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Abstract. Accretive and monotone operator theory are central branches of nonlinear functional analysis and
constitute the abstract study of certain set-valued mappings between function spaces. This paper deals with

the computational properties of these accretive and (generalized) monotone set-valued operators. In particular,

we develop (and extend) for this field the theoretical framework of proof mining, a program in mathematical
logic that seeks to extract computational information from prima facie ‘non-computational’ proofs from the

mainstream literature. To this end, we establish logical metatheorems that guarantee and quantify the com-

putational content of theorems pertaining to accretive and (generalized) monotone set-valued operators. On
one hand, our results unify a number of recent case studies, while they also provide characterizations of central

analytical notions in terms of proof theoretic ones on the other, which provides a crucial perspective on needed

quantitative assumptions in future applications of proof mining to these branches.
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1. Introduction

1.1. Motivation and summary. For both practical and conceptual reasons, it is an interesting question what
the computational content of a given mathematical theorem is. Proof mining is a program in mathematical
logic that seeks to extract computational information from prima facie ‘non-computational’ proofs from the
mainstream literature and in essence, this paper extends the state-of-the-art of the underlying logical approach
to proof mining to be applicable for proofs from accretive and monotone operator theory, central branches
of nonlinear functional analysis which constitute the abstract study of certain prominent classes of set-valued
mappings between function spaces. In particular, we establish so-called logical metatheorems that guarantee
and quantify the computational content of theorems pertaining to accretive and (generalized) monotone set-
valued operators. These extensions of the previous logical results are expected to lead to many new case studies
for proof mining of results from accretive and monotone operator theory.

In more detail, particular emphasis has recently been placed on problems involving such set-valued operators
like in [33] in the context of Bauschke’s solution [2] to the zero displacement conjecture, in [38] for abstract
Cauchy problems, in [44] for iteration schemes using set-valued operators or in particular like in the case of
the proximal point algorithm (see [53, 61]) and its adaptions and extensions as treated in [14, 15, 35, 37, 36,
40, 50, 51, 52, 58, 66]. These case studies in proof mining provide quantitative results for some of the most
prominent results from this area. However, in some ways they are also ad hoc in that they are not captured by
known metatheorems. It is thus a pressing issue in proof mining to establish a new metatheorem for treating
the aforementioned operators. The main result of this paper is the establishment of such a metatheorem.

For the rest of this section, we provide a brief history of proof mining and how it leads up to this paper
(Section 1.2), as well as a more detailed overview of the contents of this paper (Section 1.3).

1.2. A brief history of proof mining. We provide a brief overview of the key (historical) aspects of the
proof mining program with a focus on the logical metatheorems, the logical ‘substrate’ of this discipline.

First of all, proof mining as a subfield of mathematical logic emerged in the later 1990’s and early 2000’s
through the works of U. Kohlenbach and his collaborators (going back conceptually to Kreisel’s unwinding of
proofs from the 1950’s, see [45, 46]) as an applied discipline which uses well-known proof interpretations like
negative translations, Kreisel’s modified realizability and Gödel’s functional (Dialectica) interpretation on actual
mathematical theorems to extract explicit quantitative information like (uniform) witnesses or bounds.
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For instance, in the case of convergence statements, the logical results guarantee the existence of highly
uniform rates of metastability in the sense of T. Tao [69, 70] in very general situations and thus provide a logical
perspective on Tao’s ‘finitary analysis’.

The proofs analyzed are, as common in ordinary mathematical practice, prima facie noneffective which makes
this a nontrivial task. The development of proof mining is detailed comprehensively up to 2008 in the monograph
[32] (see also [42] for a survey of the early stages of proof mining) and recent progress, with a focus on nonlinear
analysis and optimization, is surveyed in [34].

In that vein, proof mining is crucially supported by the previously mentioned general logical metatheorems1

which guarantee the existence of quantitative information for large2 classes of theorems and proofs from the
literature, including nonlinear optimization and analysis. We stress that the proofs analyzed in proof mining
may use classical logic and other ‘non-constructive’ principles. Besides merely guaranteeing the existence of
quantitative information, the metatheorems allow for an a priori estimation of their complexity (which can
be as elementary as polynomials) and they provide an algorithmic approach towards actually extracting the
quantitative information.

The first metatheorems in proof mining relied on pure systems of arithmetic in all finite types and consequently
only covered applications involving Polish metric spaces as those can be represented in the underlying language.
More modern systems include symbols for abstract metric and normed spaces (originating in [31]) into the
language of the underlying logics. This new approach opens the door for treating spaces which are not separable
and thus not representable in the (bare) language of finite type arithmetic. In this way, the following spaces have
been successfully studied in proof mining: general metric and normed spaces, so-called W -hyperbolic spaces,
CAT(0)-spaces, uniformly convex spaces and Hilbert spaces, among many others. Whether a class of spaces or
objects can be treated via metatheorems ultimately depends on the complexity and uniformity of the defining
axioms. Besides the (much) greater scope, the new approach via abstract spaces also yields extremely uniform
bounds, being independent from most parameters appearing in the theorem that is being analyzed.

1.3. Extending the scope of proof mining to set-valued operators. Towards establishing our new
metatheorems, we first introduce new formal systems that extend the previously used ones for normed and
inner product spaces. This is done via carefully selected constants and corresponding axioms that allow for
the formalization of proofs involving accretive, monotone and ρ-comonotone operators and their resolvents. We
show how key parts of the theory of these operators can be formally carried out in these systems. In partic-
ular, we characterize the key property of an operator being maximal by equivalent notions involving formal
extensionality of the operator. This new point of view provides crucial insight into the (uniform) quantitative
assumptions that have to be placed on an operator if one wants to treat proofs involving essential applications
of those maximality principles. This culminates in establishing general logical metatheorems for these systems
(and suitable extensions), which in particular provide a ‘logical’ explanation of the aforementioned case studies.

The application of proof mining to concrete mathematical proofs can only be successful if our logical systems
have a certain modularity in the following sense: specific problems may require us to extend our ‘main’ logical
system with specific mathematical objects or notions and associated axioms, all the while guaranteeing that
our metatheorems still hold. As examples of such extensions, we shall discuss certain formalized versions of
some common notions from mathematical practice which are crucial in the previously mentioned case studies, in
particular discussing quantitative forms of extensionality for a set-valued operator, as well as range conditions
and the treatment of so-called selection functions, i.e. functionals a : X → X with ax ∈ Ax for x ∈ domA for
a given set-valued operator A. In that context, motivated by logical aspects of the latter, we also introduce a
new notion of majorizability for set-valued operators.

Our main guiding principle for the design of the aforementioned logical systems, as well as for the choice of
extensions considered later, is provided by the previously discussed proof mining case studies in the context of
accretive, monotone and generalized monotone operators over linear spaces. The applicability of the metathe-
orems established later will then in particular be justified by the fact that those case studies can indeed be
recognized as applications of these metatheorems and they thus provide the first logical explanation for these

1Examples of such metatheorems may be found in [20, 23, 31, 41, 48, 49, 65], as well as [32], for the metatheorems obtained
via (modifications of) Gödel’s Dialectica interpretation, and [17] for subsequent metatheorems obtained via the bounded functional
interpretation [18] due to F. Ferreira and P. Oliva.

2For the metatheorems to apply, the theorems at hand need to confine to a certain logical form and possess proofs satisfying

some restrictions on the principles involved. Nonetheless, these restrictions still allow applications to a large numbers of actual

proofs from the literature involving a wide range of non-computational ‘ideal principles’, provided of course that these theorems
and their corresponding proofs can be formalized (at least in theory) in the corresponding language.
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results. Further discussions regarding the use of the systems introduced here to (previous) case studies will also
be given in [43].

In conclusion, we expect that our metatheorems will be applicable for a wide range of new case studies
involving accretive, monotone and generalized monotone operators. In particular, we strongly believe that the
general methodological approach for treating set-valued operators and their resolvents and the new correspond-
ing notions of, e.g., majorizable operators introduced in the later sections may serve as a basis for further
metatheorems in the context of nonlinear analysis involving set-valued operators.

2. Set-valued operators in Banach and Hilbert spaces

We begin by surveying the basic notions and results for accretive and (generalized) monotone operators over
normed and inner product spaces. Let (X, ‖·‖) be a normed space, which will always be a real linear space in
this paper.

2.1. Properties of convex and nonexpansive functions. Before moving on to set-valued operators, we
first recall some fundamental notions for functions on normed and inner product spaces. For that, we follow
the definitions of [8] (and [5] regarding conically nonexpansive functions). Let D ⊆ X be nonempty and let
T : D → X be a function. Then T is called

(1) nonexpansive if

∀x, y ∈ D (‖Tx− Ty‖ ≤ ‖x− y‖) ,
(2) firmly nonexpansive if

∀x, y ∈ D∀r > 0 (‖Tx− Ty‖ ≤ ‖r(x− y) + (1− r)(Tx− Ty)‖) ,

(3) α-averaged if α ∈ (0, 1) and

T = (1− α)Id+ αN

for some nonexpansive N : D → X,
(4) α-conically nonexpansive if α ∈ (0,∞) and

T = (1− α)Id+ αN

for some nonexpansive N : D → X.

In the case of α-averaged or α-conically nonexpansive operators, we will often use the trivially equivalent
reformulation that

(1− α−1)Id+ α−1T

is nonexpansive for the respective α.

There are various useful equivalent reformulations of these notions when we pass to inner product spaces
which we describe in the following remark.

Remark 2.1. Let X be an inner product space with inner product 〈·, ·〉 and induced norm ‖·‖. Then T is firmly
nonexpansive if, and only if

∀x, y ∈ D
(
〈x− y, Tx− Ty〉 ≥ ‖Tx− Ty‖2

)
,

α-averaged if, and only if α ∈ (0, 1) and

∀x, y ∈ D
(

(1− α) ‖(Id− T )x− (Id− T )y‖2 ≤ α
(
‖x− y‖2 − ‖Tx− Ty‖2

))
,

and α-conically nonexpansive if, and only if α ∈ (0,∞) and

∀x, y ∈ D
(

2α〈Tx− Ty, (Id− T )x− (Id− T )y〉

≥ (1− 2α) ‖(Id− T )x− (Id− T )y‖2
)
.

It can be easily seen that T is firmly nonexpansive if, and only if T is 1/2-averaged.

Proofs of these facts can be found in [3] and, respectively, [5] for the α-conically nonexpansive case. We will
present formal versions of some of these proofs in the later sections in the context of formal systems for abstract
normed and inner product spaces.
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2.2. Properties of set-valued operators. A set-valued operator on a space X is simply a mapping A : X →
2X .

For such a set-valued operator A, we define graA := {(x, u) ∈ X ×X | u ∈ Ax}, domA := {x ∈ X | Ax 6= ∅}
and ranA :=

⋃
x∈X Ax. We write A−1 for the operator defined by x ∈ A−1u iff u ∈ Ax. We set λA by

(λA)x := {λu | u ∈ Ax}. If B is another set-valued operator on X, we define A + B via (A + B)x := {u + v |
u ∈ Ax ∧ v ∈ Bx}.

The main classes of set-valued operators explored here are the analytically motivated accretive, monotone
and ρ-comonotone operators. All impose some form of ‘separability’ on the sets Ax in relation to a varying x.

Definition 2.2 ([26]). A is called accretive if

∀(x, u), (y, v) ∈ graA, λ > 0 (‖x− y + λ(u− v)‖ ≥ ‖x− y‖)
and A is called m-accretive if ran(Id+ γA) = X for all γ > 0.

Accretivity is also sometimes equivalently characterized (see, e.g., [26] and also [13, 68]), using the normalized
duality mapping J : X → 2X

∗
defined via

J(x) :=
{
j ∈ X∗ | 〈x, j〉 = ‖x‖2 = ‖j‖2

}
where X∗ is the dual space of X. Then A is accretive iff

∀(x, u), (y, v) ∈ graA∃j ∈ J(x− y) (〈u− v, j〉 ≥ 0) .

Now, for an inner product space (X, 〈·, ·〉), we introduced a number of monotonicity notions.

Definition 2.3 (essentially [54, 55]). A is called monotone if

∀(x, u), (y, v) ∈ graA (〈x− y, u− v〉 ≥ 0)

and A is called maximally monotone if it is monotone and graA ( graB implies that B is not monotone, i.e.
the graph of A is not properly contained in the graph of another monotone operator.

Definition 2.4 ([5]). A is called ρ-comonotone for ρ ∈ R if

∀(x, u), (y, v) ∈ graA
(
〈x− y, u− v〉 ≥ ρ ‖u− v‖2

)
and, similarly to before, A is called maximally ρ-comonotone if it is ρ-comonotone and there is no proper
ρ-comonotone extension.

We are here following the definitions and the exposition of [5]. For ρ < 0, the above notions were however
already considered under the name of |ρ|-hypocomonotonicity in [10] (with its dual, |ρ|-hypomonotonicity,
already considered in [62]).

2.3. Resolvents and correspondence results. The main tool for studying these classes of set-valued oper-
ators is their resolvent JAγ , defined as follows for γ > 0:

JAγ := (Id+ γA)−1.

In particular, the following defining equivalence holds:

p ∈ JAγ x iff γ−1(x− p) ∈ Ap.

By that, one can also immediately see that JAγ (as a set-valued mapping) satisfies domJAγ = ran(Id+ γA) and

JAγ x ⊆ domA for all x and γ > 0.
The importance of the resolvent stems mainly from two aspects:

(1) Resolvents are ubiquitous in algorithmic approaches to problems in accretive/monotone operator theory
due to their asymptotic properties.

(2) Most fundamental properties of the operator A correspond to fundamental and well-studied properties
of the resolvent, creating a strong form of duality (see in particular [4]).

We now survey those correspondence results in the spirit of the second item as they are central to our logical
investigations later on. To this end, we begin with accretive operators on normed spaces. For further (basic)
results on these accretive operators and their correspondence theory to their resolvents, see [1, 68]. We, however,
want to in particular highlight the following result.

Theorem 2.5 (essentially [1, 8]). Let A be a set-valued operator on a normed space X. Then the following are
equivalent:
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(a) A is accretive,
(b) JAγ is single-valued and firmly nonexpansive (on its domain) for all γ > 0,

(c) JAγ is single-valued and firmly nonexpansive (on its domain) for some γ > 0,

(d) JAγ is single-valued and nonexpansive (on its domain) for all γ > 0.

The main reference for monotone operators in Hilbert spaces is the comprehensive monograph [3]. Regarding
those monotone operators, we rely on the following correspondence result.

Theorem 2.6 (essentially [1, 8, 55]). Let X be a Hilbert space and A a set-valued operator.

(1) Items (a) - (d) of Theorem 2.5 are equivalent to
(e) A is monotone.

(2) A is maximally monotone if and only if JAγ is single-valued, firmly nonexpansive and ran(Id + γA) = X
for some/any γ > 0.

The last statement is known as Minty’s theorem [55], a deep result in monotone operator theory. We already
see that maximality conditions are linked with the totality of the resolvent, a result which sets a characteristic
theme in the correspondence theory as it extends to various other classes besides monotone operators.

Indeed, as established in the main work on correspondence theory for ρ-comonotone operators [5], we have
an analogous result for these generalized monotone operators.

Theorem 2.7 (essentially [5]). Let X be a Hilbert space and A be a set-valued operator.

(1) The following are equivalent where in each case α = 1
2(ρ/γ+1) :

(a) A is ρ-comonotone.
(b) JAγ is single-valued and α-conically nonexpansive for all/some γ > 0 with ρ > −γ.

(c) JAγ is single-valued and α-averaged for all/some γ > 0 with ρ > −γ/2.
(2) A is maximally ρ-comonotone if, and only if

(a) JAγ is single-valued, α-averaged and total for some/any γ > 0 such that ρ > −γ/2, or

(b) JAγ is single-valued, α-conically nonexpansive and total for some/any γ > 0 such that ρ > −γ,

where α = 1
2(ρ/γ+1) .

This correspondence between totality of the resolvent and set-theoretic maximality does not extend to accre-
tive operators on normed spaces as first asked in [12] and then answered in [9, 11] negatively. The one direction
that remains valid is the following:

Lemma 2.8 (essentially [12]). (1) If ran(Id + γA) = X for some γ > 0, then A has no proper accretive
extension.

(2) Let A be accretive. If ran(Id + γA) = X for some γ > 0, then ran(Id + γA) = X for all γ > 0.

Proof. We only show the first item, the second can be shown as outlined in [12]: Let x, u be such that

(†) ∀(y, v) ∈ graA, λ ≥ 0(‖x− y + λ(u− v)‖ ≥ ‖x− y‖).
We want to show u ∈ Ax. By totality of JAγ , we have that JAγ (x + γu) is well defined and thus x + γu =

JAγ (x+ γu) + ((x+ γu)− JAγ (x+ γu)). Also by definition, we have

γ−1((x+ γu)− JAγ (x+ γu)) ∈ A(JAγ (x+ γu)).

and this combined with (†) implies

0 =
∥∥x− JAγ (x+ γu) + γ(u− γ−1((x+ γu)− JAγ (x+ γu)))

∥∥
≥
∥∥x− JAγ (x+ γu)

∥∥ .
Thus x = JAγ (x + γu) and therefore u = γ−1((x + γu) − JAγ (x + γu)). This gives u ∈ Ax and A therefore is
maximally accretive. �

In light of Theorem 2.5, we may conclude the following:

(1) If there is a γ > 0 with JAγ single-valued, firmly nonexpansive and total, then A is maximally accretive.

(2) If JAγ is single-valued, nonexpansive and total for all γ > 0, then A is maximally accretive.

