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Abstract. We study propositional and first-order Gödel logics over infinitary languages which are motivated

semantically by corresponding interpretations into the unit interval [0, 1]. We provide infinitary Hilbert-style cal-
culi for the particular (propositional and first-order) cases with con-/disjunctions of countable length and prove

corresponding completeness theorems by extending the usual Lindenbaum-Tarski construction to the infinitary
case for a respective algebraic semantics via complete linear Heyting algebras. We provide infinitary hyperse-

quent calculi and prove corresponding cut-elimination theorems in the Schütte-Tait-style. Initial observations

are made regarding truth-value sets other than [0, 1].

1. Introduction

Infinitary logics in a classical setting go back to [23, 31, 35] and over time became influential in various areas
of mathematical logic like (finite) model theory, set theory and also formal arithmetic, among others. Model
theoretically, they pose an interesting challenge since the usual propositional and first-order properties (like e.g.
compactness) become more intertwined with set-theoretic principles (like e.g. large cardinal axioms).

We study infinitary extensions of Gödel logics. In the finitary setting, Gödel logics arose historically from
a sequence of propositional finite-valued logics given by Gödel [17] to show that intuitionistic logic does not
have a finite characteristic matrix. These were extended to an infinite-valued variant by Dummett [15] and
the whole collection is today especially studied in the context of intermediate logics. Further, Gödel logics
have been characterized as one of three main instances of t-norm based fuzzy logics by Hájek [18]. First-order
versions were first described by Horn [21] and later rediscovered by Takeuti and Titani [34] under the name
of intuitionistic fuzzy logics. The infinitary versions studied here assume a similar position among both the
infinitary intermediate and infinitary fuzzy logics and the present work is thus, in that way, also a particular
case study of these classes. For that purpose, Gödel logics pose an especially interesting case as they, in the
intermediate context, are logics with many classical properties but which, at the same time, are distinct enough
from classical or intuitionistic logic to still pose interesting methodological challenges for the adaption of well-
known results. An example of this phenomenon in the infinitary setting is the work [1] by Aguilera where he
studies analogues of the compactness results for classical infinitary logics [20, 24] in a Gödel setting where,
although the classical results stay true modulo appropriate reformulations, the methods of Skolem functions
used classically had to be reformulated using a certain theory of fuzzy ultraproducts.

Two interesting avenues not explored here but worth mentioning (also to motivate potential further work) are
the following: For one, the connection between infinitary Gödel logics and Kripke frames, where in particular it
may be interesting to see how the results on general linearly ordered Kripke frames and their connection to Gödel
logics explored in [13] for the finitary setting extend to the infinitary setting, in particular in the light of the
results on large Kripke frames from [26]. For another, one may investigate the use of infinitary connectives for
axiomatizing extensions of propositional and first-order Gödel logics. For example, in the context of quantified
propositional Gödel logics [6, 7, 9], one relies on the use of a “jump” operator © for decidability (see [6]) which
may be definable using the infinitary connectives, potentially providing novel axiomatizations.1

By now, the work [1] is the only paper on infinitary Gödel logics and many interesting problems arising from
generalizations of the classical case have remained open, like the study of propositional variants, the development
of infinitary calculi and appropriate completeness theorems in the propositional and first-order case as well as
infinitary structural proof theory, among others. We study all these previously named topics (at varying depth)
for the instances with conjunctions and disjunctions of countable length and finitely many quantifiers, like in
the classical [23] and intuitionistic cases [22, 27] (see also the recent [36]). Concretely, this paper is organized
as follows: Section 2 introduces the language, semantics and a prospective Hilbert-style proof calculus for the
propositional case. Section 3 provides a similar introduction for the first-order case. Section 4 introduces the
algebraic semantics for these languages based on Heyting algebras (where some essential properties and results
are recalled). Completeness results w.r.t. the algebraic and, through that, the standard semantics are proved
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in section 5 and in section 6, we introduce hypersequent calculi for the propositional and first-order variants
and prove a cut-elimination theorem. At last, in section 7 we motivate and present some open questions and
discuss other choices for the set of truth values where we derive a range of further completeness results from
the respective completeness result for the set [0, 1] considered before.

2. Propositional Infinitary Gödel Logics

2.1. Syntax and Fragments. Let κ be any cardinal number. The infinitary propositional language associated
with κ is given by

Lκ : φ ::= ⊥ | x | (φ→ φ) | (φ ∧ φ) | (φ ∨ φ) |
∧

Φ |
∨

Φ

where we have x ∈ V arκ := {xλ | λ ∈ κ} and Φ is a set of formulas of size < κ. We also call ⊥ and x atomics.
For the other usual operators, we define

(1) ¬φ := φ→ ⊥,
(2) > := ¬⊥,
(3) φ↔ ψ := (φ→ ψ) ∧ (ψ → φ).

Given some formula φ, we denote the set of all subformulas (including φ) by sub(φ) and the set of variables of
φ by var(φ). Both of these naturally extend to sets Γ.

We mostly deal with the special case of κ = ω1 and in that context, we will mostly write
∧
i∈ω φi for∧

{φi | i ∈ ω} and
∨
i∈ω φi for

∨
{φi | i ∈ ω} where (φi)i∈ω is a countable family of formulas.

Related to that particular instance of κ = ω1, we will also need the notion of a fragment. These fragments
are (possibly countable) sublanguages of Lω1 for which a Lindenbaum-Tarski construction is, nevertheless, still
possible and they form a cornerstone of the proof of the completeness theorem. While these fragments, in
particular the notation LA, originate from the connection of (classical) infinitary logic with admissible sets in
the sense of Barwise [12], we only need and use the following syntactic definition, in similarity to Nadel [27] in
the context of infinitary intuitionistic logic.

Definition 2.1. A (distributive) fragment of Lω1 is a set LA ⊆ Lω1 such that

(1) ⊥ ∈ LA,
(2) φ ∈ LA implies sub(φ) ⊆ LA,
(3) φ, ψ ∈ LA implies φ ◦ ψ ∈ LA for ◦ ∈ {∧,∨,→},
(4) φ,

∧
i∈ω φi ∈ LA implies

∧
i∈ω(φ→ φi) ∈ LA,

(5) φ,
∨
i∈ω φi ∈ LA implies

∧
i∈ω(φi → φ) ∈ LA,

(6) φ,
∧
i∈ω φi ∈ LA implies

∧
i∈ω(φ ∨ φi) ∈ LA.

The important kind of fragments will be countable ones. In particular, we will consider the smallest fragments
containing some set of formulas.

Lemma 2.2. For any Γ ⊆ Lω1
, there is a smallest (w.r.t. ⊆) distributive fragment frag(Γ) such that Γ ⊆

frag(Γ). If Γ is countable, then frag(Γ) is also countable.

2.2. The Standard Semantics and Gκ. We now introduce the standard semantics for the language Lκ and the
resulting semantic consequence relation. This standard semantics naturally extends the usual finitary standard
semantics for propositional Gödel logics. For Gödel logics, being one of the prime examples of many-valued
logics, the first important parameter in that context is that of the truth-value set. As mentioned before, we fix
this to be [0, 1] for the major part of the paper and discuss other choices only in part at the end.

Definition 2.3. An Lκ-Gödel-evaluation is a function v : Lκ → [0, 1] such that

(1) v(⊥) = 0,
(2) v(φ ∧ ψ) = min{v(φ), v(ψ)},
(3) v(φ ∨ ψ) = max{v(φ), v(ψ)},

(4) v(φ→ ψ) = v(φ)⇒ v(ψ) where x⇒ y :=

{
1 if x ≤ y,
y otherwise,

(5) v(
∧

Φ) = inf{v(φ) | φ ∈ Φ},
(6) v(

∨
Φ) = sup{v(φ) | φ ∈ Φ},

for any Φ ∪ {φ, ψ} ⊆ Lκ.

