzτF pzqqDpz, x, yq :“ FDpx, y, zq,

(6) p@zτF pzqqD :“ DX@z, yp@zτF pzqqD
where p@zτF pzqqDpX, z, yq :“ FDpXz, y, zq.

As mentioned before, we will consider this interpretation in combination with a negative
translation that serves to translate from a classical system to its intuitionistic counterpart over
which the Dialectica interpretation can then be applied. For that, we fix the following negative
translation first defined by Kuroda:

Definition 5.2 ([54]). The negative translation of F is defined by F 1 :“   F ˚ where F ˚ is
defined by the following recursion on the structure of F :

(1) F ˚ :“ F for prime F ;
(2) pF ˝Gq˚ :“ F ˚ ˝G˚ for ˝ P t^,_,Ñu;
(3) pDxτF q˚ :“ DxτF ˚;
(4) p@xτF q˚ :“ @xτ  F ˚.

The main result for the combination of both of these interpretations is then the following
soundness result:

Lemma 5.3 (essentially [35]). Let P be a set of universal sentences and let F paq be an arbitrary
formula in the language of AωrX, ‖¨‖s, the latter with only the variables a free. Then the rule

#

AωrX, ‖¨‖s ` P $ F paq ñ

AωrX, ‖¨‖s´ ` pBRq ` P $ @a, ypF 1qDpta, y, aq

holds where t is a tuple of closed terms of AωrX, ‖¨‖s´ ` pBRq which can be extracted from
the respective proof, pBRq is the schema of (simultaneous) bar-recursion of Spector [87], here
extended to the additional abstract types (see e.g. [36]) and AωrX, ‖¨‖s´ is the respective system
without the axiom schemes QF-AC and DC.
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This result extends to any suitable extension of the language of AωrX, ‖¨‖s (e.g. by any kind
of new types and constants) together with any number of additional universal axioms in that
(extended) language.

We now introduce the essential type and formula classes for the formulation of the metathe-
orem (essentially following [23, 35]): We call a type ξ of degree n if ξ P T and it has degree
ď n in the usual sense (see e.g. [36]). We call ξ small if it is of the form ξ “ ξ0p0q . . . p0q for
ξ0 P t0, X,X

˚u (including 0, X,X˚) and call it admissible if it is of the form ξ “ ξ0pτkq . . . pτ1q
where each τi is small and ξ0 P t0, X,X

˚u (also including 0, X,X˚). Correspondingly, a formula
F is called a @-formula (respectively D-formula) if F “ @aξFqf paq (respectively F “ DaξFqf paq)
with Fqf quantifier-free and all types ξi in ξ “ pξ1, . . . , ξkq are admissible.

As mentioned before, besides Gödel’s functional interpretation, the other central notion used
in the bound extraction result is that of majorizability, going back to the fundamental work of
Howard [27]. Besides of Howard’s notion, we here also in particular rely on the subsequently
extended notion of strong majorizability due to Bezem [9] which crucially, as shown by Bezem,
provides a model of bar-recursion. The corresponding type structure of all strongly majorizable
functionals, suitably extended to new abstract types, also forms the basis for the modern bound
extraction theorems of proof mining as developed in [23, 35] and subsequent papers and thus
also takes a central role here. We therefore discuss this model explicitly for our theory Bω based
on the types TX,X

˚

(essentially defined as in [73], but practically just derived from [23, 35]):
At first, majorants of objects with types from TX,X

˚

are objects with types from T according
to the following projection:

Definition 5.4 ([73], essentially [23]). Define pτ P T , given τ P TX,X
˚

, by recursion on the
structure via

p0 :“ 0, pX :“ 0, xX˚ :“ 0, yτpξq :“ pτppξq.