In particular, m-accretivity implies maximal accretivity.
Also proofs for various directions of Theorems 2.5, 2.6 and 2.7 will be provided in the upcoming section in

the contexts of formal systems for normed and inner product spaces with accretive, monotone or ρ-comonotone
operators.
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3. Logical systems for operators and their resolvents

In this section, we introduce the formal systems capturing operators and their resolvents.

To formally treat those types of operators in systems which allow for bound extraction results, we build on
the usual formal setup for proof mining as developed3 in [20, 31]. In this setup, one extends logics of classical
arithmetic and analysis in all finite types by additional types and constants to handle abstract spaces and
operations on them which are not representable in the sense of representations of Polish spaces in Baire space.

To that end, the next sections provides a short overview of some of the underlying notions, with a particular
focus on those that play a role in the derivation of our results.

3.1. Systems for arithmetic of finite type and extensions. In this section, we introduce the logical systems
needed for the extensions considered later in this paper. Concretely, we first introduce the ‘base system’ Aω
in Section 3.1.1 and discuss the formalization of the real numbers in Aω in Section 3.1.2. Extensions of Aω to
Aω[X, ‖·‖], involving abstract types X, are then considered in Section 3.1.3.

In Section 3.2, we then further extendAω[X, ‖·‖] to accommodate the previously discussed classes of operators
and their resolvents.

3.1.1. The base system Aω. We introduce the ‘base system’ Aω = WE-PAω + QF-AC + DC for (a fragment
of) classical analysis over all finite types T , to be extended with extra axioms in Section 3.1.3. All systems
considered here will be extensions of this basic system Aω as defined in [20, 31]. We only sketch the key features
of Aω and its extensions and refer to [20, 31, 32, 71] for any further details.

The set of types T is defined as follows:

0 ∈ T, ξ, τ ∈ T ⇒ τ(ξ) ∈ T.

These types are stratified by their degrees, defined recursively via

deg(0) := 0, deg(τ(ξ)) := max{deg(τ),deg(ξ) + 1}.

We make similar conventions for dropping parentheses in types as made in [32] (see page 47). We use a short
notation using natural numbers for the pure types P , given by

0 ∈ P, τ ∈ P ⇒ 0(τ) ∈ P,

by recursively defining n+ 1 := 0(n).

The language of WE-PAω/Aω is a many-sorted language with ∧,∨,→ as primitives and containing quantifiers
and variables for all finite types, extended with constants 0 for zero, S for successor and particular constants
Σξ,τ ,Πδ,ξ,τ for the so-called combinators as considered already by Schönfinkel [63] and later used extensively
by Curry and Howard (see [25] for the latter).

Further, the language contains constants Rξ = (R1)ξ, . . . , (Rk)ξ for simultaneous primitive recursion (in the

sense of Gödel [22], see also [32]) for tuples of types ξ. The only relation symbol is =0 for equality at type 0
and the only prime formulas are consequently s =0 t for s, t terms of type 0. New terms are formed from the
constants and variables only via application: if t is a term of type τ(ξ) and s a term of type ξ, then t(s) is a
term of type τ . Higher type equality is treated as a defined notion via

s =ξ t := ∀yξ11 , . . . , y
ξk
k (sy1 . . . yk =0 ty1 . . . yk)

for terms s, t of type ξ = 0ξk . . . ξ1.

The system WE-PAω extends the usual finite-type variant of Peano arithmetic (see [32, 71]) with only the
following weak rule of quantifier-free extensionality

QF-ER :
A0 → s =ξ t

A0 → r[s/xξ] =τ r[t/xξ]

where A0 is a quantifier-free formula, s, t are terms of type ξ, r is a term of type τ and r[s/xξ] denotes
simultaneous substitution of s for all occurrences of x in r. Later, we in particular rely on the following remark.

3We again mention [23, 41, 48, 49, 65] for similar approaches to bound extraction theorems and [17] for metatheorems in the
context of the bounded functional interpretation.
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Remark 3.1. One can actually derive

Σ1-ER :
∃yσA0(y)→ s =ξ t

∃yσA0(y)→ r[s/xξ] =τ r[t/xξ]

with A0, s, t and ξ, τ as before and σ an additional finite type but where we assume that y is not free in r, s,
t. This can be easily seen by noting that

∃yσA0(y)→ s =ξ t ≡ ∀yσ(A0(y)→ s =ξ t)

and the latter implies A0(y)→ s =ξ t. Now, using QF-ER applied to this (where it is important that A0 in the
formulation may have free variables), we get A0(y)→ r[s/xξ] =τ r[t/x

ξ] and universal generalization yields

∀yσ(A0(y)→ r[s/xξ] =τ r[t/x
ξ]) ≡ ∃yσA0(y)→ r[s/xξ] =τ r[t/x

ξ],

which is as required.

Of course, we may actually have tuples instead of a single y in (both variants of) the rule.

As is well-known, one can internally define λ-abstractions via the combinators in the sense that for any term
t of type τ and any variable xξ of type ξ, there is a term λxξ.t of type τ(ξ) such that provably

(λxξ.t)(sξ) =τ t[s/x].

The system Aω now extends WE-PAω by the quantifier-free version of the axiom of choice in finite types

QF-AC : ∀x∃yA0(x, y)→ ∃Y ∀xA0(x, Y x)

where A0 is quantifier free and the x, y may be of arbitrary type and the axiom of dependent choice DC =

{DCξ | ξ ∈ T} where

DCξ : ∀x0, yξ∃zξA(x, y, z)→ ∃fξ(0)∀x0A(x, f(x), f(S(x)))

and where A is now of arbitrary complexity.

3.1.2. Real numbers and related results in Aω. We now discuss how real numbers are represented in Aω and
discuss some essential properties. First of all, rationals and reals are represented as usual as objects of type 0
and 1, respectively. In that way, we follow the definitions and conventions given in [32] and only present those
points crucial to the development of the new metatheorems later on (together with some basic but important
facts). For the coding of rationals as pairs of natural numbers, it will be convenient to fix a pairing function
which we do (following the conventions of [32]) by setting

j(n0,m0) :=

{
minu ≤0 (n+m)2 + 3n+m[2u =0 (n+m)2 + 3n+m] if existent,

00 otherwise.

Using those codes, the operations +Q, ·Q, (·)−1
Q are primitive recursively definable and there exist quantifier-free

formulas =Q, <Q defining the respective relations.

Secondly, on the level of the representation of reals by fast converging Cauchy sequences with a fixed modulus
2−n (see [32]), one can then similarly define formulas =R/<R on type 1 objects which define the corresponding
relations of the real numbers represented by the inputs. These relations, however, are not decidable anymore
but are Π0

1/Σ0
1-formulas, respectively.

One also easily defines closed terms +R, ·R, | · |R representing the usual operations of real arithmetic on these
type 1 objects. Any natural n or rational q can be easily seen as a real defined just via the constant n- or
q-sequence and we write n or q, respectively, for that type 1 representation as well.

However, the definition of the reciprocal (·)−1 in the reals is of a more delicate matter and as this features
prominently in the theory later developed, we want to give a few more details in that case. In fact, there is no
closed term of type 1(1) in WE-PAω which represents γ−1 correctly for all γ 6= 0. Following [30], we handle
this by using a binary term (·)−1

· of type 1(1)(0) such that (γ)−1
l correctly represents γ−1 for all |γ| > 2−l.

An expression like γ−1 is then dealt with by assuming an additional parameter l of type 0 and using (γ)−1
l

together with the additional implicative assumption |γ|R >R 2−l. In practice, this can be mostly ignored and
we thus mainly use γ−1 freely without the additional parameter. However, we discuss some important practical
implications of these problems with the reciprocal in Remark 3.6 later on.

Lastly, note that extensionality of the operations +R, ·R and | · |R w.r.t. =R can be proved in (weak fragments
of) WE-PAω and in the case of (·)−1, extensionality can be shown for all l and f, g such that |f |R, |g|R >R 2−l

(see [30]).
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These type 1 representations can be similarly carried out for other Polish and, in particular, compact spaces
(see [32]).

In the context of the bound extraction theorems established later, we associate a canonical type 1 represen-
tation (r)◦ with a non-negative real r ∈ [0,∞) as introduced in [31] (see also [20, 32])4.

Definition 3.2 ([31]). For r ∈ [0,∞), define (r)◦ ∈ NN via

(r)◦(n) := j(2k0, 2
n+1 − 1),

where

k0 := max k

[
k

2n+1
≤ r
]
.

We also cite some properties of (·)◦ which will be of use later.

Lemma 3.3 ([31]). (1) (r)◦ is a representation of r ∈ [0,∞) in the sense of the above.
(2) For r, s ∈ [0,∞), if r ≤ s, then (r)◦ ≤R (s)◦ and also (r)◦ ≤1 (s)◦.
(3) If r ∈ [0,∞), then (r)◦ is nondecreasing (as a type 1 function).

Further, we write rα for the real represented by some type 1 functional α. In the following, we omit the
subscripts of the arithmetical operations for R to avoid notational overload. Also, we will omit types of variables
whenever convenient and omit types in proofs almost always to make everything more readable.

3.1.3. The base systems and abstract types. In this section, we extendAω toAω[X, ‖·‖] using a new abstract type
X (following [20, 31]). The latter allows us to deal with abstract spaces that cannot necessarily be represented
in Aω/WE-PAω. Define the extended set of types TX as follows:

0, X ∈ TX , ξ, τ ∈ TX ⇒ τ(ξ) ∈ TX .
The theory Aω can then be formulated over the resulting extended language by extending the constants (if
appropriate) to take arguments and produce values in those new types and by trivially extending the axiom
schemes and rules to allow formulas from the new language (see [32] for details on all of this).

Our new type can be used with additional constants and axioms to represent a wide range of spaces and
operations on them, resulting in respective theories extending Aω (formulated over TX) and a detailed discussion
of various examples of such extensions can be found in [20, 31, 32].

The main extension used here will be the theory Aω[X, ‖·‖] for real normed vector spaces, obtained by
extending Aω (formulated over TX) by new constants 0X , 1X of type X, +X of type X(X)(X), −X of type
X(X), ·X of type X(X)(1) and ‖·‖X of type 1(X) together with the relevant defining axioms stating that X
with the operations is a real normed vector space with 1X such that ‖1X‖X =R 1 and −Xx being the additive
inverse of x (see [20, 31, 32]). Further, extensionality of all those operations is provable in Aω[X, ‖·‖]. It should
be noted that =0 is still the only primitive relation and in particular, identity on X is treated as a defined
predicate via

xX =X yX := ‖x−X y‖X =R 0

which is, by the previous discussion on the representation of the reals, a Π0
1-formula and not decidable.

Derived from Aω[X, ‖·‖] is the theory Aω[X, 〈·, ·〉] for real inner product spaces, extending the former by the
parallelogram law5

∀xX , yX
(
‖x+X y‖2X + ‖x−X y‖2X =R 2

(
‖x‖2X + ‖y‖2X

))
.

As is well-known, any inner product space satisfies this law and conversely, any normed space satisfying it
actually admits an inner product which can then be defined via the norm with

〈xX , yX〉X :=1
1

4

(
‖x+X y‖2X − ‖x−X y‖2X

)
.

Also here, extensionality of the defined operation is provable in the system.
Following [20, 31] (see also [32]), we introduce some special notation for denoting specific classes of types

from TX . We call a type ξ of degree n if ξ ∈ T and it has degree ≤ n in the usual sense. Further we call ξ
small if it is of the form ξ = ξ0(0) . . . (0) (including 0, X) for ξ0 ∈ {0, X} and call it admissible if it is of the
form ξ = ξ0(τk) . . . (τ1) (including 0, X) where each τi is small and ξ0 ∈ {0, X} as before.

4Such an association will be non-effective but will behave nice enough with majorization which serves all intends and purposes.
5Here, and in the following, we will omit the type X from the operation ·X or omit ·X altogether to improve the readability of

the formulas.
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Further, we define certain subclasses of existential/universal formulas satisfying certain type restrictions: A
formula A is called a ∀-formula if A = ∀aξAqf (a) with Aqf quantifier-free and all types ξi in ξ = (ξ1, . . . , ξk)

are admissible. A formula A is called an ∃-formula if A = ∃aξAqf (a) with similar ξ.

3.2. Treating operators via total resolvents. In this section, we extend the system Aω[X, ‖·‖] from Section
3.1.3 by constants and axioms with the following essential properties:

• We can formalize theorems and proofs involving abstract accretive and (generalized) monotone set-
valued operators and their (total) resolvents.

• We obtain bound extraction results in the sense of the usual metatheorems of proof mining.

The second item essentially amounts to whether the new constants can be majorized in a suitable sense by
functionals of finite type (see [20, 31]) and whether the corresponding axioms have a monotone functional
interpretation (see [30]). The latter in particular is guaranteed for purely universal axioms.

We divide the corresponding presentation on whether the resolvents are assumed to be total or partial.
Based on the correspondence results discussed in the previous chapter, totality of the resolvent is tied to
maximality conditions of the operators and we will in particular be able to treat maximal (generalized) monotone
operators by treating operators with total resolvents (see in particular Remark 3.4 for a comparison with treating
maximality in an ad hoc way). The following section now presents the underlying reasons for the particular
choice of constants and axioms made later.

3.2.1. Formal systems for total resolvents. At first, to model a set-valued operator A : X → 2X via functionals
of finite type (in the sense of TX), we add a constant χA of type 0(X)(X) to the language of normed spaces
which represents A using a function taking an argument x from X and returning a characteristic function for
Ax6. In that vein, we write y ∈ Ax for χAxy =0 0.

For the resolvent, recall the definition given before:

JAγ := (Id+ γA)−1.

In that way, JAγ is also a set-valued operator. However, as the previously discussed correspondence results

between A and JAγ show, accretivity or (generalized) monotonicity of A imply that JAγ x is actually a singleton
for any x and is thus usually identified with a proper (potentially partial) function X → X. Therefore, we can
add a new constant JχA of type X(X)(1), taking both the parameter γ and the argument of JAγ and outputting

the unique return-value which exists for any input as forced by the type. Motivated by this, we write JAγ for
JχAγ (which is an object of type X(X)). Any semantic interpretation of this language will thus have to interpret
JχA by some total function which, together with a suitable resolvent axiom expressing JAγ := (Id+γA)−1, forces

A to be semantically interpreted by a maximal operator7.
Now, for the right axiom expressing JAγ = (Id + γA)−1, consider this defining equality in the following

formulation for JAγ as a set-valued mapping:

(†) ∀γ1, pX , xX
(
γ >R 0→ (p ∈ JAγ x↔ γ−1(x−X p) ∈ Ap)

)
.

A natural step may be to replace p ∈ JAγ x by p =X JAγ x, under which the above (†) transforms into

∀γ1, pX , xX
(
γ >R 0→ (p =X JAγ x↔ γ−1(x−X p) ∈ Ap)

)
in the language of the constants χA and JχA . This, by the hidden universal quantifier in p =X JAγ x, is of course
not universal. By separating the two directions of the bi-implication into{

∀γ1, pX , xX
(
γ >R 0 ∧ γ−1(x−X p) ∈ Ap→ p =X JAγ x

)
,

∀γ1, pX , xX
(
γ >R 0 ∧ p =X JAγ x→ γ−1(x−X p) ∈ Ap)

)
,

we see that the first one is unproblematic as it is universal but we can even ignore it for now as it will turn out
to be provable in the systems later defined. For the latter, we remove the universal premise by weakening the
statement to its intensional version:

∀γ1, xX
(
γ >R 0→ γ−1(x−X JAγ x) ∈ A(JAγ x)

)
.

6This is conceptually similar to the representation of a designated convex set C in the systems Aω [X, ‖·‖ , C] / Aω [X, ‖·‖ , C]−b

from [20, 31].
7This does not mean that maximality is provable in the to be defined systems as will be extensively discussed later on.
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This is in particular universal and will be the right axiom to treat resolvents of set-valued operators. As we will
later see, the strong version of the above resolvent axiom, i.e.

∀γ1, xX , pX
(
γ >R 0 ∧ p =X JAγ x→ γ−1(x−X p) ∈ Ap

)
turns out to have a strong connection to the maximality and extensionality statements for A.

Remark 3.4. Instead of using the detour of total resolvents, one might consider expressing maximality of an
operator more directly. Consider a monotone operator A. In the language of inner product spaces extended
with χA, the monotonicity of A can be swiftly expressed by the universal sentence

∀xX , yX , uX , vX (u ∈ Ax ∧ v ∈ Ay → 〈x−X y, u−X v〉X ≥R 0) .

but formalizing maximal monotonicity naturally leads to the axiom

∀xX , uX
(
∀yX , vX (v ∈ Ay → 〈x−X y, u−X v〉X ≥R 0)→ u ∈ Ax

)
which seems problematic for establishing such a bound-extraction result as it does not in general seem to have
a monotone functional interpretation.

Indeed, we will later formally see that this can not be avoided and that this route of treating maximal
operators via total resolvents is in some sense optimal if one does not assume some uniform notion of continuity
of A since the maximality statement will turn out to be provably equivalent to the extensionality of the operator
A which has to be unprovable in systems which deal with non-continuous operators and allow for bound
extractions.

With this motivation, we now turn to the precise definitions and the discussion of the systems treating the
various kinds of operators considered before. Note for this, that the upcoming formal systems are concerned
with only one space X and one set-valued operator A : X → 2X . For extensions of this, in various directions,
see the short discussion in Remark 5.10.