Given a set of formulas Γ, we write v[Γ] := {v(γ) | γ ∈ Γ}. The derived notion of semantics consequence is
then defined as follows: for Γ ∪ {φ} ⊆ Lκ, we write Γ |=Gκ φ if v[Γ] ⊆ {1} implies v(φ) = 1 for any Lκ-Gödel-
evaluation v.
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We call the set of consequences Γ |=Gκ φ the κ-infinitary Gödel logic and denote it by Gκ. For the particular
case of Gω1

, a main part of the paper is devoted to the study of various proof theoretic formalisms for capturing
that semantic consequence and we thus continue by introducing the relevant Hilbert-style calculus used later in
a corresponding completeness proof.

Before that, we also want to note that there is a different definition of consequence common in the context
of Gödel logics, which we may define by

Γ |=≤Gκ φ if inf v[Γ] ≤ v(φ) for any evaluation v.

In a finitary context, it can be easily seen that |=≤ is equivalent to |= and we will show a similar statement (for
countable sets of premises) here later on (see Proposition 4.10).

2.3. A Proof Calculus for κ = ω1. The proof calculus for Gω1
which we introduce, denoted by Gω1

, is a
straightforward combination of a proof calculus for propositional infinitary intuitionistic logic with the (pre-
)linearity scheme

(φ→ ψ) ∨ (ψ → φ).

To be concrete, following [37], we consider the following system of axioms and rules (IL) for intuitionistic
propositional logic:

(∧-Ax):

{
φ ∧ ψ → φ; φ ∧ ψ → ψ;

φ→ (ψ → (φ ∧ ψ));

(∨-Ax):

{
φ→ φ ∨ ψ; ψ → φ ∨ ψ;

(φ→ χ)→ ((ψ → χ)→ (φ ∨ ψ → χ));

(→ -Ax):

{
φ→ (ψ → φ);

(φ→ (ψ → χ))→ ((φ→ ψ)→ (φ→ χ));

(⊥-Ax): ⊥ → φ.

Then, we define:

The Calculus Gω1
.

(IL): the complete set of axioms for propositional intuitionistic logic considered above;
(GL): (φ→ ψ) ∨ (ψ → φ);
(ω∨): φj →

∨
i∈ω φi, (j ∈ ω);

(ω∧):
∧
i∈ω φi → φj , (j ∈ ω);

(MP ): from φ→ ψ and φ, infer ψ;
(Rω)1: from φi → ψ for all i ∈ ω, infer

∨
i∈ω φi → ψ;

(Rω)2: from φ→ ψi for all i ∈ ω, infer φ→
∧
i∈ω ψi.

Further, we define the extension GDω1
by adding the axiom scheme

(D)
∧
i∈ω

(φ ∨ ψi)→

(
φ ∨

∧
i∈ω

ψi

)
,

expressing the distributivity of the infinitary operations, to the above calculus.
A proof in Gω1 (or GDω1

) of some φ from some assumptions Γ is any function f : α + 1 → Lω1 where α < ω1

as well as f(α) = φ and such that any f(β) is either

(1) an instance of an axiom scheme,
(2) an element of Γ,
(3) the result of (MP ), (Rω)1 or (Rω)2 with assumptions f(γ) where γ < β.

We write Γ `Gω1
φ (or Γ `GDω1

φ, respectively) if there is such a proof.

Relative to some fragment LA as defined above, we also introduce a restricted notion of derivation: for
Γ ∪ {φ} ⊆ LA, we write Γ `Gω1

(LA) φ (or Γ `GDω1
(LA) φ, respectively) if there is a proof f with img(f) ⊆ LA.

Note that Gω1
(LA), and thus also GDω1

(LA), have the classical Deduction Theorem.

Lemma 2.4. For any Γ ∪ {φ, ψ} ⊆ LA, we have

Γ ∪ {φ} `Gω1
(LA) ψ iff Γ `Gω1

(LA) φ→ ψ.

The same holds for GDω1
(LA).

The classical proof (see, e.g., [25]) immediately goes through due to the axioms (→-Ax) and the modus
ponens rule.
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3. First-Order Infinitary Gödel Logics

For the first-order variant, we assume a standard underlying first-order signature σ consisting of any number of
predicate symbols P and functions symbols f . For any such given symbol, we write ar(P ) or ar(f), respectively,
for its arity (which is assumed to be finite).

We construct an infinitary language corresponding to cardinals κ ≥ λ as it is usually done classically as well:
assume a set of variables of size κ, given by V arκ as before, and in that context denote the set of terms over σ
and V arκ by Tκ(σ). The infinitary language over σ associated with κ, λ is then given by

Lκ,λ(σ) : φ ::= ⊥ | P (t1, . . . , tn) | (φ→ φ) | (φ ∧ φ) | (φ ∨ φ) |
∧

Φ |
∨

Φ | ∃Xφ | ∀Xφ

where X ⊆ V arκ is a set of size < λ, P ∈ σ is a predicate symbol with ar(P ) = n, t1, . . . , tn ∈ Tκ(σ) and Φ is a
set of formulas of size < κ. We drop the σ if the context is clear or if the choice is arbitrary. Similar to before,
we also call ⊥ and all instances of P (t1, . . . , tn) atomics.

We write free(φ) for the set of free variables of φ and var(φ) for the set of variables of φ, free or bound. We call
φ closed if free(φ) = ∅. As before, we write sub(φ) for the set of subformulas of φ where sub(QXφ) := {φ}∪sub(φ)
for Q ∈ {∃,∀}. Further, we write σ(φ) for the set of function and predicate symbols occurring in φ. These
notions straightforwardly extend to sets Γ and we use the same notation there.

Again, the countable case Lω1,ω with finite quantifiers will be of particular interest, especially in the context
of a completeness theorem, later on. In that case, we consider the existential and universal quantifiers to just
quantify one variable at a time and write

∃xφ or ∀xφ
for x ∈ V arω1

as usual in that case. Further, we again write
∧
i∈ω φi for

∧
{φi | i ∈ ω} and

∨
i∈ω φi for∨

{φi | i ∈ ω} where (φi)i∈ω is a countable family of formulas.
On Lκ,λ, we denote the simultaneous substitution of terms t = (t1, . . . , tn) for free variables x = (xi1 , . . . , xin)

with ij 6= ik for j 6= k in a term t by t[t/x] and in a formula φ by φ[t/x]. Here, we assume that quantifiers are
treated by renaming the quantified variable in the sense of

(Qxφ)[t/x] := Qzφ[(t
′
, z)/(x′, x)]

where Q ∈ {∀,∃}, x′ is x with x removed (if it occurs), t
′

is t with tj removed when xij = x and z is fresh, i.e.

does not occur in φ or t.
Similarly to the propositional case, we consider a notion of fragments for Lω1,ω by extending the previous

properties appropriately to allow for a Lindenbaum-Tarski construction over these fragments also in the first-
order case later on.

Definition 3.1. A (distributive) fragment of Lω1,ω is a set LA ⊆ Lω1,ω together with a set V arA ⊆ V arω1 and
a signature σA ⊆ σ such that TA is the set of terms of σA using V arA and

(1) ⊥ ∈ LA,
(2) P (t1, . . . , tn) ∈ LA for n-ary P ∈ σA and ti ∈ TA,
(3) φ ∈ LA implies sub(φ) ⊆ LA, var(φ) ⊆ V arA and σ(φ) ⊆ σA,
(4) φ, ψ ∈ LA implies φ ◦ ψ ∈ LA for ◦ ∈ {∧,∨,→} and ∃xφ,∀xφ ∈ LA for x ∈ V arA,
(5) φ ∈ LA or t ∈ TA imply φ[t/x] ∈ LA or t[t/x] ∈ TA, respectively for any t ∈ (TA)n and x =

(xi1 , . . . , xin) ∈ (V arA)n with ij 6= ik for j 6= k.
(6) φ,

∧
i∈ω φi ∈ LA implies

∧
i∈ω(φ→ φi) ∈ LA,

(7) φ,
∨
i∈ω φi ∈ LA implies

∧
i∈ω(φi → φ) ∈ LA,

(8) φ,
∧
i∈ω φi ∈ LA implies

∧
i∈ω(φ ∨ φi) ∈ LA.