The majorizability relation for the types TX,X
˚

and the accompanying structure Mω,X,X˚

of all (strongly) majorizable functionals over a given normed space X with dual X˚ is then
defined recursively as follows:

Definition 5.5 ([73], essentially [23, 35]). Let pX, ‖¨‖q be a non-empty normed space with dual
X˚. The structure Mω,X,X˚ and the majorizability relation Áρ are defined by

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

M0 :“ N, n Á0 m :“ n ě m^ n,m P N,
MX :“ X,n ÁX x :“ n ě ‖x‖^ n PM0, x PMX ,

MX˚ :“ X˚, n ÁX˚ x
˚ :“ n ě ‖x˚‖^ n PM0, x

˚ PMX˚ ,

f Áτpξq x :“ f PM
M

pξ

pτ ^ x PM
Mξ
τ

^ @g PM
pξ, y PMξpg Áξ y Ñ fg Áτ xyq

^ @g, y PM
pξpg Ápξ y Ñ fg Á

pτ fyq,

Mτpξq :“
!

x PM
Mξ
τ | Df PM

M
pξ

pτ

`

f Áτpξq x
˘

)

.

Correspondingly, the full set-theoretic type structure Sω,X,X˚ is defined via S0 :“ N, SX :“ X,
SX˚ :“ X˚ and

Sτpξq :“ S
Sξ
τ .

These structures later turn into models of the system Bω when they are equipped with suitable
corresponding interpretations for the additional constants.
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This, for modern proof mining essential and fundamental, idea of combining the Dialectica
interpretation with the notion of majorizability goes back to [32] and was subsequently for-
mally encapsulated through a novel type of functional interpretation, the so-called monotone
functional interpretation, in [33]. In that way, also the present approach is thus “in spirit”
of the monotone functional interpretation, where we write “in spirit” as we actually do not
use a monotone variant of the Dialectica interpretation but treat the functional interpretation
part and the majorization part of the combined interpretation separately, following the formal
approach to proof mining metatheorems of [23, 35].

In any way, as is crucial for the applicability of this approach, many highly nontrivial mathe-
matical statements nevertheless have a very simple monotone functional interpretation and one
class of such principles is the so-called class ∆ as already discussed in Section 2.2 before, which
in particular accommodates all of the axioms of our system Bω. Since we treat the majorization
part separately from the functional interpretation part, we need a slightly modified approach
to the treatment of statements of type ∆ (where we essentially follow the approach given in
[25], see also the recent [73]) and treat axioms of type ∆ by employing a construction that
converts a theory with axioms of such a type into a theory using only additional purely uni-
versal axioms formulated using the Skolem functions of these axioms. Concretely, we proceed

as follows: Write pBω for Bω without any of its axioms of type ∆ (which in particular covers all
of the previous non-universal axioms p˚q2, p˚q6, pf

˚q2, pf
˚˚q2) and without the rule pQF-LRq

(which produces conclusions of type ∆). Given a set i of sentences of type ∆, we transform

Bω ` i into a new theory Bωi by adding to pBω the Skolem functionals B for any axiom of type
∆ in Bω ` i, say of the form

@aδDb ďσ ra@c
γFqf pa, b, cq

where the types in δ, σ and γ are admissible and Fqf is quantifier-free, as new constants to the
language and adding its ‘instantiated Skolem normal form’, i.e. the sentence

B ďσpδq r ^ @a
δ
@cγFqf pa,Ba, cq

as a new axiom. Further, we do the same with all conclusions of the rule pQF-LRq: for any
provable premise

Bω ` i $ Fqf Ñ
`

@xX , yX , α1, β1
ptpαx`X βyq “R αtx` βtyq ^ @x

X
p|tx| ďR M ‖x‖Xq

˘

with terms t and M , we add a new constant x˚t,M of type X˚ to the language of Bωi together
with the corresponding axiom∥∥x˚t,M∥∥

X˚
ďR M ^

`

Fqf Ñ @xX
`

tx “R xx, x
˚
t,MyX˚

˘˘

.