3.2.2. Logical systems for m-accretive operators. We first introduce logical systems that can accommodate m-
accretive operators and then, as a ‘litmus test’, derive the basic properties of the latter in the former.

To define the system for m-accretive operators, i.e. accretive operators with total resolvents, we add the
constant χA for the set-valued operator and JχA for the resolvent as before and, besides those, we add three
further constants to the language of Aω[X, ‖·‖], namely a constant γ̃ of type 1, a constant mγ̃ of type 0 and
a constant cX of type X. These are used for majorization of the resolvent constant JχA later on in the sense
that a bound for

∥∥x− JAγ x∥∥ for some x and some γ > 0 will suffice for constructing a majorant of JχA . In
that way, cX designates such an arbitrary point and γ̃ such an arbitrary index where we use mγ̃ to provide a
quantitative version of γ̃ > 0 through stipulating γ̃ ≥R 2−mγ̃ in the following axioms.

The theory Aω[X, ‖·‖ , A, JA] is now officially defined as the extension of the theory Aω[X, ‖·‖] with the
above constants and corresponding axioms

(I) ∀xX , yX(χAxy ≤0 1),
(II) ∀γ1, xX

(
γ >R 0→ γ−1(x−X JAγ x) ∈ A(JAγ x)

)
,

(III)

{
∀xX , yX , uX , vX , λ1

(
u ∈ Ax ∧ v ∈ Ay

→ ‖x−X y +X |λ|(u−X v)‖X ≥R ‖x−X y‖X
)
,

(IV) γ̃ ≥R 2−mγ̃ .

We use |λ| to avoid the universal premise λ ≥R 0 in axiom (III). Note that the behavior of JAγ for γ ≤R 0 is left
undefined.

The system Aω[X, ‖·‖ , A, JA] is strong enough to formalize large parts of the theory of m-accretive operators
and we see examples of some essential theorems on the operator and resolvent that Aω[X, ‖·‖ , A, JA] proves in
the following proposition (formalizing parts of Theorem 2.5) as a first indication of that. We gives sketches of
the formal proofs as they are quite instructive regarding the use of the basic axioms of the above system. For
that, we write Vω as an abbreviation for Aω[X, ‖·‖ , A, JA].

Proposition 3.5. Vω proves:

(1) JAγ is unique for any γ > 0, i.e.

∀γ1, pX , xX
(
γ >R 0 ∧ γ−1(x−X p) ∈ Ap→ p =X JAγ x

)
.
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(2) JAγ is firmly nonexpansive for any γ > 0, i.e.

∀γ1, r1, xX , yX
(
γ >R 0 ∧ r >R 0→

∥∥JAγ x−X JAγ y
∥∥
X

≤R
∥∥r(x−X y) +X (1− r)(JAγ x−X JAγ y)

∥∥
X

)
.

(3) JAγ is nonexpansive for any γ > 0, i.e.

∀γ1, xX , yX
(
γ >R 0→ ‖x−X y‖X ≥R

∥∥JAγ x−X JAγ y
∥∥
X

)
.

(4) JχA is extensional in both arguments:

∀γ1 >R 0, γ′
1
>R 0, xX , x′

X (
x =X x′ ∧ γ =R γ

′ → JAγ x =X JAγ′x
′) .

Proof. (1) Suppose that γ > 0 and that γ−1(x−p) ∈ Ap. Axiom (II) gives γ−1(x−JAγ x) ∈ A(JAγ x). Axiom
(III) then implies that

0 =
∥∥p− JAγ x+ |γ|(γ−1(x− p)− γ−1(x− JAγ x))

∥∥ ≥ ∥∥p− JAγ x∥∥ .
Thus p =X JAγ x since provably γ = |γ| assuming γ > 0.

(2) Let γ > 0. Axiom (II) gives

γ−1(x− JAγ x) ∈ A(JAγ x) and γ−1(y − JAγ y) ∈ A(JAγ y).

Axiom (III) gives∥∥JAγ x− JAγ y∥∥ ≤ ∥∥(JAγ x− JAγ y) + s(γ−1(x− JAγ x)− γ−1(y − JAγ y))
∥∥

=
∥∥(JAγ x− JAγ y) + sγ−1((x− y)− (JAγ x− JAγ y))

∥∥
=
∥∥sγ−1(x− y) + (1− sγ−1)(JAγ x− JAγ y)

∥∥
for any s > 0 using extensionality of the norm. By considering s = rγ, we get∥∥JAγ x− JAγ y∥∥ ≤ ∥∥r(x− y) + (1− r)(JAγ x− JAγ y)

∥∥
for any r > 0.

(3) Let γ > 0. By the previous item (2), we have for r = 1:

∀γ1, xX , yX
(
γ > 0→

∥∥JAγ x− JAγ y∥∥ ≤ ∥∥1(x− y) + (1− 1)(JAγ x− JAγ y)
∥∥) .

We get nonexpansivity using basic arithmetic and extensionality of the norm in Aω[X, ‖·‖].
(4) We get that x =X x′ implies ‖x− x′‖ = 0, and so

∥∥JAγ x− JAγ x′∥∥ = 0 by nonexpansivity. Thus JAγ
is extensional in x for any γ > 0. For extensionality in γ, let γ = γ′ be given with γ, γ′ > 0. Then
γ−1 = γ′−1. By axiom (II), we get that γ−1(x − JAγ x) ∈ A(JAγ x) and γ′−1(x − JAγ′x) ∈ A(JAγ′x). By

axiom (III), we get∥∥JAγ x− JAγ′x+ |γ|(γ−1(x− JAγ x)− γ′−1(x− JAγ′x))
∥∥ ≥ ∥∥JAγ x− JAγ′x∥∥

By extensionality of ‖·‖ and the arithmetic operations in X, we get

0 =
∥∥JAγ x− JAγ′x+ ((x− JAγ x)− (x− JAγ′x))

∥∥
=
∥∥JAγ x− JAγ′x+ |γ|(γ−1(x− JAγ x)− γ′−1(x− JAγ′x))

∥∥
≥
∥∥JAγ x− JAγ′x∥∥ .

Thus
∥∥JAγ x− JAγ′x∥∥ = 0, i.e. JAγ x =X JAγ′x.

�

Remark 3.6. As discussed in the context of the representation of real numbers in WE-PAω already, some
subtleties arise when dealing with reciprocals like in the above presented axioms and theorems and we want to
indicate what these subtleties are and how they can be formally addressed. As mentioned in the discussion of
real arithmetic, formulas containing reciprocal expressions like, e.g., the resolvent axiom

∀γ1, xX
(
γ >R 0→ γ−1(x−X JAγ x) ∈ A(JAγ x)

)
are just seen as abbreviations for extended versions which make the necessary dependency on a parameter l0

with γ >R 2−l explicit, i.e. in the above example, one actually considers

∀γ1, xX , l0
(
γ >R 2−l → (γ)−1

l (x−X JAγ x) ∈ A(JAγ x)
)
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where (·)−1
l is the previously discussed closed term representing the reciprocal correctly for arguments α1

satisfying |α| >R 2−l.
In most situations, like, e.g., in the formal theorems and proofs presented above, these details can be neglected

without loss of generality. But they can feature prominently in some contexts, like the extraction of quantitative
information. For example, item (4) of the above Proposition 3.5 established extensionality of the resolvent with
respect to its first argument, the parameter γ, in Vω, i.e.

Vω ` ∀xX , γ1, γ′
1 (
γ >R 0 ∧ γ′ >R 0 ∧ γ =R γ

′ → JAγ x =X JAγ′x
)
.

Making the hidden quantifiers apparent, we actually prove

∀xX , γ1, γ′
1
, l0, l′

0
, k0∃j0

(
γ ≥R 2−l ∧ γ′ ≥R 2−l

′

∧ |γ − γ′| ≤R 2−j →
∥∥JAγ x−X JAγ′x

∥∥
X
<R 2−k

)
.

and a bound extraction result akin to the other metatheorems of proof mining (which we want to establish
for Vω) should guarantee a computable function realizing j in terms of the parameters which is, moreover,
highly uniform w.r.t. x (maybe only depending on a weak upper bound on the norm) but which will depend
in particular on l and l′ besides the rather immediately obvious dependence on k as an input! Such a function
can indeed be obtained from the proof given above: By the resolvent axiom, we have

γ−1(x− JAγ x) ∈ A(JAγ x) and γ′−1(x− JAγ′x) ∈ A(JAγ′x)

and by accretivity of A, we get∥∥JAγ x− JAγ′x∥∥ ≤ ∥∥JAγ x− JAγ′x+ |γ|(γ−1(x− JAγ x)− γ′−1(x− JAγ′x))
∥∥

=

∥∥∥∥(1− γ

γ′

)
x+

(
γ

γ′
− 1

)
JAγ′x

∥∥∥∥
=

∣∣∣∣1− γ

γ′

∣∣∣∣ ∥∥x− JAγ′x∥∥
as provably |γ| = γ for γ > 0.

Now, let b ≥
∥∥x− JAγ′x∥∥, γ′ ≥ 2−l

′
and |γ − γ′| ≤ 2−j . Then∣∣∣∣1− γ

γ′

∣∣∣∣ =

∣∣∣∣γ′ − γγ′

∣∣∣∣ ≤ |γ′ − γ|γ′
≤ 2−j

2−l′
.

Thus, we have ∥∥JAγ x− JAγ′x∥∥ ≤ b 2−j

2−l′
.

Thus we may take j = bk + l′ + log2 bc as a realizer for j (which is even independent from l). The dependence
on b is explained by the previously mentioned dependence of the upcoming metatheorems on a bound of the
displacement

∥∥x− JAγ x∥∥ for arbitrary x and γ > 0 to majorize the resolvent.

Remark 3.7. Many other parts of the theory of m-accretive operators can be straightforwardly derived in Vω.
Just as an indication for that, we want to shortly mention some properties of a derived operator in this context:
Aγ , the so-called Yosida approximate (which is ubiquitous in the literature, see, e.g., [1]), defined via

Aγ :=
1

γ
(Id− JAγ ).

This can be treated by introducing Aγx via λ-abstraction as

λl0, γ1, xX .
(
(γ)−1

l (x−X JAγ x)
)
.

The additional parameter l in induced here again through the subtleties with reciprocals. As before, we will
continue to be vague about this issue and essentially treat Aγx like an abbreviation for 1

γ (x−X JAγ x).

The following properties of the Yosida approximate are then provable in Vω:

(1) Aγ fulfills the characteristic inclusion for any γ > 0, i.e.

∀γ1, xX (γ >R 0→ Aγx ∈ A(x−X γAγx)) .

(2) Aγ is unique for any γ > 0, i.e.

∀γ1, pX , xX (γ >R 0 ∧ p ∈ A(x−X γp)→ p =X Aγx) .
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(3) Aγ is 2γ−1-Lipschitz continuous for any γ > 0, i.e.

∀γ1, xX , yX
(
γ >R 0→ ‖Aγx−X Aγy‖X ≤R 2γ−1 ‖x−X y‖X

)
.

(4) Aγx is bounded by any y ∈ Ax for any γ > 0, i.e.

∀γ1, xX , yX
(
γ >R 0 ∧ y ∈ Ax→ ‖Aγx‖X ≤R ‖y‖X

)
.

Proofs of those formalized theorems in particular rely on the use of Σ1-ER.

We will now see that extensionality of A is equivalent to the maximality statement for A as well as to the
previously mentioned stronger version of the resolvent axiom

∀γ1, xX , pX
(
γ >R 0 ∧ p =X JAγ x→ γ−1(x−X p) ∈ Ap

)
.

This is not in contradiction to Lemma 2.8 as it shows that extensionality of A features in the respective proof
in an essential way which thus can not be formalized in Vω. In fact, the basis for the proof of parts of the
upcoming theorem is that extensionality of A is the only thing we need to add to Vω to formalize the proof of
the lemma mentioned above.

Theorem 3.8. Over Vω, the following are equivalent:

(1) Extensionality of A, i.e.

∀xX , yX , x′X , y′X (x =X x′ ∧ y =X y′ → χAxy =0 χAx
′y′) .

(2) The strong resolvent axiom, i.e.

∀xX , pX , γ1
(
γ >R 0 ∧ p =X JAγ x→ γ−1(x−X p) ∈ Ap

)
.

(3) Maximal accretivity of A, i.e.

∀xX , uX
(
∀yX , vX , λ1

(
v ∈ Ay

→ ‖x−X y +X |λ|(u−X v)‖X ≥R ‖x−X y‖X
)
→ u ∈ Ax

)
.

(4) The strong resolvent axiom for γ = 1, i.e.

∀xX , pX
(
p =X JA1 x→ (x−X p) ∈ Ap

)
.

(5) Maximal accretivity of A for λ = 1, i.e.

∀xX , uX
(
∀yX , vX

(
v ∈ Ay

→ ‖x−X y +X (u−X v)‖X ≥R ‖x−X y‖X
)
→ u ∈ Ax

)
.

(6) Closure of the graph of A, i.e.

∀xX , yX , xX(0)
(·) , y

X(0)
(·)

(
xn →X x ∧ yn →X y ∧ ∀n0(yn ∈ Axn)→ y ∈ Ax

)
where xn →X x is short for

∀k0∃N0∀m ≥0 N
(
‖xm −X x‖X ≤R 2−k

)
and similar for yn →X y.

Proof. For the whole proof, note that provably 1 > 0 and thus |1| = 1.

(4) ⇒ (1): Let x =X x′ and y =X y′. Using (4), we get in particular that

p =X JA1 x↔ (x− p) ∈ Ap
for all p. Therefore, we have

((y + x)− x) ∈ Ax↔ x =X JA1 (y + x)

↔ x′ =X JA1 (y′ + x′)

↔ ((y′ + x′)− x′) ∈ Ax′

using extensionality of JA1 . Now, provably without any assumptions, we have

((y + x)− x) =X y and ((y′ + x′)− x′) =X y′.

By the quantifier-free extensionality rule, we have y ∈ Ax↔ y′ ∈ Ax′.
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(1) ⇒ (5): Let x, u be such that

∀y, v(v ∈ Ay → ‖x− y + (u− v)‖ ≥ ‖x− y‖).

Provably, without any assumptions, we have

x+ u =X JA1 (x+ u) + ((x+ u)− JA1 (x+ u))

and by axiom (II), we have

1−1((x+ u)− JA1 (x+ u)) ∈ A(JA1 (x+ u))

We get by assumption that

0 =
∥∥x− JA1 (x+ u) + (u− 1−1((x+ u)− JA1 (x+ u)))

∥∥
≥
∥∥x− JA1 (x+ u)

∥∥
using additionally the extensionality of the norm and the arithmetical operations. Thus x =X JA1 (x + u) and
therefore u =X x+u−JA1 (x+u) =X 1−1((x+u)−JA1 (x+u)). Thus, 1−1((x+u)−JA1 (x+u)) ∈ A(JA1 (x+u))
implies u ∈ Ax by extensionality of A.

(3) ⇒ (2): Let γ > 0 be given and assume p =X JAγ x. Then by axiom (II), we get γ−1(x − JAγ x) ∈ A(JAγ x).
By accretivity of A, we get

∀y, v, λ(v ∈ Ay →
∥∥JAγ x− y + |λ|(γ−1(x− JAγ x)− v)

∥∥ ≥ ∥∥JAγ x− y∥∥).

Using extensionality of the norm, we get

∀y, v, λ(v ∈ Ay →
∥∥p− y + |λ|(γ−1(x− p)− v)

∥∥ ≥ ‖p− y‖).
By maximality, we get γ−1(x− p) ∈ Ap.
(2) ⇒ (4) and (5) ⇒ (3): Clear by using the extensionality rule.

(6) ⇒ (1): For x = x′ and y = y′, we have (x)n → x′ and (y)n → y′ where (x)n and (y)n are the constant x-
and y-sequences, respectively. If y ∈ Ax, then by closure of the graph y′ ∈ Ax′.
(5) ⇒ (6): Let xn → x and yn → y as well as yn ∈ Axn for all n. Let v, w be arbitrary with v ∈ Aw. Then,
by axiom (III)

‖xn − w + yn − v‖ ≥ ‖xn − w‖
for all n and thus by taking the limit ‖x− w + y − v‖ ≥ ‖x− w‖. By maximal accretivity, as v, w are arbitrary,
we have y ∈ Ax. �

The whole enterprise of proof mining of course prominently features issues with extensionality as one of the
main theoretical problems around the extraction of computational information. As such, issues with extension-
ality in fact lie at the heart of any such approach. For a deeper discussion of this, we refer to [32].

In our case, as already mentioned above, this issues features most prominently in the fact that no system
which enjoys bound extraction results (akin to the ones established later) can prove the extensionality of the
operator A. In fact, if e.g.

Vω ` ∀xX , yX , x′X , y′X (x =X x′ ∧ y =X y′ → χAxy =0 χAx
′y′)

would indeed be the case, then by unraveling the internal definitions of =X and suitably prenexing the resulting
formula, we would obtain the provability of the following equivalent formulation

Vω ` ∀xX , yX , x′X , y′X∃k0
(
‖x−X x′‖X , ‖y −X y′‖X ≤R 2−k → χAxy =0 χAx

′y′
)
.

This formula is now of the suitable ∀∃-form required by the metatheorems so that one would be able to extract
a functional ω of type 1 such that

∀xX , yX , x′X , y′X , b0
(
‖x‖X , ‖x

′‖X , ‖y‖X , ‖y
′‖X ≤R b

∧ ‖x−X x′‖X , ‖y −X y′‖X ≤R 2−ω(b) → χAxy =0 χAx
′y′
)
.

holds in all normed spaces and for all accretive operators with total resolvents! So, in particular, already for
A(x) = {x} on R (which is maximally monotone, see e.g. [3]) we have (0, 0) ∈ A and in the context of a
functional ω as above, this would yield (2−ω(1)/2, 2−ω(1)) ∈ A which is a contradiction to the definition of A.