It is additionally assumed that fragments are “saturated” when it comes to variables, in the sense that there
are enough variables to find fresh ones given a finite selection of formulas from LA. More precisely, we want
that for any φ1, . . . , φn ∈ LA, there is a variable y ∈ V arA \ (var(φ1) ∪ · · · ∪ var(φn)).

Lemma 3.2. For any Γ ⊆ Lω1,ω, there is a smallest (w.r.t. ⊆) distributive fragment frag(Γ) such that Γ ⊆
frag(Γ). If Γ is countable, then frag(Γ) is also countable.

Note that, for countable Γ, one can even find a countable fragment LA ⊇ Γ with a countably infinite
Y ⊆ V arA such that var(φ) ∩ Y is finite for any φ ∈ LA. So in this case, the saturation for variables is directly
satisfied.

3.1. The Standard Semantics and Gκ,λ. The standard semantics of infinitary first-order Gödel logics which
we want to consider is, like in the propositional case, a straightforward extension of the usual finitary case. Also
here, we initially focus on the full real unit interval [0, 1] as the corresponding truth-value set.

Definition 3.3. An Lκ,λ(σ)-Gödel-model is a structure M which consists of
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(1) a non-empty set M ,
(2) PM : Mn → [0, 1] for every n-ary predicate P of σ,
(3) fM : Mn →M for every n-ary function f of σ.

An Lκ,λ(σ)-Gödel-interpretation is a structure I = (M, v) composed of an Lκ,λ(σ)-Gödel-model M together
with a function v : V arκ →M .

Over such an interpretation I, one naturally defines the value tI of some term t of Tκ. Further, we define

v fX (x) :=

{
f(x) if x ∈ X,
v(x) otherwise,

for X ⊆ V arκ and functions f : X → M . We write vmx for the case of X = {x} and f(x) = m and also
introduce a special notation for finite tuples with

vmx :=
(
. . .
(
vm1

x1

)
. . .
)
mn
xn

where m = (m1, . . . ,mn) ∈Mn and x = (xi1 , . . . , xin) ∈ (V arκ)n. We write

I f
X := (M, v fX )

and similarly for singletons and tuples. We also allow empty sets/tuples m, x and set vmx := v in this case.

By recursion on Lκ,λ, we construct the evaluation I : Lκ,λ → [0, 1] associated with I:

(1) I(⊥) := 0A;
(2) I(P (t1, . . . , tn)) := PM(tI1 , . . . , t

I
n) for n-ary P ;

(3) I(φ ∧ ψ) := min{I(φ), I(ψ)};
(4) I(φ ∨ ψ) := max{I(φ), I(ψ)};
(5) I(φ→ ψ) := I(φ)⇒ I(ψ);
(6) I (

∧
Φ) := inf{I(φ) | φ ∈ Φ};

(7) I (
∨

Φ) := sup{I(φ) | φ ∈ Φ};
(8) I(∀Xφ) := inf{I f

X (φ) | f : X →M};
(9) I(∃Xφ) := sup{I f

X (φ) | f : X →M}.
As before, one immediately derives a notion of semantical consequence from the model/interpretation construc-
tion and their corresponding evaluations: for Γ∪{φ} ⊆ Lκ,λ, we write Γ |=Gκ,λ φ if I[Γ] ⊆ {1} implies I(φ) = 1
for any Lκ,λ-Gödel-interpretation I.

We similarly define the κ, λ-infinitary Gödel logic to be the set of consequences Γ |=Gκ,λ φ and in general
denote it by Gκ,λ.

Similar to the propositional case, we can also consider a different consequence relation in this first-order
context which we may define by

Γ |=≤Gκ,λ φ if inf I[Γ] ≤ I(φ) for any interpretation I.

Also here, |=≤Gω1,ω
can be shown to coincide with |=Gω1,ω

for countable sets of premises which we will show later

(see Proposition 4.16).

3.2. A Proof Calculus for κ = ω1, λ = ω. The following proof calculus Gω1,ω is obtained by extending the
previous proof calculus for the propositional case with appropriate axioms and rules for the quantifiers (see
again [37]).

The Calculus Gω1,ω.

(IL): the complete set of axiom schemes for propositional intuitionistic logic considered before, now in the
first-order language;

(GL): (φ→ ψ) ∨ (ψ → φ);
(ω∨): φj →

∨
i∈ω φi, (j ∈ ω);

(ω∧):
∧
i∈ω φi → φj , (j ∈ ω);

(∀E): ∀xφ→ φ[t/x];
(∃E): φ[t/x]→ ∃xφ;
(MP ): from φ→ ψ and φ, infer ψ;
(Rω)1: from φi → ψ for i ∈ ω, infer

∨
i∈ω φi → ψ;

(Rω)2: from φ→ ψi for i ∈ ω, infer φ→
∧
i∈ω ψi;

(∀I): from ψ → φ, infer ψ → ∀xφ where x 6∈ free(ψ);
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(∃I): from φ→ ψ, infer ∃xφ→ ψ where x 6∈ free(ψ).

As before, we consider an extension GDω1,ω obtained by adding the scheme

(D)
∧
i∈ω

(φ ∨ ψi)→

(
φ ∨

∧
i∈ω

ψi

)
and now additionally also the axiom scheme

(QS) ∀x(ψ ∨ φ)→ (ψ ∨ ∀xφ) where x 6∈ free(ψ).

The notion of proof immediately transfers to this setting from the propositional case. We write Γ `Gω1,ω
φ

(or Γ `GDω1,ω
φ, respectively) if there is such a proof. We define restrictions Gω1,ω(LA) (or GDω1,ω(LA)) to some

fragment LA of Lω1,ω as before.

Note that also both Gω1,ω(LA) and GDω1,ω(LA) have the classical Deduction Theorem.

Lemma 3.4. For any Γ ∪ {φ, ψ} ⊆ LA and φ closed, we have

Γ ∪ {φ} `Gω1,ω
(LA) ψ iff Γ `Gω1,ω

(LA) φ→ ψ.

The same holds for GDω1,ω(LA).

4. L-Algebras, Chains and Algebraic Semantics

We follow a similar route to semantic completeness as in the setting of finitary Gödel logics (see in particular
[8, 21]): we first establish completeness w.r.t. a class of algebras and then construct embeddings from that class
into the relevant structures of the intended interpretation.

More precisely, we first show completeness w.r.t. linearly ordered and sufficiently complete Heyting algebras
over countable fragments and then extend this to the Heyting algebra of the real unit interval by embeddings,
similar to [21]. This approach does not only offer a high degree of modularity but also establishes linear Heyting
algebras (with sufficient completeness) as the algebraic semantics for infinitary Gödel logics, in analogy to the
finitary case. Once we have established the result with respect to countable fragments, this assumption can be
removed over complete algebras like the unit interval.

For that, we need various notions from the theory of Heyting algebras and the next subsection gives a, for
reasons of self-containedness, quite detailed account mostly following [21, 29] (up to some notation change).

4.1. Heyting algebras and related notions. A Heyting algebra is a structure A = 〈A,∧A,∨A,→A, 0A, 1A〉
such that 〈A,∧A,∨A, 0A, 1A〉 is a bounded lattice with largest element 1A and smallest element 0A and →A is
a binary operation with

(1) x→A x = 1A,
(2) x ∧A (x→A y) = x ∧A y,
(3) y ∧A (x→A y) = y,
(4) x→A (y ∧A z) = (x→A y) ∧A (x→A z),

where we write a ≤A b for a ∧A b = a and ¬Ax := x →A 0A. Joins (suprema) and meets (infima) of subsets

X are defined as usual and denoted
∨A

X and
∧A

X, respectively. If every subset has a join and meet, A is

called complete. An existing meet
∧A

X is called distributive if∧A

x∈X
(y ∨A x) = y ∨A

∧A
X

for any y ∈ A and A is called distributive if every meet is distributive.
Two particular types of Heyting algebras, which we will consider in this note are chains, i.e. Heyting algebras

where ≤A is linear, and L-algebras, i.e. Heyting algebras where (x →A y) ∨A (y →A x) = 1A for all x, y ∈ A.
We denote the class of all L-algebras by L, the class of all distributive L-algebras by DL and the class of all
chains by C. We write CC for the class of countable chains. Naturally, every chain is a distributive L-algebra.