Now, note that this new theory Bωi extends AωrX, ‖¨‖s only by new types, constants and univer-
sal axioms. Therefore, Lemma 5.3 extends to this theory Bωi where the conclusion is proved in

Bω´i `pBRq where Bω´i is again the same theory with the principles pQF-ACq and pDCq removed.

The main result on the majorizability part of the metatheorem is now the following model-
theoretic lemma:

Lemma 5.6. Let i be a set of additional sentences of type ∆. Let pX, ‖¨‖q be a (nontrivial)
Banach space with its dual X˚. Let f be a convex, supercoercive and Fréchet differentiable
function f : X Ñ R where ∇f , ∇f˚ are uniformly continuous on bounded subsets and where
f˚ is supercoercive. Let A be a monotone operator A : X Ñ 2X

˚

with A´10 ‰ H such that the
corresponding resolvents ResfγA are total for γ ą 0.
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Then Mω,X,X˚ is a model of Bω´i ` pBRq, provided Sω,X,X˚ |ù i (with Mω,X,X˚ and Sω,X,X˚

defined via suitable interpretations of the additional constants). Moreover, for any closed term

t of Bω´i ` pBRq, one can construct a closed term t˚ of Aω ` pBRq such that

Mω,X,X˚
|ù @ω0p0qp0q, ω10p0q, n0

´

ω Á ω∇f , ω∇f˚
^ ω1 Á αf , αf

˚

^n ěR |fp0q|, ‖∇fp0q‖X˚ , |f
˚
p0q|, ‖∇f˚p0q‖X , ‖pX‖X Ñ t˚pω, ω1, nq Á t

¯

.

Proof. The proof is completely analogous to that of Lemma 7.7 in [73] (αf
˚

can be treated
as αf in [73]) after making the necessary additions for the treatment of A and its resolvents
and zero which can be made similar as in the proof of Lemma 5.3 in [72]. But, for a more
comprehensive and self-contained proof, we briefly detail these additions here: Concretely, we
have to give interpretations of the additional constants χA,ResfA and pX concerning A that were
added to the system Dω

f,f˚rFMs to form Bω and then verify that these interpretations indeed

have majorants to check that they belong to Mω,X,X˚ . The interpretations are immediately
defined as follows (writing M as a shorthand for Mω,X,X˚):

(1) rχAsM :“ λx P X, x˚ P X˚.

#

0 if x˚ P Ax,

1 otherwise,

(2) rResfAsM :“ λα P NN, x P X.

#

ResfrαAx if rα ą 0,

0 otherwise,

(3) rpXsM :“ p,

where p P A´10 is some zero of A as fixed in the formulation of the lemma. Take n, ω and ω1 such
that ω Á ω∇f , ω∇f˚ and ω1 Á αf , αf

˚

as well as n ě |fp0q|, ‖∇fp0q‖ , |f˚p0q|, ‖∇f˚p0q‖ , ‖p‖.
Corresponding majorants for (1) and (3) are then easily given via

(1)’ λx0, y0.10 Á rχAsM,
(3)’ n Á rpXsM.

We now focus on item (2). For this, take b Á x as well as α Á γ (although the majorant will
be independent of α here). By Proposition 3.10, we have∥∥∥ResfγAx

∥∥∥ ď op2Dpbnq ` 2bnCpbnq, bnq

where bn “ maxtb, nu ` 1 for the fixed n, where

opα, bq :“ F pmaxtαf
˚

pα `Dpbq ` bq, 1u ` 1q,

is defined as in Lemma 3.5 and

Cpbq :“ b2ω
∇f p0,bq

` r‖∇fp0q‖sp0q ` 2,

F pbq :“ b2ω
∇f˚ p0,bq

` r‖∇f˚p0q‖sp0q ` 2,

Dpbq :“ b2ω
f p0,bq

` r|fp0q|sp0q ` 2,

are defined as in Lemma 2.15. Since we have

Cpbq, F pbq, Dpbq ď b2ωp0,bq ` n` 3 “: Epbq
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it immediately follows that∥∥∥ResfγAx
∥∥∥
X
ď op2Dpbnq ` 2bCpbnq, bnq

ď Epω1p3Epbnq ` 2bnEpbnq ` bnq ` 1q

ď Epω1p6bnEpbnqq ` 1q

and therefore we obtain
λb0.Epω1p6bnEpbnqq ` 1q Á rResfAsM.