Therefore, naturally, the extensionality of A is unprovable in Vω or any suitable extension thereof and this
result, by the above Theorem 3.8, transfers to the unprovability of maximal accretivity.
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This implies, in some sense, that the system Vω is optimal in strength among systems which allow for bound
extraction results and do not require additional quantitative assumption on the operator A like a uniform
continuity assumption (or similar).

Note that as discussed in Section 2, maximal accretivity is in general weaker than m-accretivity (i.e. the
totality of all resolvents) and so we find ourself here in the rather interesting situation that the set-theoretically
(meaning with extensionality of A) weaker property of maximal accretivity becomes incomparable in the absence
of extensionality.

This is by no means however a constructed phenomenon resulting from tying the logical property of exten-
sionality of A (which we set-theoretically take for granted) to the rather artificial concept of maximal accretivity
(which in the literature is almost always replaced by m-accretivity). In fact, as we will later see, the above
equivalence reveals itself to be rather robust and in particular also extends to the case of (generalized) monotone
operators on Hilbert spaces where maximal (ρ-co)monotonicity is shown to also be equivalent to the extension-
ality of A over respectively similar base systems. In this case, through Minty’s theorem and its analogs discussed
in Section 2, the maximal monotonicity is even set-theoretically (meaning again with extensionality) equivalent
to the totality of all resolvents but also in this case, by the previous discussion, unprovable.

All in all, the link between maximality properties and extensionality of the operator A seems to be rather
strong (which is further supported by the fact that the proofs for the equivalences in the above theorem actually
only use very weak fragments of Vω).

Lastly, we want to note however that the system Vω does prove a weakened maximality principle that arises
from the formulation used above by allowing extensionally equal representatives to be included in the graph.

Theorem 3.9. The system Vω proves the following weakened maximality principle:

∀xX , uX
(
∀yX , vX , λ1

(
v ∈ Ay → ‖x−X y +X |λ|(u−X v)‖X ≥R ‖x−X y‖X

)
→ ∃x′X , u′X (x =X x′ ∧ u =X u′ ∧ u′ ∈ Ax′)

)
.

Proof. Similar to the proof of the direction (1) ⇒ (5) of the above Theorem 3.8, we can show that given such x
and u, we have x =X JA1 (x+u) as well as u =X x+u−JA1 (x+u) =X 1−1((x+u)−JA1 (x+u)). Together with
1−1((x+u)−JA1 (x+u)) ∈ A(JA1 (x+u)), which follows from axiom (II), this implies the desired conclusion. �

It is consequently only in this way that the system recognizes the set-theoretic maximality of A. So, if a
proof uses the set-theoretic maximality of A to infer u ∈ Ax but the rest of the proof is extensional in x and
u, then this application of maximality of A can be treated by the system Vω (mitigated through the use of the
resolvent). Note also that full extensionality is admissible in a rule form as we still have the following weak rule
of A-extensionality

F → s =X s′ F → t =X t′

F → (s ∈ At↔ s′ ∈ At′)
for an existential formula F as a special case of the extensionality rule Σ1-ER of Vω.

3.2.3. Logical systems for maximal monotone operators. In this section, we introduce formal systems accom-
modating inner product spaces and corresponding maximal monotone operators (or monotone operators with
total resolvents).

First of all, monotonicity and accretivity are equivalent for inner product spaces (see Theorem 2.6), i.e. we
can make (immediate) use of Vω . Hence, adding the axioms (I)-(IV) from before to Aω[X, 〈·, ·〉] (or, in other
words, adding the parallelogram law to Vω) results in a corresponding system for monotone operators with total
resolvents which we denote by Aω[X, 〈·, ·〉, A, JA].

We again begin with some elementary theorems of T ω = Aω[X, 〈·, ·〉, A, JA] where, in particular, T ω will
prove monotonicity of A and thus behave as if we would have used this as an axiom instead (as accretivity
is conversely provable from monotonicity in the inner product setting, see Remark 3.13). In that vein, the
following proposition formalizes parts of Theorem 2.6 and also in essence provides a proof for parts of Remark
2.1 regarding the alternative definition of firm nonexpansivity.

Proposition 3.10. Aω[X, 〈·, ·〉] proves:

(1) ∀xX , yX(〈x, y〉X ≤R 0↔ ∀α1(‖x‖X ≤R ‖x−X |α|y‖X)).

Further, T ω proves:
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(2) A is monotone, i.e.

∀xX , yX , uX , vX (u ∈ Ax ∧ v ∈ Ay → 〈x−X y, u−X v〉X ≥R 0) .

(3) JAγ satisfies the alternative notion of firm nonexpansivity for any γ > 0, i.e.

∀γ1, xX , yX
(
γ >R 0→ 〈x−X y, JAγ x−X JAγ y〉X ≥R

∥∥JAγ x−X JAγ y
∥∥2

X

)
.

Proof. (1) A proof as hinted on in [3], Lemma 2.13, (i) can be immediately formalized in the system and
we thus omit the details.

(2) Let u ∈ Ax and v ∈ Ay. By accretivity, for any λ, we get

‖x− y + |λ|(u− v)‖ ≥ ‖x− y‖ .
By item (1), we get

0 ≥ 〈x− y,−(u− v)〉 = −〈x− y, u− v〉
and thus 〈x− y, u− v〉 ≥ 0.

(3) We give a similar proof as in [3], Proposition 4.4. Let γ > 0. Applying item (1) to JAγ x − JAγ y and

(JAγ x− JAγ y)− (x− y), we get∥∥JAγ x− JAγ y∥∥2 ≤ 〈x− y, JAγ x− JAγ y〉
iff 〈JAγ x− JAγ y, (JAγ x− JAγ y)− (x− y)〉 ≤ 0

iff ∀α > 0
(∥∥JAγ x− JAγ y∥∥ ≤ ∥∥(JAγ x− JAγ y)− α((JAγ x− JAγ y)− (x− y))

∥∥)
iff ∀α > 0

(∥∥JAγ x− JAγ y∥∥ ≤ ∥∥(1− α)(JAγ x− JAγ y) + α(x− y)
∥∥) .

The latter, i.e. the original notion of firm nonexpansivity, is provable by Proposition 3.5.
�

We can obtain a similar characterization of extensionality ofA which, in this inner product case, is additionally
equivalent to maximal monotonicity of A, as indicated by parts of Theorem 2.6.

Theorem 3.11. Over T ω, items (1) - (6) of Theorem 3.8 are pairwise equivalent to each other and additionally
to

(7) maximal monotonicity of A, i.e.

∀xX , uX
(
∀yX , vX (v ∈ Ay → 〈x−X y, u−X v〉X ≥R 0)→ u ∈ Ax

)
.

Proof. By Theorem 3.8, it thus suffices to show (3)⇔ (7).

(2) ⇒ (7): Let x, u be such that

∀y, v(v ∈ Ay → 〈x− y, u− v〉 ≥ 0).

By Proposition 3.10, (1), we get

∀y, v(v ∈ Ay → ∀α(‖x− y + |α|(u− v)‖ ≥ ‖x− y‖)).
Using the assumed (3), we get u ∈ Ax.

(7) ⇒ (3): Let x, u be such that

∀y, v, λ(v ∈ Ay → ‖x− y + |λ|(u− v)‖ ≥ ‖x− y‖).
Again, by Proposition 3.10, (1), we get

∀y, v(v ∈ Ay → 〈x− y, u− v〉 ≥ 0)

and thus, the assumed (7) implies u ∈ Ax. �

Note however that Theorem 3.9 also extends suitably to this case of maximal monotonicity.

In this light, maximality links with extensionality which is, as discussed before, in general unprovable. This
potentially hinders formalizations of theorems that use said maximality which are ubiquitous in the literature.
We will later see quantitative forms of extensionality which can be added to these systems to treat proofs where
this features as an essential assumption. However, we want to make the case that many applications actually
only assume maximal monotonicity in order to use a total resolvent (or can be rephrased as such). This,
together with the fact that the resolvent is provably extensional and that we still have the extensionality rule
with existential premises, allows for substantial results on maximal monotone operators to be carried out in T ω.
For an example of this, we consider the following proposition. The original result (see, e.g., Proposition 23.31
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from [3]) assumes maximal monotonicity of A. We will however see that a total extensional resolvent with an
extensionality rule for A is sufficient. Also, the properties will later be useful for the proof of the metatheorems.

Proposition 3.12. T ω proves:

(1) ∀γ1, λ1, xX
(
γ >R 0 ∧ λ >R 0→ JAλ x =X JAγ

(
γ
λx+X (1− γ

λ )JAλ x
))
.

(2) ∀γ1, λ1, xX
(
γ >R 0 ∧ λ >R 0→

∥∥x−X JAγ x
∥∥
X
≤R

(
2 + γ

λ

) ∥∥x−X JAλ x
∥∥
X

)
.

Proof. (1) By axiom (II), we get

λ−1(x− JAλ x) ∈ A(JAλ x).

Now, provably in T ω using the assumptions λ > 0 and γ > 0, we have

λ−1(x− JAλ x) =X
γ

λγ
(x− JAγ x) =X

1

γ

(γ
λ
x+

(
1− γ

λ

)
JAλ x− JAλ x

)
.

By the extensionality rule for A with existential premises, we get

1

γ

(γ
λ
x+

(
1− γ

λ

)
JAλ x− JAλ x

)
∈ A(JAλ x)

which implies JAλ x =X JAγ
(
γ
λx+

(
1− γ

λ

)
JAλ x

)
by Proposition 3.5, (1).

(2) Using item (1) and Proposition 3.5, (3), we get∥∥x− JAγ x∥∥ ≤ ∥∥JAγ x− JAλ x∥∥+
∥∥x− JAλ x∥∥

=
∥∥∥JAγ x− JAγ (γλx+

(
1− γ

λ

)
JAλ x

)∥∥∥+
∥∥x− JAλ x∥∥

≤
∥∥∥x− γ

λ
x−

(
1− γ

λ

)
JAλ x

∥∥∥+
∥∥x− JAλ x∥∥

≤
(

1 +
∣∣∣1− γ

λ

∣∣∣) ∥∥x− JAλ x∥∥
≤
(

2 +
γ

λ

)∥∥x− JAλ x∥∥ .
�

Remark 3.13. (1) The above applications of the extensionality rule rely on the assumptions γ >R 0 and
λ >R 0 which are not quantifier-free but existential. Thus also here, the derivable Σ1-ER from Remark
3.1 is crucial.

(2) The above results can, as apparent from the proof, already be established in Vω. The result is however
much more instructive if phrased for T ω, since (as already highlighted in the comment preceding the
proposition) Proposition 23.31 in [3] actually states the results with the assumption of maximal mono-
tonicity of A which, however, is not necessary here but only totality of the resolvent together with a
weak rule of extensionality of A.

(3) Further nice applications of the extensionality rule (with existential premises) are the following alter-
native axiomatizations of the theories T ω and Vω:
(a) In any variant of the theory Vω where the accretivity axiom for A is replaced by

i. nonexpansivity for JAγ for all γ > 0 (and uniqueness of the resolvent), i.e.{
∀xX , yX , γ1

(
γ >R 0→ ‖x−X y‖X ≥R

∥∥JAγ x−X JAγ y
∥∥
X

)
,

∀γ1, pX , xX
(
γ >R 0 ∧ γ−1(x−X p) ∈ Ap→ p =X JAγ x

)
,

or ii. firm nonexpansivity for JAγ for all γ > 0 (and uniqueness of the resolvent), i.e.
∀γ1, r1, xX , yX

(
γ >R 0 ∧ r >R 0→

∥∥JAγ x−X JAγ y
∥∥
X

≤R
∥∥r(x−X y) +X (1− r)(JAγ x−X JAγ y)

∥∥
X

)
,

∀γ1, pX , xX
(
γ >R 0 ∧ γ−1(x−X p) ∈ Ap→ p =X JAγ x

)
,

or iii. firm nonexpansivity for JA1 (and uniqueness of the resolvent), i.e.
∀r1, xX , yX

(
r >R 0→

∥∥JA1 x−X JA1 y
∥∥
X

≤R
∥∥r(x−X y) +X (1− r)(JA1 x−X JA1 y)

∥∥
X

)
,

∀γ1, pX , xX
(
γ >R 0 ∧ γ−1(x−X p) ∈ Ap→ p =X JAγ x

)
,
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one can actually prove the accretivity axiom. This formalizes parts of Theorem 2.5 but we omit
the corresponding proofs as the ones provided in [1, 68] can be almost immediately formalized.

(b) In the theory T ω, the accretivity axiom could be similarly replaced with either
i. monotonicity of A, i.e.

∀xX , yX , uX , vX (u ∈ Ax ∧ v ∈ Ay → 〈x−X y, u−X v〉X ≥R 0) ,

or ii. with the alternative notion of firm nonexpansivity for JA1 (together with uniqueness of the
resolvent), i.e.{

∀xX , yX
(
〈x−X y, JA1 x−X JA1 y〉X ≥R

∥∥JA1 x−X JA1 y
∥∥2

X

)
,

∀pX , xX
(
(x−X p) ∈ Ap→ p =X JA1 x

)
.

This formalizes parts of Theorem 2.6 but, again, the proofs provided in the corresponding standard
references [1, 3, 16] can be immediately formalized which is why we omit further details.

3.2.4. Logical systems for maximal ρ-comonotone operators. Lastly, we formulate logical systems that can ac-
commodate maximal ρ-comonotone operators, the latter as introduced in [10].

These ρ-comonotone operators are a special class of generalized monotone operators in that we relax the
previous monotonicity inequality to

〈x− y, u− v〉 ≥ ρ ‖u− v‖2

for (x, u), (y, v) ∈ graA and for some (potentially negative) parameter ρ ∈ R.

For treating operators which are maximally ρ-comonotone, we add constants ρ̃ of type 1 representing a name
for ρ and nγ̃ of type 0 to the language of Aω[X, 〈·, ·〉, A, JA]. Again, γ̃ serves as an anchor index to majorize
the resolvent via bounding

∥∥cX −X JAγ̃ cX
∥∥
X

. For that, besides the previous condition γ̃ ≥R 2−mγ̃ , we need a

further condition ρ̃ ≥R −γ̃ + 2−nγ̃ to quantitatively express ρ̃ > −γ̃ as we actually only consider resolvents JAγ
for such indices γ > 0 (as discussed later).

The theory of a maximal ρ-comonotone operatorsAω[X, 〈·, ·〉, A, JA, ρ̃] is then defined by extendingAω[X, 〈·, ·〉]
with the axioms

(I) ∀xX , yX(χAxy ≤0 1),
(II) ∀γ1, xX

(
γ >R 0→ γ−1(x−X JAγ x) ∈ A(JAγ x)

)
,

(III) ∀xX , yX , uX , vX
(
u ∈ Ax ∧ v ∈ Ay → 〈x−X y, u−X v〉X ≥R ρ̃ ‖u−X v‖2X

)
,

(IV) γ̃ ≥R 2−mγ̃ ,
(V) ρ̃ ≥R −γ̃ + 2−nγ̃ .

We will at first develop most of the theory for maximally ρ-comonotone operators over Aω[X, 〈·, ·〉, A, JA, ρ̃].
However, in the context of the bound extraction theorems later on, we will restrict to a versionAω[X, 〈·, ·〉, A, JA, ρ̃∗]
where we only specify the behavior of the resolvents JAγ for ρ > −γ/2, i.e. we replace axiom (II) by

(II1) ∀γ1, xX
(
ρ̃ >R −γ/2 ∧ γ >R 0→ γ−1(x−X JAγ x) ∈ A(JAγ x)

)
and axiom (V) by

(V1) ρ̃ ≥R −γ̃/2 + 2−nγ̃ .

We mainly do this as the resolvents with indices satisfying ρ > −γ/2 behave nicely w.r.t. majorization in
the proof of the bound extraction theorem later on. This has, however, not a big impact on the range of the
theorems as this assumption is anyway made in current applications (see [37]). See also the later Remark 3.18
for how that effects the following propositions.

We write Uω as a shorthand for the system Aω[X, 〈·, ·〉, A, JA, ρ̃] and U∗ω for Aω[X, 〈·, ·〉, A, JA, ρ̃∗]. We
again exhibit some of the range of the formalizable theory by presenting some elementary properties of the
resolvent that we can prove in the previously introduced systems. The following proposition is in that vein a
partial formalization of Theorem 2.7. This result mainly stems from the work [5] and most proofs can just be
immediately formalized (after careful inspection of what axioms and rules are necessary in the corresponding
formal system). For that reason, we omit most of the proofs and only include particularly interesting or
instructive examples.

Proposition 3.14. Aω[X, 〈·, ·〉] proves:

(1) For any α1 ∈ (0, 1] and any xX , yX :

α2(‖x‖2X −
∥∥(1− α−1)x+X α−1y

∥∥2

X
) =R α(‖x‖2X − α

−1(1− α) ‖x−X y‖2X − ‖y‖
2
X).
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(2) For any α1 and any xX , yX :

α2 ‖x‖2X − ‖(α− 1)x+X y‖2X =R 2α〈x−X y, y〉X − (1− 2α) ‖x−X y‖2X .
Further, Uω proves:

(3) JAγ is single-valued if ρ̃ > −γ, i.e.