Further, we will need the notion of a filter. A set F ⊆ A is a filter for a Heyting algebra A, if (1) 1 ∈ F ,
(2) x, y ∈ F implies x ∧A y ∈ F and (3) x ∈ F and x ≤A y imply y ∈ F . F is called proper if F ( A and F is
called a prime filter if it is proper and if x ∨A y ∈ F implies x ∈ F or y ∈ F .

We then can “filter” a Heyting algebra A via F : define x ≤F y if x →A y ∈ F for x, y ∈ A and x ≡F y if
x ≤F y and y ≤F x. Then ≡F is a congruence relation on Heyting algebras and thus defines a quotient Heyting
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algebra A/F over the set of equivalence classes [a]F of elements a of A over ≡F . In particular, “filtering” with
a prime filter in L-algebras yields a chain:

Lemma 4.1 ([21], Lemma 1.1). If F is a prime filter of some L-algebra A, then A/F is a chain.

The behavior of meets and joins under quotients will be of particular importance later on. For that, we first
note the following:

Lemma 4.2 ([29], Chapter IV, 7.2, (7) and (8)). Let A be a Heyting algebra. If∧A
X and

∨A
Y

exist in A, then ∧A

x∈X
(z →A x) = z →A

∧A
X and

∧A

y∈Y
(y →A z) =

∨A
Y →A z

for any z ∈ A.

A filter F of a Heyting algebra A is said to preserve an existing meet

x =
∧A

X

if x ∈ F if, and only if x ∈ F for all x ∈ X.

Further, a homomorphism h : A → B of Heyting algebras is said to preserve a meet
∧A

X, or a join∨A
Y , if

h

(∧A
X

)
=
∧B

h[X] or h

(∨A
Y

)
=
∨B

h[Y ],

respectively.

Lemma 4.3 ([21], Lemma 2.2). Suppose ∧A
X and

∨A
Y

exist in A and F is a filter of A which preserves∧A

x∈X
(z →A x) and

∧A

y∈Y
(y →A z)

for any z ∈ A. Then [∧A
X

]
F

=
∧A/F

x∈X
[x]F and

[∨A
Y

]
F

=
∨A/F

y∈Y
[y]F .

Therefore, the canonical map x 7→ [x]F from A into A/F is a Heyting algebra homomorphism which preserves
the respective meet and join.

Lemma 4.4 ([21], Theorem 2.3). Let A be a Heyting algebra and let

xn =
∧A

Xn

be a sequence of distributive meets in A. If x, y ∈ A with x 6≤A y, then there is a prime filter F such that
x ∈ F , y 6∈ F and such that F preserves the meets given by xn.

By [0,1]Q and [0,1]R, we denote the Heyting algebras of all rationals in the unit interval and of the whole
unit interval, respectively.

Lemma 4.5 ([21], Lemma 3.7). Let A be a countable chain. Then there is an embedding, i.e. an injective
homomorphism of Heyting algebras

q : A→ [0,1]Q

which preserves all meets and joins of A.
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4.2. Algebraic Propositional Evaluations for Lω1
. In this section, we now introduce the actual algebraic

generalizations of the Lω1
-Gödel-evaluations, broadening the domains to fragments and the range to certain

Heyting algebras which may be, in a particular way, incomplete. This will be necessary in the approach to
completeness chosen here since the Lindenbaum-Tarski algebras later constructed are, in fact, incomplete.

Let LA be an arbitrary fragment of Lω1 and A be a Heyting algebra.

Definition 4.6. A function v : LA → A is an (A-valued) LA-evaluation if

(1) v(⊥) = 0A,
(2) v(φ ◦ ψ) = v(φ) ◦A v(ψ) for ◦ ∈ {→,∧,∨},
(3) for any

∧
i∈ω φi,

∨
i∈ω ψi ∈ LA, the meet and join of {v(φi) | i ∈ ω} exist and we have

v

(∧
i∈ω

φi

)
=
∧A

i∈ω
v(φi)

and

v

(∨
i∈ω

φi

)
=
∨A

i∈ω
v(φi).

Given such an evaluation v, we still write v[Γ] := {v(γ) | γ ∈ Γ} for sets Γ ⊆ LA and (A, v) |= φ for
v(φ) = 1A. We denote the set of all A-valued LA-evaluations by Ev(LA; A).

Using this notion of LA-evaluations, there is now a natural notion of semantical entailment: let Cl be a class
of Heyting algebras and let Γ ∪ {φ} ⊆ LA. We write Γ |=Cl(LA) φ if

∀A ∈ Cl∀v ∈ Ev(LA; A)
(
v[Γ] ⊆ {1A} implies v(φ) = 1A

)
.

We abbreviate Γ |=Cl(Lω1
) φ by Γ |=Cl φ.

By transfinite induction on the length of the proof, one quickly verifies the following soundness result:

Lemma 4.7. For any Γ ∪ {φ} ⊆ LA:

(1) Γ `Gω1 (LA) φ implies Γ |=L(LA) φ,

(2) Γ `GDω1
(LA) φ implies Γ |=DL(LA) φ.

To form new LA-evaluations by composition with homomorphisms of Heyting algebras, we now have to
additionally require that the existing meets and joins arising from the infinitary connectives are preserved. This
is captured in the following lemma.

Lemma 4.8. Let v : LA → A be an evaluation of LA in A and let h : A → B be a Heyting algebra
homomorphism which preserves all the meets and joins∧A

i∈ω
v(φi) and

∨A

i∈ω
v(ψi)

for any
∧
i∈ω φi ∈ LA and

∨
i∈ω ψi ∈ LA. Then h ◦ v is an evaluation of LA in B.

The proof is rather immediate and thus omitted.

The following result is a natural generalization of a finitary result (for first-order variants, however) given in
[8] (see Lemma 2.14) and the proof is essentially the same (and thus omitted).

Lemma 4.9. Let A be a complete linear Heyting algebra, a ∈ A, and let v : Lκ → A be any evaluation. Then,
for

va(x) :=

{
v(x) if v(x) <A a,

1A otherwise,

with x ∈ V arκ, the unique extension va : Lκ → A to an evaluation satisfies:

a 6∈ v[sub(φ)] implies va(φ) =

{
v(φ) if v(φ) <A a,

1A otherwise,

for any φ ∈ Lκ.

As a direct consequence, we obtain the following result (similar to Proposition 2.15 in [8]) from this:

Proposition 4.10. For any countable Γ ∪ {φ} ⊆ Lω1
, Γ |=≤Gω1

φ iff Γ |=Gω1
φ.
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4.3. Algebraic First-Order Interpretations for Lω1,ω. For a similar motivation as in the propositional
case, we are also lead to broadening the definitions of models and interpretations for Lω1,ω to both arbitrary
fragments as domains and (sufficiently complete) Heyting algebras as ranges. For this, let LA now be a fragment
of Lω1,ω and A again be a Heyting algebra.

Definition 4.11. An LA-model (over A) is a structure M which consists of

(1) a Heyting algebra A,
(2) a non-empty set M ,
(3) PM : Mn → A for every n-ary predicate P of σA,
(4) fM : Mn →M for every n-ary function f of σA.

An LA-interpretation (over A) is a structure I = (M, v) where M is an LA-model and v : V arA →M .

As before, over some LA-interpretation I, one naturally defines the value of some term t of TA which we still
denote by tI. vmx , vmx and the resulting Imx are defined (over V arA) in the same way as with the standard
semantics.