�

Theorem 5.7. Let τ be admissible, δ be of degree 1 and s be a closed term of Bω of type
σpδq for admissible σ. Let i be a set of sentences of type ∆. Let F@px, y, z, uq/GDpx, y, z, vq be
@-/D-formulas of Bω with only x, y, z, u/x, y, z, v free. If

Bω ` i $ @xδ@y ďσ spxq@zτ
`

@u0F@px, y, z, uq Ñ Dv0GDpx, y, z, vq
˘

,

then one can extract a partial functional Φ : NNˆN ˆNN ˆNˆ Sδ ˆ Spτ á N which is total and
(bar-recursively) computable on NNˆN ˆ NN ˆ N ˆMδ ˆM

pτ such that for all x P Sδ, z P Sτ ,
z˚ P S

pτ with z˚ Á z and for all ω P NNˆN, ω1 P NN, n P N with ω Á ω∇f , ω∇f˚, ω1 Á αf , αf
˚

and n ě |fp0q|, ‖∇fp0q‖ , |f˚p0q|, ‖∇f˚p0q‖ , ‖p‖:

Sω,X,X˚ |ù @y ďσ spxqp@u ď0 Φpω, ω1, n, x, z˚qF@px, y, z, uq

Ñ Dv ď0 Φpω, ω1, n, x, z˚qGDpx, y, z, vqq

holds whenever Sω,X,X˚ |ù i for Sω,X,X˚ defined (via a suitable interpretation of the additional
constants similar to [73] and [72], recall Lemma 5.6) using any (nontrivial) reflexive Banach
space pX, ‖¨‖q with its dual X˚ and using a convex, supercoercive (with modulus αf) and Fréchet
differentiable function f : X Ñ R where ∇f , ∇f˚ are uniformly continuous on bounded subsets
(with moduli ω∇f , ω∇f˚, respectively) and where f˚ is supercoercive (with modulus αf

˚

) and
using a monotone operator A : X Ñ 2X

˚

with p P A´10 ‰ H such that the corresponding
resolvents ResfγA are all total for γ ą 0.

Further:

(1) If pτ is of degree 1, then Φ is a total computable functional.
(2) We may have tuples instead of single variables x, y, z, u, v and a finite conjunction in-

stead of a single premise @u0F@px, y, z, uq.
(3) If the claim is proved without DC, then τ may be arbitrary and Φ will be a total functional

on NNˆN ˆ NN ˆ N ˆ Sδ ˆ S
pτ which is primitive recursive in the sense of Gödel [24]

and Hilbert [26]. In that case, also plain majorization can be used instead of strong
majorization.

Proof. The proof now is completely analogous to that of Theorem 7.8 in [73] and we just briefly
sketch it: Assuming the premise, one first realizes that the same statement is also provable in
Bωi. Using the functional interpretation, i.e. Lemma 5.3, for this system, one extracts realizers
for (the @D-prenexiation of) this statement which are then majorized in the model based on
Mω,X,X˚ through Lemma 5.6. Utilizing that the types in the statement are admissible, one can
then in turn conclude that the resulting bounds are also valid in the model based on Sω,X,X˚ .
The additional statements (1) – (3) can also be concluded similarly as in [73]. �
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[82] M. Schönfinkel. Über die Bausteine der mathematischen Logik. Mathematische Annalen, 92:305–316, 1924.
[83] Y. Shehu. Convergence Results of Forward-Backward Algorithms for Sum of Monotone Operators in Banach

Spaces. Results in Mathematics, 74:Article number 138, 2019.
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