∀pX , xX , γ1
(
γ >R 0 ∧ ρ̃ >R −γ ∧ γ−1(x−X p) ∈ Ap→ p =X JAγ x

)
.

(4) JχA is extensional in both arguments if ρ̃ > −γ, i.e.

∀γ1, γ′
1
, xX , x′

X(
γ >R 0 ∧ γ′ >R 0 ∧ ρ̃ >R −γ
∧ x =X x′ ∧ γ =R γ

′ → JAγ x =X JAγ′x
′).

(5) JAγ satisfies the alternative notion of being α-conically nonexpansive for α = 1
2(ρ̃/γ+1) if ρ̃ > −γ, i.e.

∀γ1, xX , yX
(
γ >R 0 ∧ ρ̃ >R −γ

→ 2α〈JAγ x−X JAγ y, (x−X JAγ x)−X (y −X JAγ y)〉X

≥R (1− 2α)
∥∥(x−X JAγ x)−X (y −X JAγ y)

∥∥2

X

)
.

(6) JAγ is α-conically nonexpansive for α = 1
2(ρ̃/γ+1) if ρ̃ > −γ, i.e. α ∈ (0,∞) and

(1− α−1)Id+ α−1JAγ is nonexpansive.

(7) JAγ is nonexpansive if ρ̃ ≥ −γ/2, i.e.

∀γ1, xX , yX
(
γ >R 0 ∧ ρ̃ ≥R −γ/2→

∥∥JAγ x−X JAγ y
∥∥
X
≤R ‖x−X y‖X

)
.

(8) JAγ satisfies the alternative notion of being α-averaged for α = 1
2(ρ̃/γ+1) if ρ̃ ≥ −γ/2, i.e.

∀γ1, xX , yX
(
γ >R 0 ∧ ρ̃ ≥R −γ/2

→ (1− α)
∥∥(x−X JAγ x)−X (y −X JAγ y)

∥∥2

X

≤R α
(
‖x−X y‖2X −

∥∥JAγ x−X JAγ y
∥∥2

X

))
.

(9) JAγ is α-averaged for α = 1
2(ρ̃/γ+1) if ρ̃ > −γ/2, i.e. α ∈ (0, 1) and

(1− α−1)Id+ α−1JAγ is nonexpansive.

Proof. (1) A proof along the lines hinted in Lemma 2.17, (i) from [3] can be straightforwardly formalized.
(3) Suppose γ > 0 and ρ̃ > −γ and let γ−1(x − p) ∈ Ap. By axiom (II), we get γ−1(x − JAγ x) ∈ A(JAγ x)

and by axiom (III), we get

−γ−1
∥∥p− JAγ x∥∥2

= γ−1〈JAγ x− p, p− JAγ x〉
= 〈JAγ x− p, γ−1(x− JAγ x)− γ−1(x− p)〉

≥ ρ̃
∥∥γ−1(x− JAγ x)− γ−1(x− p)

∥∥2

= ρ̃/γ2
∥∥p− JAγ x∥∥2

.

As ρ̃ > −γ, we get
∥∥p− JAγ x∥∥ = 0, i.e. p =X JAγx.

(4) Let γ, γ′ > 0 with γ = γ′ and let x =X x′. By axiom (II), we get

γ−1(x− JAγ x) ∈ A(JAγ x) and γ′−1(x′ − JAγ′x′) ∈ A(JAγ′x
′).

Axiom (III) gives

−γ−1
∥∥JAγ x− JAγ′x′∥∥2

= γ−1〈JAγ x− JAγ′x′, JAγ′x′ − JAγ x〉
= 〈JAγ x− JAγ′x′, γ−1(x− JAγ x)− γ′−1(x′ − JAγ′x′)〉

≥ ρ̃
∥∥γ−1(x− JAγ x)− γ′−1(x′ − JAγ′x′)

∥∥2

= ρ̃/γ2
∥∥JAγ′x′ − JAγ x∥∥2
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where we in particular used the extensionality of the scalar product, the norm and the arithmetical
operations on X and R. Again, as ρ̃ > −γ, we get JAγ′x

′ =X JAγ x.
�

Note that the above items (6) and (9) are formalizations for parts of Remark 2.1 regarding the alternative
definitions for averaged and conically nonexpansive mappings.

Remark 3.15. Similarly to Remark 3.7, a much larger part of the theory of ρ-comonotone operators can be
formalized rather immediately and we again exemplify this by noting some essential properties of the important
Yosida approximate which are provable in Uω, namely

(1) Aγ fulfills the characteristic inclusion for any γ > 0, i.e.

∀γ1, xX(γ >R 0→ Aγx ∈ A(x−X γAγx)).

(2) Aγ is unique for any γ > 0 with ρ̃ > −γ, i.e.

∀γ1, pX , xX(γ >R 0 ∧ ρ̃ >R −γ ∧ p ∈ A(x−X γp)→ p =X Aγx).

(3) Aγ is 2γ−1-Lipschitz continuous for any γ > 0 with ρ̃ ≥ −γ/2, i.e.

∀γ1, xX , yX(γ >R 0 ∧ ρ̃ ≥R −γ/2→ ‖Aγx−X Aγy‖X ≤R 2γ−1 ‖x−X y‖X).

(4) Aγx is bounded by any y ∈ Ax for any γ > 0 with ρ̃ ≥ −γ/2, i.e.

∀γ1, xX , yX(γ >R 0 ∧ ρ̃ ≥R −γ/2 ∧ y ∈ Ax→ ‖Aγx‖X ≤R ‖y‖X).

Also in the context of comonotone operators, we can get a nice characterization of maximal ρ-comonotonicity
in terms of extensionality of the operator A, akin to the previous results. This amounts to formally carrying
out the proof given in [5] for parts of Theorem 2.7.

Theorem 3.16. Over Uω, the following are equivalent:

(1) Extensionality of A, i.e.

∀xX , yX , x′X , y′X (x =X x′ ∧ y =X y′ → χAxy =0 χAx
′y′)

(2) The strong resolvent axiom for ρ > −γ, i.e.

∀γ1, xX , pX
(
γ >R 0 ∧ ρ̃ >R −γ ∧ p =X JAγ x→ γ−1(x−X p) ∈ Ap

)
.

(3) Maximal ρ-comonotonicity of A, i.e.

∀xX , uX
(
∀yX , vX

(
v ∈ Ay → 〈x−X y, u−X v〉X ≥R ρ̃ ‖u−X v‖2X

)
→ u ∈ Ax

)
.

(4) Closure of the graph of A, i.e.

∀xX , yX , xX(0)
(·) , y

X(0)
(·)

(
xn →X x ∧ yn →X y ∧ ∀n0(yn ∈ Axn)→ y ∈ Ax

)
.

with →X as before.

Proof. (1) ⇒ (2): Let γ > 0 and ρ̃ > −γ and suppose p =X JAγ x. By axiom (II), we get

γ−1(x− JAγ x) ∈ A(JAγ x).

Extensionality of A gives γ−1(x− p) ∈ Ap.
(2) ⇒ (3): Let x, u be such that

∀y, v(v ∈ Ay → 〈x− y, u− v〉 ≥ ρ̃ ‖u− v‖2).

Let γ > 0 be such that ρ̃ > −γ. We have

γ−1((x+ γu)− JAγ (x+ γu)) ∈ A(JAγ (x+ γu))

by axiom (II). Then, we get

− γ−1
∥∥x− JAγ (x+ γu)

∥∥2

= 〈x− JAγ (x+ γu),−γ−1(x− JAγ (x+ γu))〉
= 〈x− JAγ (x+ γu), u− γ−1((x+ γu)− JAγ (x+ γu))〉

≥ ρ̃
∥∥u− γ−1((x+ γu)− JAγ (x+ γu))

∥∥2

= ρ̃γ−2
∥∥x− JAγ (x+ γu)

∥∥2
.
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As ρ̃ > −γ, we get
∥∥x− JAγ (x+ γu)

∥∥2
= 0, i.e. x =X JAγ (x+ γu). By assumption of (2), we have

γ−1((x+ γu)− x) ∈ Ax

which implies u ∈ Ax via the extensionality rule.

(3) ⇒ (4): Let xn → x and yn →X y as well as yn ∈ Axn for all n. Let v, w be arbitrary with v ∈ Aw. Then,
by axiom (III)

〈xn − w, yn − v〉 ≥ ρ̃ ‖yn − v‖2

for all n and thus by taking the limit 〈x− w, y − v〉 ≥ ρ̃ ‖y − v‖2. By maximal ρ-comonotonicity, as v, w were
arbitrary, we have y ∈ Ax.

(4) ⇒ (1): Similar to (6)⇒ (1) of Theorem 3.8. �

Similar to before, also here Theorem 3.9 extends to maximal ρ-comonotonicity with suitable modifications.

By formalizing Proposition 2.4 of [37], we get a similar result on the fundamental resolvent equality as given
in Proposition 3.12, now for the system Uω (modulo some requirements on ρ̃).

Proposition 3.17. Uω proves:

(1)

{
∀γ1, λ1, xX

(
γ >R 0 ∧ λ >R 0 ∧ ρ̃ >R −γ
→ JAλ x =X JAγ

(
γ
λx+X

(
1− γ

λ

)
JAγ x

) )
.

(2)

∀γ
1, λ1, xX

(
γ >R 0 ∧ λ >R 0 ∧ ρ̃ ≥R −γ2
→
∥∥x−X JAγ x

∥∥
X
≤R

(
2 + γ

λ

) ∥∥x−X JAλ x
∥∥
X

)
.

Proof. For items (1) and (2), the proof is essentially the same as for Proposition 3.12. One just replaces
Proposition 3.5, (1) by Proposition 3.14, (3) and Proposition 3.5, (3) by Proposition 3.14, (7) respectively. �

Remark 3.18. The above propositions also hold for U∗ω in a slightly modified form:

(1) Proposition 3.14, items (3) - (6) hold with ρ̃ >R −γ/2 instead of ρ̃ >R −γ. Items (7) and (8) hold with
ρ̃ >R −γ/2 instead of ρ̃ ≥R −γ/2. Item (9) stays valid unchanged.

(2) Theorem 3.16 holds with ρ̃ >R −γ/2 instead of ρ̃ >R −γ for the strong resolvent axiom.
(3) Proposition 3.17, item (1) holds with ρ̃ >R −λ/2∧ ρ̃ >R −γ/2 instead of ρ̃ >R −γ. Item (2) holds with

ρ̃ >R −λ/2 ∧ ρ̃ >R −γ/2 instead of ρ̃ ≥R −γ/2.

Remark 3.19. We again can consider alternative axiomatizations for the theories Uω and U∗ω:

(1) In any variant of the theory Uω where the ρ-comonotonicity axiom for A is replaced by
i. JAγ is α-conically nonexpansive (and unique) for γ > 0, ρ̃ > −γ with α = 1

2(ρ̃/γ+1) , i.e.
∀γ1, xX , yX

(
γ >R 0 ∧ ρ̃ >R −γ

→ 2α〈JAγ x−X JAγ y, (x−X JAγ x)−X (y −X JAγ y)〉X
≥R (1− 2α)

∥∥(x−X JAγ x)−X (y −X JAγ y)
∥∥2

X

)
,

∀pX , xX , γ1
(
γ >R 0 ∧ ρ̃ >R −γ ∧ γ−1(x−X p) ∈ Ap→ p =X JAγ x

)
,

or ii. JAγ is α-averaged (and unique) for γ > 0, ρ̃ > −γ/2 with α = 1
2(ρ̃/γ+1) , i.e.

∀γ1, xX , yX
(
γ >R 0 ∧ ρ̃ >R −γ/2

→ (1− α)
∥∥(x−X JAγ x)−X (y −X JAγ y)

∥∥2

X

≤R α
(
‖x−X y‖2X −

∥∥JAγ x−X JAγ y
∥∥2

X

))
,

∀pX , xX , γ1
(
γ >R 0 ∧ ρ̃ >R −γ/2 ∧ γ−1(x−X p) ∈ Ap→ p =X JAγ x

)
,

one can actually prove the ρ-comonotonicity axiom. These equivalences also stem from the work [5] and
arguments along the lines discussed there can be immediately formalized which is why we omit further
details.

(2) The same holds for the theory U∗ω if in item i., ρ̃ >R −γ is replaced by ρ̃ >R −γ/2.

This formalizes parts of Theorem 2.7.
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3.3. Treating operators with partial resolvents. Some applications of accretive or (generalized) monotone
operators do not require full maximality but only impose certain so-called range conditions on the operator
which force the domains of the resolvents to be ’large enough’ (which will be discussed in some detail later on).
To accommodate for such operators, we now discuss how the previous approach needs to be modified to treat
partial resolvents.

We opt for the following strategy: We still use a constant JχA of type X(X)(1). Instead of specifying the
behavior of this constant on any point x as, e.g., done by

∀γ1, xX
(
γ >R 0→ γ−1(x−X JAγ x) ∈ A(JAγ x)

)
,

we only specify it on its domain in the sense of

∀γ1, xX
(
γ >R 0 ∧ x ∈ domJAγ → γ−1(x−X JAγ x) ∈ A(JAγ x)

)
.

In aiming for bound extraction theorems, this is of course only a viable option if x ∈ domJAγ can be suitably
represented such that the resulting axiom has a monotone functional interpretation.

Total or not, the domain of the resolvent always fulfills, as discussed in Section 2.3, the equation

domJAγ = ran(Id+ γA)

and the latter is definable via

x ∈ ran(Id+ γA) iff ∃y (x ∈ y + γAy)

iff ∃y, z (z ∈ Ay ∧ x = y + γz)

iff ∃y, z
(
z ∈ Ay ∧ z =

1

γ
(x− y)

)
.

Now, the hidden universal quantifier in z = 1
γ (x − y), if formalized via =X , can’t be majorized and thus this

version can’t be freely added as an implicative assumption. However, we can opt for the intensional version

∃yX
(

1

γ
(x−X y) ∈ Ay

)
.

We will later see that the extensional version is connected with the extensionality of A, similar as in the case of
the previous strong resolvent axiom, and thus has to be unprovable. Therefore, with that choice we obtain the
theories

(1) Aω[X, ‖·‖ , A, JA]p,
(2) Aω[X, 〈·, ·〉, A, JA]p,
(3) Aω[X, 〈·, ·〉, A, JA, ρ̃]p,
(4) Aω[X, 〈·, ·〉, A, JA, ρ̃∗]p,

from the previous ones by replacing the axiom

(II) ∀γ1, xX
(
γ >R 0→ γ−1(x−X JAγ x) ∈ A(JAγ x)

)
from before with

(II′) ∀γ1, xX
(
γ >R 0 ∧ ∃yX

(
γ−1(x−X y) ∈ Ay

)
→ γ−1(x−X JAγ x) ∈ A(JAγ x)

)
.

In the case of Aω[X, 〈·, ·〉, A, JA, ρ̃∗]p, we replace the previous

(II1) ∀γ1, xX
(
ρ̃ >R −γ/2 ∧ γ >R 0→ γ−1(x−X JAγ x) ∈ A(JAγ x)

)
by

∀γ1, xX
(
ρ̃ >R −γ/2 ∧ γ >R 0

∧ ∃yX
(
γ−1(x−X y) ∈ Ay

)
→ γ−1(x−X JAγ x) ∈ A(JAγ x)

)
.(II′1)

The constant cX , which was previously only used to designate an arbitrary anchor point for majorization, is
now used to actually designate a common element of the domains of all JAγ (with ρ̃ > −γ/2 in the case of

Aω[X, 〈·, ·〉, A, JA, ρ̃∗]p) and for that we add the corresponding defining axiom

(VI) ∀γ1
(
γ >R 0→ γ−1(cX −X JAγ cX) ∈ A(JAγ cX)

)
which we vary, in the case of Aω[X, 〈·, ·〉, A, JA, ρ̃∗]p, to

(VI1) ∀γ1
(
γ >R 0 ∧ ρ̃ >R −γ/2→ γ−1(cX −X JAγ cX) ∈ A(JAγ cX)

)
.
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This assumption is easily satisfiable in many applications as the operator A is often assumed to have a non-empty
domain and that it satisfies a range condition like

domA ⊆
⋂
γ>0

ran(Id+ γA).

We use the shorthands Vωp , T ωp , Uωp and U∗ωp for the systems (1) - (4) and from now on use the abbreviation

x ∈ dom(JAγ ) := ∃yX
(
γ−1(x−X y) ∈ Ay

)
.

We obtain the following proposition as an immediate generalization of the previous Propositions 3.5, 3.10 and
3.14.

Proposition 3.20. Vωp proves:

(1) JAγ is unique for any γ > 0, i.e.

∀γ1, pX , xX
(
γ >R 0 ∧ γ−1(x−X p) ∈ Ap→ p =X JAγ x

)
.

(2) JAγ is firmly nonexpansive for any γ > 0 (on its domain), i.e.

∀γ1, r1, xX , yX
(
γ >R 0 ∧ x ∈ dom(JAγ ) ∧ y ∈ dom(JAγ ) ∧ r >R 0

→
∥∥JAγ x−X JAγ y

∥∥
X
≤R

∥∥r(x−X y) +X (1− r)(JAγ x−X JAγ y)
∥∥
X

)
.

(3) JAγ is nonexpansive for any γ > 0 (on its domain), i.e.

∀γ1, xX , yX
(
γ >R 0 ∧ x ∈ dom(JAγ ) ∧ y ∈ dom(JAγ )

→ ‖x−X y‖X ≥R
∥∥JAγ x−X JAγ y

∥∥
X

)
.