Such a model M is called (LA-)suitable for a variable assignment v : V arA → M if for any m ∈ Mn and
x ∈ (V arA)n, corresponding to the interpretation I = (M, vmx ), there is a function I : LA → A such that

(1) I(⊥) = 0A,
(2) I(P (t1, . . . , tn)) = PM(tI1 , . . . , t

I
n) for n-ary P ∈ σA,

(3) I(φ ◦ ψ) = I(φ) ◦A I(ψ) for ◦ ∈ {∧,∨,→},
(4) for any

∧
i∈ω φi,

∨
i∈ω ψi ∈ LA, the meet and join of {I(φi) | i ∈ ω} exist and we have

I

(∧
i∈ω

φi

)
=
∧A

i∈ω
I(φi)

as well as

I

(∨
i∈ω

φi

)
=
∨A

i∈ω
I(φi),

(5) for any φ ∈ LA and any x ∈ V arA, the meet and join of {Imx (φ) | m ∈M} exist and we have

I(∀xφ) =
∧A

m∈M
Imx (φ)

as well as

I(∃xφ) =
∨A

m∈M
Imx (φ).

Of course, the existence of a suitable model for a variable assignment is not guaranteed if the variable assignment
is such that the necessary meets or joins do not exist. However, if a model M is suitable for a variable assignment
v, then I is unique for all I = (M, vmx ).

Remark 4.12. Note that it actually suffices to establish the existence of such an extension only for m and
x = (xi1 , . . . , xin) where ij 6= ik for j 6= k.

We still write I[Γ] := {I(γ) | γ ∈ Γ} for sets Γ ⊆ LA and I |= φ if I(φ) = 1A.
We denote the class of all LA-models over A by Mod(LA; A) and if M is a model, we write Int(LA;M) for

the set of all corresponding interpretations (M, v) such that M is suitable for v.

The derived notion of semantic consequence is then given by the following: let Cl be a class of Heyting
algebras and let Γ ∪ {φ} ⊆ LA. We write Γ |=Cl(LA) φ if

∀A ∈ Cl∀M ∈ Mod(LA; A)∀I ∈ Int(LA;M)
(
I[Γ] ⊆ {1A} implies I(φ) = 1A

)
.

It is again straightforward to verify the following soundness result.

Lemma 4.13. For any Γ ∪ {φ} ⊆ LA where all formulas from Γ are closed:

(1) Γ `Gω1,ω(LA) φ implies Γ |=L(LA) φ,

(2) Γ `GDω1,ω
(LA) φ implies Γ |=DL(LA) φ.

As before, we can form new interpretations by composition with Heyting algebra homomorphisms as long as
they respect the necessary meets and joins.
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Lemma 4.14. Let M be a model over some Heyting algebra A which is suitable for v : V arA → M and let
h : A → B be a Heyting algebra homomorphism which, for any interpretation I = (M, vmx ) over M, preserves
all the meets and joins ∧A

i∈ω
I(φi) and

∨A

i∈ω
I(ψi)

for any
∧
i∈ω φi ∈ LA and

∨
i∈ω ψi ∈ LA as well as∧A

m∈M
Imx (φ) and

∨A

m∈M
Imx (φ)

for all φ ∈ LA, x ∈ V arA and m ∈M . Then the model h ◦M defined over the same domain with fh◦M := fM

for any function symbol f and Ph◦M := h ◦ PM for predicate symbols P is a suitable model for v and for any
interpretation I = (M, vmx ), we have

h ◦ I(φ) = h(I(φ))

for all φ ∈ LA where h ◦ I = (h ◦M, vmx ).

We then obtain a result analogous to Lemma 4.9. This first-order version is rather intricate to formulate if
one wants to guarantee a similar level of generality as in the finitary case. We give it here in its full strength
but will later mostly use the special case with κ = ω1 and λ = ω where the conditions simplify considerably (in
particular the definition of ValI(φ)).

Lemma 4.15. Let A be a complete linear Heyting algebra, a ∈ A, and let M be an A-valued model. Define
Ma from M by replacing PM with

PMa(m1, . . . ,mn) :=

{
PM(m1, . . . ,mn) if PM(m1, . . . ,mn) <A a,

1A otherwise,

where P is an n-ary predicate. We write Ja = (Ma, w) and

ValJ(φ) :=
{
J′(ψ) | ψ ∈ sub(φ) and J′ =

(
. . .
(
J f1

X1

)
f2

X2
. . .
)
fn
Xn

where Xi ⊆ V arκ ∩ sub(φ) with |Xi| < λ and fi : Xi →M
}

given an interpretation J = (M, w).
Then, for a given v : V arκ →M and I = (M, v), we have

a 6∈ ValI′(φ) implies I′a(φ) =

{
I′(φ) if I′(φ) <A a,

1A otherwise,

for any φ ∈ Lκ,λ and any interpretation

I′ =
(
. . .
(
I f1

X1

)
f2

X2
. . .
)
fn
Xn

where Xi ⊆ V arκ with |Xi| < λ and fi : Xi →M .

As before, this immediately yields:

Proposition 4.16. Similarly, for any countable Γ ∪ {φ} ⊆ Lω1,ω, we have Γ |=≤Gω1,ω
φ iff Γ |=Gω1,ω

φ.

5. A Propositional and First-Order Completeness Theorem

We fix a fragment LA of either Lω1 or Lω1,ω and all notions, if not explicitly indicated, are to be understood

relative to that fragment. Let G(D)(LA) be either Gω1
(LA) or GDω1

(LA) in the propositional case or either

Gω1,ω(LA) or GDω1,ω(LA) in the first order case.

We construct, as it is usually done, the Lindenbaum-Tarski algebra of G(D)(LA): given Γ ∪ {φ, ψ} ⊆ LA, we
write φ �Γ ψ if

Γ `G(D)(LA) φ→ ψ

and write φ ≡Γ ψ if
φ �Γ ψ and ψ �Γ φ.

We write [φ]Γ for the equivalence class of φ under ≡Γ and LA/ ≡Γ for the set of all equivalence classes. In the

following, we even omit the Γ when the context is clear. The Lindenbaum-Tarski algebra LTΓ is defined as

LTΓ := 〈LA/ ≡Γ,∧LT,∨LT,→LT, 0LT, 1LT〉
where we define
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(1) [φ] ∧LT [ψ] := [φ ∧ ψ],
(2) [φ] ∨LT [ψ] := [φ ∨ ψ],
(3) [φ]→LT [ψ] := [φ→ ψ],
(4) 0LT := [⊥],
(5) 1LT := [>].

Further, the order induced on LTΓ is given by [φ] ≤LT [ψ] iff φ �Γ ψ

Lemma 5.1. We have:

(1) LTΓ is a well-defined L-algebra;
(2) ∧LT

i∈ω
[φi] =

[∧
i∈ω

φi

]
and

∨LT

i∈ω
[ψi] =

[∨
i∈ω

ψi

]
for

∧
i∈ω φi,

∨
i∈ω ψi ∈ LA;

(3) In the case of GD(LA), the meets∧LT

i∈ω
([χ]→LT [φi]) and

∧LT

i∈ω
([ψi]→LT [χ])

are distributive for every additional χ ∈ LA.
(4)

[∀xφ] =
∧LT

t∈TA

[φ[t/x]] and [∃xφ] =
∨LT

t∈TA

[φ[t/x]]

for φ ∈ LA and x ∈ V arA in the first-order case;
(5) In the case of GDω1,ω(LA), the meets∧LT

t∈TA

([χ]→LT [φ[t/x]]) and
∧LT

t∈TA

([φ[t/x]]→LT [χ])

are distributive for every additional χ ∈ LA.

Proof. (1) We skip the finitary operations. Using the axiom scheme (GL), it is easy to see that LTΓ is a
well-defined L-algebra.