(4) JA is extensional in both arguments (on its domain), i.e.
∀γ1 >R 0, xX , x′

X(
x ∈ dom(JAγ )

∧x′ ∈ dom(JAγ ) ∧ x =X x′ → JAγ x =X JAγ′x
′),

∀γ1 >R 0, γ′
1
>R 0, xX

(
x ∈ dom(JAγ )

∧x ∈ dom(JAγ′) ∧ γ =R γ
′ → JAγ x =X JAγ′x

)
.

Further, T ωp proves:

(5) A is monotone, i.e.

∀xX , yX , uX , vX (u ∈ Ax ∧ v ∈ Ay → 〈x−X y, u−X v〉X ≥R 0) .

(6) JAγ satisfies the alternative notion of firm nonexpansivity for any γ > 0 (on its domain), i.e.

∀γ1, xX , yX
(
γ >R 0 ∧ x ∈ dom(JAγ ) ∧ y ∈ dom(JAγ )

→ 〈x−X y, JAγ x−X JAγ y〉X ≥R
∥∥JAγ x−X JAγ y

∥∥2

X

)
.

Lastly, Uωp proves:

(7) JAγ is single-valued if ρ̃ > −γ, i.e.

∀pX , xX , γ1
(
γ >R 0 ∧ ρ̃ >R −γ ∧ γ−1(x−X p) ∈ Ap→ p =X JAγ x

)
.

(8) JA is extensional in both arguments (on its domain) if ρ̃ > −γ, i.e.
∀γ1 >R 0, xX , x′

X(
ρ̃ >R −γ ∧ x ∈ dom(JAγ )

∧x′ ∈ dom(JAγ ) ∧ x =X x′ → JAγ x =X JAγ x
′)

∀γ1 >R 0, γ′
1
>R 0, xX

(
ρ̃ >R −γ ∧ x ∈ dom(JAγ )

∧x ∈ dom(JAγ′) ∧ γ =R γ
′ → JAγ x =X JAγ′x

)
.
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(9) JAγ satisfies the alternative notion of being α-conically nonexpansive for α = 1
2(ρ̃/γ+1) if ρ̃ > −γ (on its

domain), i.e.

∀γ1, xX , yX
(
γ >R 0 ∧ ρ̃ >R −γ ∧ x ∈ dom(JAγ ) ∧ y ∈ dom(JAγ )

→ 2

2(ρ̃/γ + 1)
〈JAγ x−X JAγ y, (x−X JAγ x)−X (y −X JAγ y)〉X

≥R

(
1− 2

2(ρ̃/γ + 1)

)∥∥(x−X JAγ x)−X (y −X JAγ y)
∥∥2

X

)
.

(10) JAγ is α-conically nonexpansive for α = 1
2(ρ̃/γ+1) if ρ̃ > −γ, i.e. α ∈ (0,∞) and

(1− α−1)Id+ α−1JAγ is nonexpansive (on its domain).

(11) JAγ is nonexpansive if ρ̃ ≥ −γ/2 (on its domain), i.e.

∀γ1, xX , yX
(
γ >R 0 ∧ ρ̃ ≥R −γ/2 ∧ x ∈ dom(JAγ )

∧ y ∈ dom(JAγ )→
∥∥JAγ x−X JAγ y

∥∥
X
≤R ‖x−X y‖X

)
.

(12) JAγ satisfies the alternative notion of being α-averaged for α = 1
2(ρ̃/γ+1) if ρ̃ ≥ −γ/2 (on its domain),

i.e.

∀γ1, xX , yX
(
γ >R 0 ∧ ρ̃ ≥R −γ/2 ∧ x ∈ dom(JAγ ) ∧ y ∈ dom(JAγ )

→
(

1− 1

2(ρ̃/γ + 1)

)∥∥(x−X JAγ x)−X (y −X JAγ y)
∥∥2

X

≤R
1

2(ρ̃/γ + 1)

(
‖x−X y‖2X −

∥∥JAγ x−X JAγ y
∥∥2

X

))
.

(13) JAγ is α-averaged for α = 1
2(ρ̃/γ+1) if ρ̃ > −γ/2, i.e. α ∈ (0, 1) and

(1− α−1)Id+ α−1JAγ is nonexpansive (on its domain).

The items (7) - (13) hold also for U∗ωp in a revised form: as before, any ρ̃ >R −γ or ρ̃ ≥R −γ/2 needs to be
replaced with ρ̃ >R −γ/2.

Proof. The proofs from before, that is those of Propositions 3.5 and 3.10 as well as of Proposition 3.14, carry
over to the setting here. In any case where the axiom (II) was applied there, the replacement axiom (II′) is now
applicable as we always suitably assume x ∈ dom(JAγ ). Similarly for (II1) and (II′1). �

Next, we move to a characterization of extensionality for the various systems. The key new element here is
that extensionality is equivalent to a combination of the strong resolvent axiom known from the total systems
(now, of course, in a partial variant) together with the version of the resolvent axiom involving the strong form
of the formalization of the domain from the introduction of the partial systems.

Theorem 3.21. Over Vωp , the following are equivalent:

(1) Extensionality of A, i.e.

∀xX , yX , x′X , y′X (x =X x′ ∧ y =X y′ → χAxy =0 χAx
′y′)

(2) The strong domain axiom, i.e.

∀γ1, xX
(
γ >R 0 ∧ ∃yX , zX(z ∈ Ay ∧ x =X y +X γz)

→ γ−1(x−X JAγ x) ∈ A(JAγ x)
)
,

together with the strong partial resolvent axiom, i.e.

∀xX , pX , γ1
(
γ >R 0 ∧ x ∈ dom(JAγ ) ∧ p =X JAγ x→ γ−1(x−X p) ∈ Ap

)
.

(3) The strong domain axiom for γ = 1, i.e.

∀xX
(
∃yX , zX(z ∈ Ay ∧ x =X y +X z)→ (x−X JA1 x) ∈ A(JA1 x)

)
,

together with the strong partial resolvent axiom for γ = 1, i.e.

∀xX , pX
(
x ∈ dom(JA1 ) ∧ p =X JA1 x→ (x−X p) ∈ Ap

)
.



LOGICAL METATHEOREMS FOR ACCRETIVE AND (GENERALIZED) MONOTONE SET-VALUED OPERATORS 25

Further, the strong domain axiom implies strong extensionality of JA, i.e.

∀xX , x′X , γ1, γ′
1 (
γ >R 0 ∧ x ∈ dom(JAγ ) ∧ γ =R γ

′ ∧ x =X x′ → JAγ x =X JAγ′x
′) .

The same statement holds for T ωp .
Over Uωp , extensionality is similarly equivalent to the strong domain axiom for all γ > 0 with ρ̃ > −γ, i.e.

∀γ1, xX
(
γ >R 0 ∧ ρ̃ >R −γ

∧ ∃yX , zX(z ∈ Ay ∧ x =X y +X γz)→ γ−1(x−X JAγ x) ∈ A(JAγ x)
)
,

together with the strong partial resolvent axiom for all γ > 0 with ρ̃ > −γ, i.e.

∀xX , pX
(
γ >R 0 ∧ ρ̃ >R −γ ∧ p =X JAγ x→ γ−1(x−X p) ∈ Ap

)
,

and as before, the strong domain axiom implies strong extensionality of JAγ if ρ̃ > −γ, i.e.

∀xX , x′X , γ1, γ′
1(
γ >R 0 ∧ ρ̃ >R −γ ∧ x ∈ dom(JAγ )

∧ γ =R γ
′ ∧ x =X x′ → JAγ x =X JAγ′x

′).
The claims hold for U∗ωp if all the assumptions ρ̃ >R −γ are replaced by ρ̃ >R −γ/2, respectively.

Proof. We start with the equivalences:

(1) ⇒ (2): Let A be extensional. We first show the strong domain axiom. Let γ > 0 and suppose ∃y, z(z ∈
Ay ∧ x = y + γz). Then ∃y(γ−1(x − y) ∈ Ay) by extensionality of A. Thus x ∈ dom(JAγ ) and therefore (II′)

yields γ−1(x− JAγ x) ∈ A(JAγ x).

Now, let γ > 0 and suppose p =X JAγ x as well as x ∈ dom(JAγ ). The latter gives γ−1(x− JAγ x) ∈ A(JAγ x) by

axiom (II′). Extensionality of A gives γ−1(x− p) ∈ Ap.
(2) ⇒ (3): Clear by the rule of extensionality.

(3) ⇒ (1): Let u ∈ Ax and suppose u =X u′ as well as x =X x′. Thus x′+u′ =X x+u. By the strong domain
axiom and the extensionality rule, we get 1−1((x′+u′)−JA1 (x′+u′)) ∈ A(JA1 (x′+u′)). Thus x′+u′ ∈ dom(JA1 )
and similarly for x+ u. Now, the rule of extensionality gives 1−1((u+ x)− x) ∈ Ax and Proposition 3.20, (1)
gives x =X JA1 (x + u). Proposition 3.20, (4) now gives (as x + u, x′ + u′ ∈ dom(JA1 )) that x′ =X JA1 (x′ + u′).
The strong resolvent axiom implies (x′ + u′ − x′) ∈ Ax′ and thus u′ ∈ Ax′, again by the rule of extensionality.

Now we show that the strong domain axiom implies the strong extensionality of JχA . For that, assume γ > 0
and that x ∈ dom(JAγ ) as well as γ = γ′ and x =X x′. Then we have ∃y(γ−1(x− y) ∈ Ay). Therefore, we have

x′ =X x =X y + γγ−1(x− y) =X y + γ′γ−1(x− y).

By the strong domain axiom, we get

γ′−1(x′ − JAγ′x′) ∈ A(JAγ′x
′).

From (II′), we get γ−1(x− JAγ x) ∈ A(JAγ x). We get by accretivity that

0 =
∥∥(JAγ x− JAγ′x′) + γ(γ−1(x− JAγ x)− γ′−1(x′ − JAγ′x′))

∥∥ ≥ ∥∥JAγ x− JAγ′x′∥∥ .
The proofs for the claims for Uωp are easy modifications of the above. �

The previous Propositions 3.12 and 3.17 can also be modified for these partial resolvents.

Proposition 3.22. Vωp proves:

(1)

{
∀γ1, λ1, xX

(
γ >R 0 ∧ λ >R 0 ∧ x ∈ dom(JAλ )

→ JAλ x =X JAγ
(
γ
λx+X

(
1− γ

λ

)
JAγ x

) )
.

(2)


∀γ1, λ1, xX

(
γ >R 0 ∧ λ >R 0 ∧ x ∈ dom(JAγ ) ∧ x ∈ dom(JAλ )

→
∥∥x−X JAγ x

∥∥
X
≤R

(
2 + γ

λ

) ∥∥x−X JAλ x
∥∥
X

)
.

A fortiori, the same claim holds for T ωp . Similarly, Uωp proves:

(3)

{
∀γ1, λ1, xX

(
γ >R 0 ∧ λ >R 0 ∧ ρ̃ >R −γ ∧ x ∈ dom(JAλ )

→ JAλ x =X JAγ
(
γ
λx+X

(
1− γ

λ

)
JAγ x

) )
.
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(4)


∀γ1, λ1, xX

(
γ >R 0 ∧ λ >R 0 ∧ ρ̃ ≥R −γ2 ∧ x ∈ dom(JAγ )

∧x ∈ dom(JAλ )→
∥∥x−X JAγ x

∥∥
X
≤R

(
2 + γ

λ

) ∥∥x−X JAλ x
∥∥
X

)
.

As before, items (3), (4) also hold for U∗ωp under the appropriate modifications: (3) holds with ρ̃ >R −γ/2∧ ρ̃ >R
−λ/2 instead of ρ̃ >R −γ and (4) holds with ρ̃ >R −γ/2 ∧ ρ̃ >R −λ/2 instead of ρ̃ ≥R −γ/2.

The proofs are essentially the same as before and we thus omit them. Similarly, the previous Remarks 3.13
and 3.19 regarding alternative axiomatizations of the partial systems also apply here but we omit the details.

Remark 3.23. Similar comments as made in Remarks 3.7 and 3.15 also apply here regarding the range of the
systems and, in particular, all the previously mentioned results for the Yosida approximate extend to this partial
setting in the appropriate ways.

4. Extensions motivated by mathematical practice

As mentioned in the introduction, many concrete applications require extensions of the previously introduced
systems to deal with certain conditions or moduli required in that particular situation. We discuss some
possible extensions in that vein and give pointers to the case studies thus recognizable as applications of the
upcoming bound extraction theorems. As mentioned before, further discussions regarding the following, and
other, extensions and quantitative notions, both from the perspective of the upcoming metatheorems and their
role in previous case studies involving set-valued operators, will be given in [43].

4.1. Range conditions. In various algorithmic approaches to problems involving accretive or (generalized)
monotone operators, instead of requiring that an operator is maximal (which in many cases is only assumed
to ensure that the resolvents are total), one often just requires that the operator fulfills a certain range condi-
tion, i.e. a condition ensuring that the domains of the resolvents are large enough, such that some particular
iteration scheme is well-defined. In that way, a range condition is really a minimal setup for many algorithmic
considerations in that context.

We consider these range conditions, and the details surrounding their formalization, in the context of the
well-known canonical case of a range condition which requires that the following inclusion holds:

domA ⊆
⋂
γ>0

(Id+ γA)(domA).

When we naively formalize the above range condition, we end up with the sentence

∀γ1, xX , yX
(
γ >R 0 ∧ y ∈ Ax→ x ∈ dom(JAγ )

)
.

So, using the previous intensional expression

x ∈ dom(JAγ ) ≡ ∃zX
(

1

γ
(x−X z) ∈ Az

)
,

we are lead to the following formula:

∀γ1, xX , yX
(
γ >R 0 ∧ y ∈ Ax→ ∃zX

(
1

γ
(x−X z) ∈ Az

))
.

Even further however, by axiom (II′), stating

∃zX
(

1

γ
(x−X z) ∈ Az

)
is equivalent to stating that

1

γ
(x−X JAγ x) ∈ A(JAγ x),

i.e. that the resolvent at γ is well-defined at x (which is, after all, the meaning of x ∈ dom(JAγ )). So, we can
immediately simplify the formula from above and consider

∀γ1, xX , yX
(
γ >R 0 ∧ y ∈ Ax→ 1

γ
(x−X JAγ x) ∈ A(JAγ x)

)
.

This axiom expressing the range condition is in particular purely universal and thus can be trivially used in the
bound extraction theorems.
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Besides this canonical range condition, we also shortly want to mention the following specialized variant
commonly seen in the context of the well-known proximal point algorithm [53, 61]. This algorithm takes the
form of the iteration

(†) x0 ∈ domA, xn+1 = JAγnxn

for some sequence (γn) with γn > 0 for all n. A range condition for the operator A which suffices to sustain
this iteration is then, e.g., given by stipulating

domA ⊆
⋂
n∈N

(Id+ γnA)(domA)

for this given sequence (γn) as it is easy to see that by adding this assumption, the iteration given by (†) is
well-defined. Following the above approach to the canonical range condition, we find that we can similarly
express the above special case by a simple universal formula (assuming for simplicity that the sequence γn is
given by a closed term γ· of type 1(0)):

∀n0, xX , yX
(
γn >R 0 ∧ y ∈ Ax→ 1

γn
(x−X JAγnx) ∈ A(JAγnx)

)
.

Using this formal approach to range conditions in the context of our systems, we can recognize the previously
mentioned case studies [35, 36, 37] on the proximal point algorithm (in the context of various types of opera-
tors A) as particular applications of the upcoming metatheorems. While the former just studies ρ-comonotone
operators in Hilbert spaces, the latter two consider accretive operators in certain Banach spaces, in particular
uniformly convex in the former and uniformly convex and uniformly smooth Banach spaces in the latter case.
These therefore need, besides the previously mentioned formalized range conditions, additional moduli of uni-
form convexity and of uniform smoothness which can however also be treated in the context of bound extraction
theorems as discussed already in, e.g., [32].

4.2. Majorizable operators. Proofs which make essential use of representatives y ∈ Ax for x ∈ domA (i.e.
Ax 6= ∅) can be treated by providing a suitable witnessing (Skolem) functional for the statement

∀xX∃yX(x ∈ domA→ y ∈ Ax)

which can immediately be treated by adding a further constant a of type X(X) together with a defining axiom
like

(NE) ∀xX(x ∈ domA→ ax ∈ Ax)

where we write x ∈ domA := ∃yX (y ∈ Ax). Such a witnessing functional a can take many forms depending on
the particular application scenario (which might require additional axioms).

In any way however, such a functional then of course requires majorizing data if used in the bound extraction
theorems. Precise definitions for (strong) majorizability (where we omit the prefix ‘strong’ in the following) and
related notions will follow in the next section but we want to discuss the notion of a majorant for the functional
a here already: a function f of type 1 is called a majorant for a if it is non-decreasing, i.e. n ≥ m implies
fn ≥ fm, and it satisfies

n ≥ ‖x‖ → fn ≥ ‖ax‖ .
Thus, any witnessing functional a for an operator A can only be treated in the context of the bound extraction

theorems if there is at least one choice which is majorizable. We thus propose the following (in the above sense
minimal) definition:

Definition 4.1. An operator A is called majorizable if there exists a choice for a satisfying (NE) which is
majorizable.

A first thing to note is that there are non-majorizable operators and we want to give a quick example here:
Consider the partial convex function ϕ : (0, π/2) → R, x 7→ tan(x). As ϕ is differentiable, we get that the
subgradient of ϕ is given by

∂ϕ : x 7→

{{
1

cos2 x

}
if x ∈ (0, π/2),

∅ otherwise.