(2) Let
∧
i∈ω φi ∈ LA and

∨
i∈ω ψi ∈ LA. Then, we have

G(D)(LA) `
∧
i∈ω

φi → φj and G(D)(LA) ` ψj →
∨
i∈ω

ψi

for any j by axioms (ω∧) and (ω∨) which gives[∧
i∈ω

φi

]
≤LT [φj ] and [ψj ] ≤LT

[∨
i∈ω

ψi

]
for any j. Suppose that [χ] ≤LT [φj ] for any j and [ψj ] ≤LT [χ′] for any j. Therefore, we have

Γ `G(D)(LA) χ→ φj and Γ `G(D)(LA) ψj → χ′

for any j which implies

Γ `G(D)(LA) χ→
∧
i∈ω

φi and Γ `G(D)(LA)

∨
i∈ω

ψi → χ′

by (Rω)1,2 which is

[χ] ≤LT

[∧
i∈ω

φi

]
and

[∨
i∈ω

ψi

]
≤LT [χ′].

This gives that ∧LT

i∈ω
[φi] =

[∧
i∈ω

φi

]
and

∨LT

i∈ω
[ψi] =

[∨
i∈ω

ψi

]
.

(3) Let χ, ξ ∈ LA be arbitrary. We have∧
i∈ω

(ξ ∨ (ψi → χ)) ∈ LA and
∧
i∈ω

(ξ ∨ (χ→ φi)) ∈ LA.
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by the closure properties of LA. Write αi for either χ→ φi or ψi → χ. Now, we get

[ξ] ∨LT
∧LT

i∈ω
[αi] ≤LT [ξ] ∨LT [αj ]

for any j by axiom (ω∧) and therefore

[ξ] ∨LT
∧LT

i∈ω
[αi] ≤LT

∧LT

i∈ω
([ξ] ∨LT [αi]) =

[∧
i∈ω

(ξ ∨ αi)

]
using item (2). Further, by axiom scheme (D), we have

Γ `GD(LA)

∧
i∈ω

(ξ ∨ αi)→

(
ξ ∨

∧
i∈ω

αi

)
which gives the converse [∧

i∈ω
(ξ ∨ αi)

]
≤LT [ξ] ∨LT

∧LT

i∈ω
[αi],

i.e. combined we have

[ξ] ∨LT
∧LT

i∈ω
[αi] =

[∧
i∈ω

(ξ ∨ αi)

]
.

(4) Both quantifier claims can be proved as outlined in [21]. We still sketch the proofs here for self-
containedness.

For the first two quantifier claims, note that we have

Γ `G(D)
ω1,ω

(LA)
∀xφ→ φ[t/x] and Γ `G(D)

ω1,ω
(LA)

φ[t/x]→ ∃xφ

for any t ∈ TA by the axioms (∀E) and (∃E). Now, suppose that χ ∈ LA is such that

Γ `G(D)
ω1,ω

(LA)
χ→ φ[t/x] for all t ∈ TA or Γ `G(D)

ω1,ω
(LA)

φ[t/x]→ χ for all t ∈ TA.

Then, pick y ∈ V arA with y 6∈ var(χ)∪ var(φ). Note that this is possible as fragments are saturated for
variables. By assumption, we have

Γ `G(D)
ω1,ω

(LA)
χ→ φ[y/x] or Γ `G(D)

ω1,ω
(LA)

φ[y/x]→ χ

and as y is not free in χ, we get

Γ `G(D)
ω1,ω

(LA)
χ→ ∀yφ[y/x] or Γ `G(D)

ω1,ω
(LA)

∃yφ[y/x]→ χ

via the rule (∀I) and (∃I). As we have

`G(D)
ω1,ω

(LA)
∀yφ[y/x]↔ ∀xφ and `G(D)

ω1,ω
(LA)

∃yφ[y/x]↔ ∃xφ,

the claims follow.
(5) Let φ ∈ LA and x ∈ V arA as well as χ, ξ ∈ LA. Further, let y ∈ V arA with y 6∈ var(φ)∪ var(χ)∪ var(ξ)

(note again variable saturation). Then, we have

`G(D)
ω1,ω

(LA)
φ[t/x]↔ φ[y/x][t/y]

and therefore, defining φ′ := φ[y/x], we have [φ[t/x]] = [φ′[t/y]]. Since y does not occur in χ, we have

χ→ φ′[t/y] = (χ→ φ′)[t/y] =: α∀[t/y]

and
φ′[t/y]→ χ = (φ′ → χ)[t/y] =: α∃[t/y]

and therefore, since y also does not occur in ξ, the previous quantifier claims imply (where we write α
for either α∃ or α∀): ∧LT

t∈TA

([ξ] ∨LT [α[t/y]]) =
∧LT

t∈TA

[(ξ ∨ α)[t/y]]

= [∀y(ξ ∨ α)].

Here, we have used item (4). Using the distributivity axiom, as y again does not occur in ξ, we get

[∀y(ξ ∨ α)] = [ξ ∨ ∀yα]

= [ξ] ∨LT
∧LT

t∈TA

[α[t/y]]
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and finally we have∧LT

t∈TA

[ξ] ∨LT ([χ]→LT [φ[t/x]]) = [∀y(ξ ∨ α∀)] = [ξ] ∨LT
∧LT

t∈TA

([χ]→LT [φ[t/x]])

and ∧LT

t∈TA

[ξ] ∨LT ([φ[t/x]]→LT [χ]) = [∀y(ξ ∨ α∃)] = [ξ] ∨LT
∧LT

t∈TA

([φ[t/x]]→LT [χ]).

�

In the propositional case, there is a canonical LA-evaluation over LTΓ, ι : LA → LTΓ, which is defined by

ι(φ) := [φ].

By Lemma 5.1, ι indeed is a well-defined LA-evaluation.

In the first-order case, this Lindenbaum-Tarski algebra now forms the algebraic part of the Lindenbaum-
Tarski model : define LTΓ as a model with LTΓ as the underlying Heyting algebra and with TA as the domain
by setting

fLT(t1, . . . , tn) := f(t1, . . . , tn) as well as PLT(t1, . . . , tn) := [P (t1, . . . , tn)]

for functions symbols f and predicate symbols P of LA. We define the canonical variable assignment

ι : V arA → TA, x 7→ x

and denote it, for convenience, also by ι but the context will make it clear whether we mean the propositional
evaluation or the first-order variable assignment.

First note that LTΓ is indeed suitable for ι.

Lemma 5.2. The model LTΓ is a suitable model for ι. In particular, given some t = (t1, . . . , tn) ∈ (TA)n and
x = (xi1 , . . . , xin) ∈ (V arA)n with ij 6= ik for j 6= k, it holds that

(LTΓ, ι tx )(φ) = [φ[t/x]].

for any φ ∈ LA.

Proof. Consider (LTΓ, ι tx ) for x and t as required. By Remark 4.12, showing that φ 7→ [φ[t/x]] is the extension

of (LTΓ, ι tx ) for those t, x is enough to establish suitability.
Note first that we have

s

(
LTΓ,ι

t
x

)
= s[t/x] ∈ TA

for any s ∈ TA as by assumption, TA is closed under substitution. The lemma is then proved by induction on
φ. By the above result for terms, we get

[P (s1, . . . , sn)[t/x]] = [P (s1[t/x], . . . , sn[t/x])] = P (LTΓ,ι
t
x )(s

(LTΓ,ι
t
x )

1 , . . . , s
(LTΓ,ι

t
x )

n ).

Further, we in particular have [⊥[t/x]] = [⊥] and this provides the result for the atomic cases. The cases for
φ ◦ ψ ∈ LA with ◦ ∈ {∧,∨,→} follow just by noting that (simultaneous) substitution distributes over ◦.

The same also holds true for
∧
i∈ω φi ∈ LA where we have[(∧
i∈ω

φi

)
[t/x]

]
=

[∧
i∈ω

φi[t/x]

]
=
∧LT

i∈ω

[
φi[t/x]

]
and similarly for

∨
i∈ω φi ∈ LA where we have used Lemma 5.1. This gives the infinitary cases.

Lastly, let φ ∈ LA and x ∈ V arA. Then, we have

[(∀xφ)[t/x]] = [∀zφ[(t′, z)/(x′, x)]]

where z and x′, t′ are as in the definition of first-order substitutions. Using Lemma 5.1, we get

[∀zφ[(t′, z)/(x′, x)]] =
∧LT

t∈TA

[φ[(t′, z)/(x′, x)][t/z]] =
∧LT

t∈TA

[φ[(t′, t)/(x′, x)]].