It is well known that ∂ϕ(x) is a maximally monotone operator but it can be easily seen that it is not majorizable.
The main exploited feature of the ϕ defined above is that it is unbounded on a bounded subset and thus

in particular not majorizable itself (if identified with some continuation from (0, π/2) to R). Interestingly, this
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majorizability of ϕ is in some sense all that is needed to even guarantee a strong form of majorizability for the
particular case of monotone operators of the form ∂ϕ.

For a given function ϕ : X → R, we say that ϕ is bounded on bounded sets if ϕ(Bn(0)) is bounded for any n.
The following is then immediate:

Proposition 4.2. For a given ϕ : X → R, (|ϕ|)◦ is majorizable as a type 1(X) functional if, and only if ϕ is
bounded on bounded sets where (|ϕ|)◦ is defined by (|ϕ|)◦(x) := (|ϕ(x)|)◦ with (·)◦ defined as in Section 3.1

This notion of ϕ being bounded on bounded sets extends from ϕ to ∂ϕ in many situations as the following
result shows. For this, we similarly introduce a notion of boundedness for set-valued operators A: we say that
A is bounded on bounded sets if A(Bn(0)) =

⋃
x∈Bn(0)Ax is bounded for any n.

Proposition 4.3 ([3], Proposition 16.20). Let ϕ : X → R be continuous and convex on a Hilbert space X.
Then, the following are equivalent:

(1) ϕ is bounded on bounded sets.
(2) ϕ is Lipschitz continuous on every bounded set.
(3) dom ∂ϕ = X and ∂ϕ is bounded on bounded sets.

Now, an operator being bounded on bounded sets can be recognized as a majorizability assumption on A in
disguise.

Proposition 4.4. A is bounded on bounded sets if, and only if

∃a∗0(0)∀aX(X)
(
∀xX(x ∈ domA→ ax ∈ Ax)

∧ ∀xX(x 6∈ domA→ ‖ax‖X =R 0)→ a∗ & a
)
.

The proof is rather immediate and we thus omit it.

Therefore A is bounded on bounded sets if, and only if there is a uniform majorant a∗ for any a satisfying
(NE) for A and which is sufficiently well behaved on (domA)c (where the behavior is anyhow not important). In
that case, we call A uniformly majorizable. Combined, we then in particular have for a convex and continuous
ϕ that majorizability of |ϕ| implies uniform majorizability of ∂ϕ.

In particular, in the light of the ubiquity of the notion of ‘bounded on bounded sets’ in the literature on
monotone operators, the above proposition provides a valuable insight on the proof theoretic nature of that
assumption. Further, an analysis of proofs involving such selection functionals actually in many situations only
needs a majorizable and not uniformly majorizable operator and it can thus be expected that this assumption
of A being bounded on bounded sets can often be weakened in a proof theoretic analysis to that of simple
majorizability. A concrete example for this is given in [60] in the context of an analysis for an algorithm of
Moudafi [57]. More connections between (uniform) majorizability and other quantitative notions for set-valued
operators (especially in the context of the Brézis-Haraux theorem [7] and its use in the analysis provided by
Kohlenbach [33] for Bauschke’s proof of the zero displacement conjecture [2]) will be given in [43].

4.3. The minimal norm selection functional. We want to discuss one particular selection functional which
occurs often in the literature and which can actually be treated already whenever one has a majorizable operator.
This operator is A◦x which returns the element of minimal norm in Ax (as long as Ax 6= ∅). This operator is
particularly well-known in the context of nonsmooth analysis, e.g. being central to the dual formulation of the
well-known bundle method (see, e.g., [64]), as subgradients of minimal norm are used to select descent directions
in nonsmooth contexts.
A◦x is usually defined (see, e.g., [3]) as the projection PAx0 (which always exists in the context of Hilbert

spaces as, e.g., follows from Proposition 20.36 and Theorem 3.16 in [3]). For that reason, we focus here
on the special case where our space is a Hilbert space and A is maximally monotone as this implies a nice
characterization of the projection in terms of the inner product:

Lemma 4.5 ([3], Theorem 3.16). If X is a Hilbert space and C ⊆ X is nonempty, closed and convex, then for
any x, p ∈ X:

p = PCx iff (p ∈ C and ∀q ∈ C (〈q − p, x− p〉 ≤ 0)) .

Using this implicit characterization of A◦x as PAx0, this operator can be simulated by adding a constant A◦X
of type X(X) together with the following axioms:

(Y1) ∀xX(x ∈ domA→ A◦Xx ∈ Ax),
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(Y2) ∀xX , yX(y ∈ Ax→ 〈y −X A◦Xx,−A◦Xx〉X ≤R 0).

We write (Y) as a shorthand for the axioms (Y1) and (Y2) as above.
By (Y1), A◦X satisfies (NE) for A which is special in the way that it is actually the minimal realizer of the

respective axiom in the sense of the following proposition:

Proposition 4.6. A◦X is majorizable iff A is majorizable.

Thus, proofs using A◦ can indeed be treated in the context of majorizable operators. Moreover, via the
axioms (Y), we can develop a substantial part of the theory of A◦. For example, one can prove (in weak
fragments of Aω[X, 〈·, ·〉] already), that projections characterized by the inner product condition are unique and
that A◦ is consequently the unique element of minimal norm in the sense that T ω + (Y) proves that

∀xX , zX (z ∈ Ax ∧ ‖z‖X ≤R ‖A◦Xx‖X → A◦Xx =X z) .

Using the upcoming bound extraction theorems, one can even provide suitable quantitative versions of those
results (which was crucially used in a recent case study given in [60]). Note also that while completeness of the
space and maximality of the operator are necessary to guarantee the existence of A◦, both properties are not
provable in the system. If the proof uses these properties in an essential way, besides of ensuring existence of
A◦, one has to add quantitative forms of them to the system. The next subsection provides a discussion for this
regarding maximality and for possibilities regarding the completeness of the space, see Remark 5.10.

The main example of application for majorizable operators was recently considered in [60] for a quantitative
treatment of a convergence result due to Moudafi [57]. Concretely, given two maximally monotone operators
T, S on a real Hilbert space X, [57] considers the sequence

xn+1 = JSµn(xn + µnTλnxn)

with initial point x0 and parameters µn, λn > 0. Under suitable conditions, this sequence converges to a point
x∗ ∈ X with

T (x∗) ∩ S(x∗) 6= ∅.
As T ◦ is strongly connected with the Yosida approximate, in particular through Tλnx → T ◦x for x ∈ domT
and λn → 0 (see [3], Corollary 23.46), the operator T ◦ features prominently in the proofs given in [57] and
consequently also in the analysis presented in [60] which thus requires a treatment of T ◦ in the sense of the above
additional constants and axioms. Also, the notion of A being bounded on bounded sets features prominently
in [57]. As already mentioned before, the analysis weakens this assumption to simple majorizability as guided
by the metatheorems which provides an example of a result where the quantitative analyses provided by this
general logical approach actually yielded a qualitative improvement in the result. For further discussions of this
issue, see [60].

4.4. Moduli of uniform continuity. To treat problems which use some form of extensionality of A in an
essential way, one has to consider a corresponding (uniform) quantitative version of the respective extensionality
statement. These usually come in the form of a modulus of uniform continuity (see in particular the discussions
in [32] for various perspectives on this issue). In the case of set-valued operators A, one choice might be to
consider uniform continuity for A w.r.t. the Hausdorff metric in the sense of [56] where the Hausdorff metric
H is defined as

H(P,Q) := max

{
sup
p∈P

inf
q∈Q
‖p− q‖ , sup

q∈Q
inf
p∈P
‖p− q‖

}
for closed non-empty sets P,Q. To motivate this (where we follow the discussion presented in [44]) consider the
following ‘version’ of extensionality

∀x, y ∈ domA(x = y → H(Ax,Ay) = 0).

Guided by the monotone function interpretation, this has a uniform quantitative version asserting the existence
of a modulus of uniform continuity of A w.r.t. the Hausdorff metric, i.e. the existence of an ω : N → N such
that

∀k ∈ N∀x, y ∈ domA
(
‖x− y‖ < 2−ω(k) → H(Ax,Ay) ≤ 2−k

)
.

The above definition of the Hausdorff metric requires the use of infima and is therefore not immediately definable
in the systems. Further, the restriction to domA prohibits the comparison between elements x with Ax = ∅ and
thus the above is not even a real quantitative version of the extensionality statement. However, this restriction
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is necessary for H(Ax,Ay) to be well-defined. For those reasons, Kohlenbach and Powell propose the following
weakening of H in [44]: instead of using the metric H, one introduces a Hausdorff-like predicate H∗ defined via

H∗[P,Q, ε] := ∀p ∈ P∃q ∈ Q (‖p− q‖ ≤ ε) .
One can then stipulate uniform continuity for A w.r.t. that predicate via the existence of a modulus $ : N→ N
such that

(†) ∀k ∈ N∀x, y ∈ X
(
‖x− y‖ < 2−$(k) → H∗

[
Ax,Ay, 2−k

])
We can actually recognize this as the uniform quantitative version (guided by the monotone functional inter-
pretation) of the following approximate weakening of the extensionality principle

∀xX , yX
(
x =X y → ∀k0H∗

[
Ax,Ay, 2−k

])
which can be used in place of the usual extensionality principle in some situations, e.g., after an application of
the corresponding maximality statement to infer u ∈ Ax whenever the rest of the proof after the application is
maybe not extensional in both variables x and u but only in u.

Moreover, (†) can be added to the previous systems by an axiom of the form ∆. More precisely, we have
‖w‖ ≤ ‖z‖ + ‖z − w‖ and therefore ‖w‖ ≤ ‖z‖ + 2−k whenever ‖z − w‖ ≤ 2−k and (†) can then be expressed
by

∀k0, xX , yX , zX∃wX �X
(
‖z‖+ 2−k

)
1X

(
‖x− y‖ < 2−$(k)

∧ z ∈ Ax→ w ∈ Ay ∧ ‖z − w‖ ≤ 2−k
)

(UC∗)

which is of the form ∆ (where one notes that the inner matrix is purely universal with quantifiers of low enough
type) and can be added to the previous systems together with an additional constant $.

Examples of the use of (a slight modification requiring x, y ∈ domA of) this axiom in the context of proof
mining appear in, e.g., [44, 60]. In [44], the authors analyze (among various other results) a theorem due to [56]
which requires a uniformly continuous operator A and the analysis provided in [44] can be seen as an application
of the upcoming metatheorems (modulo some additional considerations). In particular, uniform continuity is
transformed into a modulus $ of uniform continuity w.r.t. H∗ (over domA) which can be treated as detailed
above.

The additional considerations mentioned before relate to the treatment of the notion of uniform quasi-
accretivity due to [19], which is upgraded in the analysis to a modulus Θ of uniform accretivity at zero as
originally introduced in [38], i.e. a function such that

∀ε,K > 0∀(x, u) ∈ graA (‖x− q‖ ∈ [ε,K]→ ∃j ∈ J(x− q)(〈u, j〉 ≥ ΘK(ε)) .

Based on a suitable treatment of the normalized duality mapping J (see e.g. [39]), it should be possible to
phrase the above quantitative notion of uniform accretivity at zero as an axiom of type ∆ but we do not explore
this here further.

A further discussion on the weak extensionality principle and the corresponding notion of uniform continuity
w.r.t H∗ and regarding its use in the context of the analysis of Moudafi’s algorithm [57] will be given in [60].

5. Bound extraction theorems

We now establish the proof mining metatheorems for the theories Vω/T ω/U∗ω and the partial variants in
the vein of [20, 31, 32]. Our proof follows the general outline from [32]. As an abbreviation, we write Cω in the
following for one of the partial or total systems. Further, we write Cω− for Cω without QF-AC and DC. By
(BR), we denote the schema of simultaneous bar-recursion, going back to the seminal work of Spector [67], in
all types from TX (see, e.g., [32]).

The basis for the upcoming metatheorems, as well as for the previously established ones in the literature,
is the utilization of Gödel’s functional interpretation (going back to Gödel’s work [22], but we mainly use the
presentations from [32, 71]) in combination with a negative translation (which also goes back to Gödel [21]
and Gentzen, although unpublished in the latter case, but we rely on a version by Kuroda [47]). We recall the
definitions of those interpretations here.

Definition 5.1 ([22, 71]). The Dialectica interpretation AD = ∃x∀yAD(x, y) of a formula A in the language of
Cω is defined via the following recursion on the structure of the formula:



LOGICAL METATHEOREMS FOR ACCRETIVE AND (GENERALIZED) MONOTONE SET-VALUED OPERATORS 31

(1) AD := AD := A for A being a prime formula.

If AD = ∃x∀yAD(x, y) and BD = ∃u∀vBD(u, v), we set

(2) (A ∧B)D := ∃x, u∀y, v(A ∧B)D
where (A ∧B)D(x, u, y, v) := AD(x, y) ∧BD(u, v),

(3) (A ∨B)D := ∃z0x, u∀y, v(A ∨B)D
where (A ∨B)D(z0, x, u, y, v) := (z = 0→ AD(x, y)) ∧ (z 6= 0→ BD(u, v)),

(4) (A→ B)D := ∃U, Y ∀x, v(A→ B)D
where (A→ B)D(U, Y , x, v) := AD(x, Y xv)→ BD(Ux, v),

(5) (∃zτA(z))D(z, x, y) := ∃z, x∀y(∃zτA(z))D
where (∃zτA)D := AD(x, y, z),

(6) (∀zτA)D := ∃X∀z, y(∀zτA(z))D
where (∀zτA)D(X, z, y) := AD(Xz, y, z).

Definition 5.2 ([47]). The negative translation of A is defined by A′ := ¬¬A∗ where A∗ is defined by the
following recursion on the structure of A:

(1) A∗ := A for prime A;
(2) (A ◦B)∗ := A∗ ◦B∗ for ◦ ∈ {∧,∨,→};
(3) (∃xτA)∗ := ∃xτA∗;
(4) (∀xτA)∗ := ∀xτ¬¬A∗.

Following [32], we introduce a certain class of formulas already mentioned before: by ∆ we in the following
denote a set of formulas of the form

∀aδ∃b �σ ra∀cγFqf (a, b, c)

where Fqf is quantifier-free, the types in δ, σ and γ are admissible and r are tuples of closed terms of appropriate
type. Here, � is defined by recursion on the type via

(1) x �0 y := x ≤0 y,
(2) x �X y := ‖x‖X ≤R ‖y‖X ,
(3) x �τ(ξ) y := ∀zξ(xz �τ yz).

Given such a set ∆, we write ∆̃ for the set of all Skolem normal forms

∃B �σ(δ) r∀aδ∀cγFqf (a,Ba, c)

for any ∀aδ∃b �σ ra∀cγFqf (a, b, c) in ∆.

Lemma 5.3 (essentially [20, 31]). Let F be an arbitrary formula in Cω with only the variables a free. Then the
rule {

Cω ` F (a)⇒
Cω− + (BR) ` ∀a, y(F ′)D(ta, y, a)

holds where t is a tuple of closed terms of Cω− + (BR) which can be extracted from the respective proof.

We wrote ‘essentially [20, 31]’ as the proofs presented in [20, 31] are only formulated for our base systems
Aω[X, ‖·‖] and Aω[X, 〈·, ·〉] but it is immediately clear that they extend to the new constants and systems as
all the axioms are purely universal.

The central concept for formulating the quantitative bounds obtained by the metatheorems is that of ma-
jorization in the sense of the extension due to [20, 31] of strong majorization of Bezem [6] (which in turn builds
on Howard’s majorizability [24]) to the new types in TX . In that way, majorants of objects with types from
TX will be objects with types from T related by the following projection:

Definition 5.4 ([20]). Define τ̂ ∈ T , given τ ∈ TX , by recursion on the structure via

0̂ := 0, X̂ := 0, τ̂(ξ) := τ̂(ξ̂).

The majorizability relation &τ is then defined by recursion on the type along with the corresponding structure
Mω,X of all (strongly) majorizable functionals of finite type as defined in [20, 31]:
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Definition 5.5 ([20, 31]). Let (X, ‖·‖) be a non-empty normed space. The structure Mω,X and the majoriz-
ability relation &τ are defined by

M0 := N, n &0 m := n ≥ m ∧ n,m ∈ N,
MX := X,n &X x := n ≥ ‖x‖ ∧ n ∈M0, x ∈MX ,

x∗ &τ(ξ) x := x∗ ∈M
M
ξ̂

τ̂ ∧ x ∈MMξ
τ

∧∀y∗ ∈Mξ̂, y ∈Mξ(y
∗ &ξ y → x∗y∗ &τ xy)

∧∀y∗, y ∈Mξ̂(y
∗ &ξ̂ y → x∗y∗ &τ̂ x∗y),

Mτ(ξ) :=
{
x ∈MMξ

τ | ∃x∗ ∈M
M
ξ̂

τ̂ : x∗ &τ(ξ) x
}
.

Correspondingly, the structure Sω,X is defined as the full set-theoretic type structure via S0 := N, SX := X
and

Sτ(ξ) := S
Sξ
τ .

For an inner product space, the structures Sω,X and Mω,X are defined via the norm induced by the inner
product.

Now, majorization behaves as expected for functionals with multiple arguments (represented by their ‘cur-
ryied’ variants) as the following lemma shows:

Lemma 5.6 ([20, 31], see also Kohlenbach [32], Lemma 17.80). Let ξ = τξk . . . ξ1. For x∗ : Mξ̂1
→ (Mξ̂2

→
· · · →Mτ̂ ) . . . ) and x : Mξ1 → (Mξ2 → · · · →Mτ ) . . . ), we have x∗ &ξ x iff

(a) ∀y∗1 , y1, . . . , y
∗
k, yk

(∧k
i=1(y∗i &ξi yi)→ x∗y∗1 . . . y

∗
k &τ xy1 . . . yk

)
and

(b) ∀y∗1 , y1, . . . , y
∗
k, yk

(∧k
i=1(y∗i &ξ̂i yi)→ x∗y∗1 . . . y

∗
k &τ̂ x

∗y1 . . . yk

)
.

The proof of the main bound extraction result now relies on a combination of functional interpretation and
negative translation together with subsequent majorization. The following lemma gives the main result for the
latter ingredient (akin to, e.g., Lemma 9.9 in [20]).

Lemma 5.7. Let (X, ‖·‖) be a normed space, A an m-accretive operator and JAγ its resolvent with parameter

γ > 0. Then Mω,X is a model of Vω− + (BR) (for a suitable interpretation of the additional constants).
Moreover, for any closed term t of Vω− + (BR), one can construct a closed term t∗ of Aω + (BR) such that

Mω,X |= ∀n0,m0, l0, k0

(
n ≥R

∥∥cX −X JAγ̃ cX
∥∥
X
∧m ≥0 mγ̃

∧ l ≥R γ̃ ∧ k ≥R ‖cX‖X → t∗(n,m, l, k) & t

)
.

Further, the same claim holds for Vω replaced with

(1) T ω where the conclusion is then drawn over inner product spaces using a monotone A with total resol-
vents or T ω extended by A◦X and the axioms (Y) if the space is further a Hilbert spaces and A a majoriz-
able operator where t∗ then depends on an additional parameter g1 with the assumption g &X(X) A

◦
X

added to the premise,
(2) U∗ω where the conclusion is drawn over inner product spaces using a ρ-comonotone A with total resol-

vents JAγ for ρ > −γ/2 and where ρ > −rγ̃/2 and t∗ depends on two additional parameters o0, p0 with
the assumptions o ≥0 nγ̃ and p ≥R |ρ̃| added to the premise,

(3) the partial systems Vωp , T ωp and U∗ωp where the conclusion is drawn over the appropriate spaces and

operators, assuming that
⋂
γ>0 dom(JAγ ) 6= ∅ (where the intersection is constructed over all γ where

additionally ρ > −γ/2 in the case of U∗ωp and t∗ depends on two additional parameters o0, p0 as above),
(4) any of the above system extended by $ and the axiom (UC∗) if the operator is uniformly continuous

w.r.t. H∗ where the term t∗ then depends on an additional parameter h1 with additional assumption
h &0(0) $.

Proof. We only verify the result for the systems Vω and U∗ω and only for the new constants χA, JχA , γ̃, cX ,
mγ̃ as well as potentially nγ̃ and ρ̃. The rest follows as in [32], Lemma 17.85. We first deal with the non-partial
case. The designated interpretation of the constant χA in the model Mω,X is given by

[χA]M := λx, y ∈ X.

{
00 if y ∈ Ax,
10 if y 6∈ Ax,
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while the constant for the resolvent in interpreted by

[JχA ]M := λα ∈ NN, x ∈ X.

{
JArαx if rα > 0,

0 otherwise,

where rα is the real represented by α as before. We set [γ̃]M := (λ)◦ and [mγ̃ ]M := mλ for some real λ and
natural mλ with λ ≥ 2−mλ . Lastly, in the case of the total systems, we define [cX ]M := c for some arbitrary
c ∈ X.

These constants are then majorizable (and their interpretations thus belong to Mω,X). For χA,

λx0, y0.1 & χA

is immediate by the previous Lemma 5.6 and by the fact that Vω/T ω/U∗ω prove that χAxy ≤0 1. For JχA ,
given n ≥

∥∥cX − JAγ̃ cX∥∥ and k ≥ ‖cX‖ as well as m ≥ mγ̃ , we obtain

λα1, x∗0.(x∗ + 2k + (2 + 2m(α(0) + 1))n) & JχA

To see that, let γ1, xX be given and let x∗ & x, i.e. x∗ ≥ ‖x‖, as well as α & γ. Then in particular (with similar
reasoning as in [32], Lemma 17.85)

α(0) + 1 ≥ γ(0) + 1 ≥ |γ|.
Now, we have (even provably in Vω/T ω/U∗ω) that for rγ > 0:∥∥JAγ x∥∥ ≤ ‖x− cX‖+

∥∥JAγ cX∥∥ (nonexpansivity)

≤ ‖x‖+ ‖cX‖+
∥∥cX − JAγ cX∥∥+ ‖cX‖

≤ ‖x‖+ 2 ‖cX‖+

(
2 +

γ

γ̃

)∥∥cX − JAγ̃ cX∥∥ (Proposition 3.12/Remark 3.13)

≤ x∗ + 2k + (2 + 2m(α(0) + 1))n

For rγ ≤ 0, we get that JAγ x = 0. Thus,
∥∥JAγ x∥∥ = 0 ≤ x∗ + 2k + (2 + 2m(α(0) + 1))n in that case as well. This

implies majorizability using Lemma 5.6. Lastly, (l)◦ &0(0) γ̃, m ≥0 mγ̃ and k &X cX are immediate by the
assumptions on l,m and k, respectively, by Lemma 3.3.

In the case of U∗ω, we set [ρ̃]M = (ρ)◦ if ρ ≥ 0 and [ρ̃]M = λi0.(−Q(|ρ|)◦(i)) otherwise. Further, in that case
the interpretation of the resolvent changes to

[JχA ]M := λα ∈ NN, x ∈ X.

{
JArαx if rα > 0 and ρ > −rα/2,
0 otherwise,

and γ̃, mγ̃ as well as nγ̃ are now interpreted by λ, mλ and nλ such that λ ≥ 2−mλ as well as ρ ≥ −λ/2 + 2−nλ .
Then, the above argument for majorization still goes through for rγ > 0 and ρ > −rγ/2, however noting
Proposition 3.17 and Remark 3.18. Majorants for mγ̃ , nγ̃ , γ̃, cX and ρ̃ are immediate as before.

In the partial case, let c ∈ dom(JAγ ) for any γ > 0 (with ρ > −γ/2 in the case of U∗ωp ) and define [cX ]M := c.
Now, the resolvent is interpreted by

[JχA ]M := λα ∈ NN, x ∈ X.

{
JArαx if rα > 0 and x ∈ dom(JArα),

0 otherwise,

in the case of Vωp and by

[JχA ]M := λα ∈ NN, x ∈ X.

{
JArαx if rα > 0, ρ > −rα/2 and x ∈ dom(JArα),

0 otherwise,

in the case of U∗ωp . The argument for majorizability of JAγ is the same as before, just restricting to x ∈
dom(JArγ ) and using nonexpansivity on the domain and Proposition 3.22. The other constants are interpreted
and majorized as before.

Note that the corresponding extensions of Mω,X to the new constants are indeed models of the theory as
none of the axioms for JχA prescribe behavior of the resolvent for γ ≤ 0 (or γ with ρ ≤ −γ/2 in the case of
U∗ω).

Lastly, for the potential constants A◦X or $: for A◦, naturally A◦ exists on domA for a maximally monotone
A on a Hilbert space (which is assumed) and we set [A◦]M(x) := A◦x for x ∈ domA and [A◦]M(x) := 0
otherwise which is majorizable as A is assumed to be majorizable in that case (see Proposition 4.6).
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For an operator A which is uniformly continuous w.r.t. H∗, $ is naturally interpreted by a respective
modulus which is majorizable as it is a functional of type 0(0). �

We now formulate the bound extraction theorem. The potential additional axioms ∆ are treated in spirit of
the so-called monotone functional interpretation due to [30] (and conceptually already to [27, 29, 28]).

We say in spirit of the monotone functional interpretation as we actually don’t use a monotone variant
of the functional interpretation but treat the functional interpretation part and the subsequent majorization
separately, which nevertheless allows one to treat the axioms of type ∆. In that way, we follow the presentations
given in

(1) Corollary 6.5 (see also Theorem 3.30 in [31]) is derived from Theorem 6.3 in [20] (or Corollary 17.70
from Theorem 17.69 in [32]),

(2) Corollary 5.14 is obtained from Theorem 5.13 in [23].

For that, we need the following lemma:

Lemma 5.8 ([23], Lemma 5.11). Let ∆ be a set of formulas of the form considered before. Then Sω,X |= ∆

implies Mω,X |= ∆̃.

Proof. The proof given in [23] for Lemma 5.11 carries over. �

Theorem 5.9. Let τ be admissible, δ be of degree 1 and s be a closed term of Vω of type σ(δ) for admissible
σ. Let B∀(x, y, z, u)/C∃(x, y, z, v) be ∀-/∃-formulas of Vω with only x, y, z, u/x, y, z, v free. If

Vω + ∆ ` ∀xδ∀y �σ s(x)∀zτ
(
∀u0B∀(x, y, z, u)→ ∃v0C∃(x, y, z, v)

)
,

then one can extract a partial functional Φ : Sδ × Sτ̂ × N4 ⇀ N which is total and (bar-recursively) computable
on Mδ ×Mτ̂ × N4 and such that for all x ∈ Sδ, z ∈ Sτ , z∗ ∈ Sτ̂ and all n,m, l, k ∈ N, if z∗ & z, n ≥R∥∥cX −X JAγ̃ (cX)

∥∥
X

, m ≥0 mγ̃ , l ≥R γ̃ and k ≥R ‖cX‖X , then

Sω,X |= ∀y �σ s(x)
(
∀u ≤0 Φ(x, z∗, n,m, l, k)B∀(x, y, z, u)

→ ∃v ≤0 Φ(x, z∗, n,m, l, k)C∃(x, y, z, v)
)

holds whenever Sω,X |= ∆ for Sω,X defined via any normed space (X, ‖·‖) with χA interpreted by the character-
istic function of an m-accretive A and JχA by corresponding resolvents JAγ for γ > 0 (and the other constants
accordingly).

In particular:

(1) If τ̂ is of degree 1, then Φ is a total computable functional.
(2) We may have tuples instead of single variables x, y, z, u, v and a finite conjunction instead of a single

premise ∀u0B∀(x, y, z, u).
(3) If the claim is proved without DC, then τ may be arbitrary and Φ will be a total functional on Sδ×Sτ̂×N4

which is primitive recursive in the sense of Gödel. In that case, also plain majorization can be used
instead of strong majorization.

(4) The claim of the above theorem as well as the items (1) - (3) from above holds similarly for
(a) T ω where the conclusion is then drawn over inner product spaces using monotone operators with

total resolvents8 or T ω extended by A◦X and the axioms (Y) with the additional assumption g &X(X)

A◦X , Φ depending additionally on g and the conclusion being drawn over Hilbert spaces,
(b) U∗ω where the conclusion is drawn over inner product spaces using ρ-comonotone operators with

total resolvents JAγ for ρ > −γ/2 (where Φ depends on two additional parameters o0, p0 with the
additional assumptions o ≥0 nγ̃ and p ≥R |ρ̃|),

(c) Vωp , T ωp and U∗ωp where the conclusion is drawn over the appropriate spaces and operators such

that, in particular,
⋂
γ>0 domJAγ 6= ∅ (with γ additionally satisfying ρ > −γ/2 and Φ depending on

two additional parameters o0, p0 as above in the case of U∗ωp ),
(d) the above systems extended by the constant $ and axiom (UC∗) whenever A is uniformly continuous

w.r.t. H∗ where we have the additional assumption h &0(0) $ and Φ depends additionally on h.

Proof. We only treat the case of Vω. Proofs for item (4), (a) - (d) follow the same reasoning. The set ∆ can be

treated as in the proof of Theorem 5.13 in [23]: Add the Skolem functionals B from ∆̃ to the language. Then,

∆̃ can be seen as another set of universal axioms and all the new constants are majorizable by assumption since
B �σ(δ) r and since r is a tuple of closed terms. Then, the following proof goes through for this extended system

8By Minty’s theorem, all conclusions are thus in particular valid over Hilbert spaces using maximally monotone operators.
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instead of Vω (where one has to note that Lemma 5.3 immediately holds for this purely universal extension as
well):

First, assume that

Vω ` ∀zτ
(
∀u0B∀(z, u)→ ∃v0C∃(z, v)

)
.

By assumption, B∀(z, u) = ∀aBqf (z, u, a) and C∃(z, v) = ∃bCqf (z, v, b) for quantifier-free Bqf and Cqf . Thus,
prenexing the above theorem of Vω, we get

Vω ` ∀zτ∃u, v, a, b(Bqf (z, u, a)→ Cqf (z, v, b)).

Using Lemma 5.3, disregarding the realizers for a, b and reintroducing the quantifiers, we get closed terms tu, tv
of Vω− + (BR) such that

Vω− + (BR) ` ∀zτ (B∀(z, tu(z))→ C∃(z, tv(z))).

By Lemma 5.7 there are closed terms t∗u, t
∗
v of Aω + (BR) such that for all n ≥

∥∥cX − JAγ̃ (cX)
∥∥, m ≥ mγ̃ , l ≥ γ̃

and k ≥ ‖cX‖, we get

Mω,X |= t∗u(n,m, l, k) & tu ∧ t∗v(n,m, l, k) & tv ∧ ∀zτ (B∀(z, tu(z))→ C∃(z, tv(z)))

for all normed spaces (X, ‖·‖) and all m-accretive operators A with resolvents JAγ defining Mω,X as in Lemma
5.7. Define

Φ(z∗, n,m, l, k) := max(t∗u(n,m, l, k)(z∗), t∗v(n,m, l, k)(z∗)).

Then

Mω,X |= ∀u ≤ Φ(z∗, n,m, l, k)B∀(z, u)→ ∃v ≤ Φ(z∗, n,m, l, k)C∃(z, v)

holds for all n ≥
∥∥cX − JAγ̃ (cX)

∥∥, m ≥ mγ̃ , l ≥ γ̃, k ≥ ‖cX‖ as well as all z ∈ Mτ and z∗ ∈ Mτ̂ with z∗ & z.

The conclusion that Sω,X satisfies the same sentence can made as in the proof of Theorem 17.52 in [32].

For the additional ∀xδ∀y �σ s(x), let δ = 1 for simplicity. For x of type τ , we can define xM (y0) =
maxN{x(i) | 1 ≤ i ≤ y}. We get xM & x and if s(x) ≥σ y, then s∗(n,m, l, k)(xM ) & y where s∗ is as in Lemma
5.7. Note now that the above result immediately extends to tuples z. Then by the above result for tuples
instead of a single z, there now is a functional Φ′(x∗, y∗, z∗, n,m, l, k) such that

Sω,X |= ∀u ≤ Φ′(x∗, y∗, z∗, n,m, l, k)B∀(x, y, z, u)

→ ∃v ≤ Φ′(x∗, y∗, z∗, n,m, l, k)C∃(x, y, z, v)

for all x ∈ Sδ, y ∈ Sσ, z ∈ Sτ where y � s(x) and with x∗ & x, y∗ & y, z∗ & z and n,m, l, k as before. In
particular, we have

Sω,X |= ∀u ≤ Φ′(xM , y∗, z∗, n,m, l, k)B∀(x, y, z, u)

→ ∃v ≤ Φ′(xM , y∗, z∗, n,m, l, k)C∃(x, y, z, v)

for any such x, y, z and y∗, z∗ and thus, as y ≤σ s(x) yields s∗(n,m, l, k)(xM ) & y, we get

Sω,X |= ∀u ≤ Φ′(xM , s∗(n,m, l, k)(xM ), z∗, n,m, l, k)B∀(x, y, u)

→ ∃v ≤ Φ′(xM , s∗(n,m, l, k)(xM ), z∗, n,m, l, k)C∃(x, y, v).

Then define Φ(x, z∗, n,m, l, k) = Φ′(xM , s∗(n,m, l, k)(xM ), z∗, n,m, l, k).

Item (1) can be shown as in the proof of Theorem 17.52 from [32] (see page 428). Further, (2) is immediate
and (3) follows from the fact that without DC, bar recursion becomes superfluous. �

Remark 5.10. The above results can be immediately extended to augmentations of the systems considered here
by, e.g., the following:

(1) Further abstract metric and normed spaces which are treated simultaneously (see the discussion in [32]
in Section 17.6).

(2) Further constants for monotone operators and their resolvents which in particular may mix partial and
non-partial resolvents.

(3) A constant CX(X0) which associates with every Cauchy sequence a limit to treat complete spaces and
proofs which make essential use of this completeness assumption (see [32], pages 432-434, and also [65]
for a recent practical use in the context of Lp-spaces). As commented on before, this may in particular
occur in proofs relying on the operator A◦ as completeness of the space is needed to guarantee its
existence and thus may be occurring at other places in such proofs in an essential way.
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(4) Additional ∆-formulas as axioms or additional constants (where corresponding defining axioms guar-
antee majorizability) which are of admissible types (see the discussion in [32], Section 17.5). This in
particular includes, e.g., constants for moduli of uniform convexity or uniform smoothness of the space
(see [32], Section 17.3 for more details on the former).
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[17] F. Ferreira, L. Leuştean, and P. Pinto. On the removal of weak compactness arguments in proof mining. Advances in Mathe-

matics, 354, 2019. 106728.
[18] F. Ferreira and P. Oliva. Bounded functional interpretation. Annals of Pure and Applied Logic, 135:73–112, 2005.
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[48] L. Leuştean. Proof Mining in R-trees and Hyperbolic Spaces. Electronic Notes in Theoretical Computer Science, 165:95–106,
2006.
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