Using similar reasoning, one can show

[(∃xφ)[t/x]] =
∨LT

t∈TA

[φ[(t′, t)/(x′, x)]]
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in the existential case. This gives the quantifier cases by noting that(
ι tx

)
t
x = ι (t′,t)

(x′,x)
.

�

This immediately yields completeness theorems for Gω1
(LA) or respectively Gω1,ω(LA) w.r.t. L-algebras:

Theorem 5.3. Let LA be any fragment of Lω1
or Lω1,ω. For any Γ∪{φ} ⊆ LA (with Γ closed in the first-order

case), the following are equivalent:

(1) Γ `G(LA) φ;
(2) Γ |=L(LA) φ.

Here, we write G for either Gω1
or Gω1,ω, respectively.

Proof. “(1) implies (2)” is contained in Lemma 4.7 or Lemma 4.13, respectively. For the converse, suppose

Γ 6`G(LA) φ and construct the Lindenbaum-Tarski algebra LTΓ as indicated above.

Then Lemma 5.1 gives that ι is a well-defined LTΓ-valued LA-evaluation in the propositional case and by
construction, we have ι[Γ] ⊆ {1LT} but ι(φ) 6= 1LT. Therefore Γ 6|=L(LA) φ as LTΓ is an L-algebra.

In the first-order case, we construct the Lindenbaum-Tarski model LTΓ as above which is suitable for ι
by Lemma 5.2. Again by Lemma 5.1, the underlying algebra LTΓ is a well-defined L-algebra and for the
corresponding ι, we have

(LTΓ, ι)[Γ] ⊆ {1LT} but (LTΓ, ι)(φ) = [φ] 6= 1LT

by Lemma 5.2 and therefore Γ 6|=L(LA) φ. �

However, restricting to countable fragments even yields a further completeness result for GD w.r.t. countable
chains and thus, by Lemma 4.5, for [0, 1] which is what we will outline next.

Theorem 5.4. Let LA be a countable fragment of Lω1
or Lω1,ω. For any Γ ∪ {φ} ⊆ LA (with Γ closed in the

first-order case), the following are equivalent:

(1) Γ `GD(LA) φ;
(2) Γ |=DL(LA) φ;
(3) Γ |=C(LA) φ;
(4) Γ |=CC(LA) φ;
(5) Γ |=[0,1]Q(LA) φ;
(6) Γ |=[0,1]R(LA) φ.

Here, we again write GD for either GDω1
or GDω1,ω, respectively.

Proof. “(1) implies (2)” is contained in Lemma 4.7 or Lemma 4.13, respectively . “(2) implies (3)” follows from
the fact that every chain is a distributive L-algebra. “(3) implies (4)” and “(4) implies (5)” as well as “(3)
implies (6)” and “(6) implies (5)” are also immediate.

We thus only show “(5) implies (1)” and for that, suppose Γ 6`GD(LA) φ. Also here, we construct the

corresponding Lindenbaum-Tarski algebra LTΓ and naturally have [φ] 6= 1LT. Lemma 5.1 again guarantees

that LTΓ is a well-defined L-algebra and that ι is a well-defined evaluation in the propositional case.
In the first-order case, we again construct the Lindenbaum-Tarski model LTΓ over the algebra LTΓ and by

Lemma 5.2, the model LTΓ is suitable for ι. With ι as the canonical variable assignment, we also get

(LTΓ, ι)(ψ) = [ψ] for all ψ ∈ LA
by the same result.

Lemma 5.1 now yields that any of the meets∧LT

i∈ω
([χ]→LT [φi]) and

∧LT

i∈ω
([ψi]→LT [χ])

and additionally, in the first-order case, any of the meets∧LT

t∈TA

([χ]→LT [φ[t/x]]) and
∧LT

t∈TA

([φ[t/x]]→LT [χ])

are distributive for any φ, χ,
∧
i∈ω φi,

∨
i∈ω ψi ∈ LA and x ∈ V arA.

As LA is countable, we can enumerate all of the above (distributive) meets and by Lemma 4.4, there is a
prime filter F with [φ] 6∈ F and such that F preserves all the above meets (depending on the propositional or
first-order case).
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As every element of LTΓ is of the form [χ], Lemma 4.3 gives that the map

pF : LTΓ → LTΓ/F, [χ] 7→ [χ]F := [[χ]]F

is a homomorphism of Heyting algebras with preserves all the meets/joins∧LT

i∈ω
[φi] and

∨LT

i∈ω
[ψi]

as well as ∧LT

t∈TA

[φ[t/x]] and
∨LT

t∈TA

[φ[t/x]]

for any φ,
∧
i∈ω φi,

∨
i∈ω ψi ∈ LA and x ∈ V arA. Further, by Lemma 4.1, LTΓ/F is a chain as F is a prime

filter and LTΓ is an L-algebra.
In the propositional case, Lemma 4.8 implies that pF ◦ ι is a well-defined LA-evaluation into LTΓ/F with

pF (ι(φ)) = [φ]F 6= 1LT/F as [φ] 6∈ F .
In the first-order case, since φ[t/x] ∈ LA for any φ ∈ LA, any t ∈ (TA)n and any x ∈ (V arA)n with ij 6= ik

for j 6= k, we in particular have that the map pF preserves the meets and joins∧LT

i∈ω
[φi[t/x]] and

∨LT

i∈ω
[ψi[t/x]]

as well as ∧LT

t∈TA

[φ[t/x][t/x]] and
∨LT

t∈TA

[φ[t/x][t/x]].

Since by Lemma 5.2, we have (LTΓ, ι tx )(φ) = [φ[t/x]], the map pF fulfills the premises of Lemma 4.14 and

therefore, the model pF ◦ LTΓ is suitable for ι with (pF ◦ LTΓ, ι tx )(φ) = [φ[t/x]]F .

Lemma 4.5 guarantees the existence of an injective Heyting algebra homomorphism

q : LTΓ/F → [0,1]Q

which preserves all the meets and joins existing in LTΓ/F .
In the propositional case, by Lemma 4.8 we have that q ◦ (pF ◦ ι) is a well-defined LA-evaluation with

(q ◦ (pF ◦ ι))(φ) 6= 1 by injectivity. Naturally, we have (q ◦ (pF ◦ ι))[Γ] ⊆ {1} and therefore Γ 6|=[0,1]Q(LA) φ.

In the first-order case, since pF ◦LTΓ is suitable for ι, this implies that in particular the conditions of Lemma
4.14 are met again and therefore, the model

q ◦ (pF ◦ LTΓ)

is suitable for ι as well. In particular, we have

(q ◦ (pF ◦ LTΓ), ι)(φ) = q([φ]F ) 6= 1

as q is injective and as [φ] 6∈ F , i.e. [φ]F 6= 1LT
Γ/F . �

Corollary 5.5. Let LA be an arbitrary fragment of Lω1
or Lω1,ω but let Γ ∪ {φ} ⊆ LA be countable with Γ

closed in the first-order case. Then, the following are equivalent:

(1) Γ `GD(LA) φ;
(2) Γ |=DL(LA) φ;
(3) Γ |=C(LA) φ;
(4) Γ |=[0,1]R(LA) φ.

Here, we again write GD for either GDω1
or GDω1,ω, respectively.

Proof. The directions “(1) implies (2)”, “(2) implies (3)” as well as “(3) implies (4)” follow as before. Suppose
Γ 6`GD(LA) φ. Then, also

Γ 6`GD(LB) φ

for LB := frag(Γ ∪ {φ}) since LB ⊆ LA. Since Γ ∪ {φ} is countable, we have that LB is countable as well.
Theorem 5.4 gives Γ 6|=[0,1]R(LB) φ.

Therefore, in the propositional case there is an LB-evaluation v : LB → [0, 1] such that v[Γ] ⊆ {1} but
v(φ) 6= 1. Similarly, in the first-order case, there is an interpretation I = (M, v) such that I[Γ] ⊆ {1} but
I(φ) = 1.
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In [0,1]R (by completeness), every function v : V arA → [0, 1] has a single extension to an evaluation which
we denote here by v. If we set

v′ : p 7→

{
v(p) if p ∈ LB ,
0 otherwise,

for p ∈ V arA, then it is easy to see that v′(ψ) = v(ψ) for ψ ∈ LB (as v is an LB-evaluation) and therefore, we
have v′[Γ] = 1 but v′(φ) 6= 1.

On the first-order side, any model over [0,1]R (again by completeness) is suitable for any variable assignment.

We define M′ by fM
′

:= fM and PM′
:= PM for function symbols f and predicate symbols P in σB and

otherwise set fM
′

and PM′
arbitrary for symbols from σA \ σB . Further, we define v′(x) := v(x) if x ∈ V arB

and set it arbitrary otherwise for x ∈ V arA \ V arB . Again, a simple induction shows that

(M′, v′)(ψ) = (M, v)(ψ)

for any ψ ∈ LB which results in Γ 6|=[0,1]R(LA) φ. �

In particular, for countable Γ (closed, in the first-order case) in the appropriate language, we have

Γ `GDω1
φ iff Γ |=Gω1

φ.

as well as

Γ `GDω1,ω
φ iff Γ |=Gω1,ω

φ.

We will actually see later on that the requirement that the set of premises is countable can not be removed.

Remark 5.6. In the first-order cases, the formulations of the various completeness results require the set of
premises Γ to be closed. This is, however, only needed for the soundness result as can be seen by inspecting
the various proofs for the converse direction: both the Lindenbaum-Tarski algebra and model do not rely on Γ
to be closed and neither do any remaining parts of the above presented completeness proofs.

6. Hypersequent Calculi for GDω1
and GDω1,ω and Cut-Elimination

We now want to address structural proof theory for infinitary Gödel logics, both for the propositional and
first-order instances with operations of countable length. For that, we lift the usual approach towards structural
proof theory for Gödel logics via hypersequent calculi (see [5]) to the infinitary case and provide cut-elimination
theorems.

6.1. Sequents, Hypersequents and Related Notions. Hypersequents, as introduced by Avron [3], are
multisets of sequents and the rules operating on hypersequents then allow for parallel modification of sequents
as well as for “exchange of information” between sequents (as in particular exemplified by the rule (com) given
by Avron). For the upcoming proof of the cut-elimination theorem, we introduce a version of hypersequents
using sets of formulas for sequents and sets of sequents for hypersequents to avoid uses of contraction. With
this set-version, we follow both Tait [33] as well as Baaz and Ciabattoni [4].

More formally, let L be either Lω1
or Lω1,ω. A sequent is a pair

ΓC∆

of finite sets Γ and ∆ of L-formulas where ∆ contains at most one element. We use C as a sequent delimiter to
distinguish it from ⇒ or `, which already have meanings in our context. We write Γ,∆ for the union of Γ and
∆ and simply write φ for {φ}. A hypersequent is then a set of sequents ΓiC∆i (1 ≤ i ≤ n) which we denote by

{Γ1 C∆1} ∪ · · · ∪ {Γn C∆n}.
We write Γ C ∆ for the hypersequent {Γ C ∆}. In any other way, we follow the notational conventions of
[5]. Further, there is a canonical interpretation I (up to some fixed ordering of formulas and sequents) of
hypersequents as L-formulas: set I(Γ C ∆) :=

∧
Γ →

∨
∆ where

∧
Γ (respectively

∨
∆) is the conjunction

(respectively disjunction) over all members of Γ (respectively ∆), with the convention that
∧
∅ := > and∨

∅ := ⊥. This I extends to hypersequents by

I({Γ1 C∆1} ∪ · · · ∪ {Γn C∆n}) :=

n∨
i=1

I(Γi C∆i).

The hypersequent systems which we consider are based on a hypersequent calculus for finitary propositional
Gödel logic introduced by Avron [3]. This calculus naturally extends the usual sequent calculus for intuitionistic
logic, lifted to the hypersequent setting, by a specific rule emulating the prelinearity axiom scheme (φ →
ψ) ∨ (ψ → ψ). Avron’s calculus was extended to first-order Gödel logics by Baaz and Zach in [11].
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6.2. The Systems SHGDω1
and SHGDω1,ω. The range of constituting rules for the various hypersequent cal-

culi can be seen in Figure 1. They consist of the rules given in [4] (modified for the set-based hypersequents)
for a hypersequent calculus for first-order Gödel logic extended by four additional infinitary rules. Following
Baaz and Ciabattoni [4], the version of (com) given here differs from the one usually given (see e.g. [11]) and,
similar to [4], this serves some technical purposes in the following cut-elimination proof. For further context,
see in particular Remark 2 from [4]. Principal formulas are defined as commonly done. The rules (∀, l) and

Initial Hypersequents

φC φ
, φ 6= ⊥ and atomic (id)

⊥C
(⊥)

Structural Rules

G

G ∪ {ΓC∆}
(EW)

G ∪ {Γ1,Γ2 C∆1} G ∪ {Γ1,Γ2 C∆2}
G ∪ {Γ1 C∆1} ∪ {Γ2 C∆2}

(com)

G ∪ {ΓC∆}
G ∪ {Γ, φC∆}

(w, l)
G ∪ {ΓC}
G ∪ {ΓC φ}

(w, r)

G ∪ {Γ, φC∆} G ∪ {ΓC φ}
G ∪ {ΓC∆}

(cut)

Logical Rules

G ∪ {ΓC φ} G ∪ {Γ, ψ C∆}
G ∪ {Γ, φ→ ψ C∆}

(→, l) G ∪ {Γ, φC ψ}
G ∪ {ΓC φ→ ψ}

(→, r)

G ∪ {Γ, φi C∆}
G ∪ {Γ, φ0 ∧ φ1 C∆}

(∧i, l)i=0,1
G ∪ {ΓC φ} G ∪ {ΓC ψ}

G ∪ {ΓC φ ∧ ψ}
(∧, r)

G ∪ {Γ, φC∆} G ∪ {Γ, ψ C∆}
G ∪ {Γ, φ ∨ ψ C∆}

(∨, l) G ∪ {ΓC φi}
G ∪ {ΓC φ0 ∨ φ1}

(∨i, r)i=0,1

Quantifier Rules

G ∪ {φ[t/x],ΓC∆}
G ∪ {∀xφ(x),ΓC∆}

(∀, l) G ∪ {ΓC φ[a/x]}
G ∪ {ΓC ∀xφ(x)}

(∀, r)

G ∪ {φ[a/x],ΓC∆}
G ∪ {∃xφ(x),ΓC∆}

(∃, l) G ∪ {ΓC φ[t/x]}
G ∪ {ΓC ∃xφ(x)}

(∃, r)

Infinitary Rules

G ∪ {φj ,ΓC∆}
G ∪ {

∧
i∈ω φi,ΓC∆}

(
∧
, l)

G ∪ {ΓC φi} (i ∈ ω)

G ∪ {ΓC
∧
i∈ω φi}

(
∧
, r)

G ∪ {φi,ΓC∆} (i ∈ ω)

G ∪ {
∨
i∈ω φi,ΓC∆}

(
∨
, l)

G ∪ {ΓC φj}
G ∪ {ΓC

∨
i∈ω φi}

(
∨
, r)

Figure 1. The various hypersequent rules.

(∃, r) are supposed to fulfill the eigenvariable condition: the variable a is free and does not occur in the lower

hypersequent. We refer with SHGDω1
to all initial, structural, logical and infinitary rules (over the propositional

language) and with and SHGDω1,ω to SHGDω1
(now over the first-order language) extended with the quantifier

rules.

Deductions in the hypersequent calculi are defined by natural infinitary generalizations of the usual defini-
tion: deductions are countable (possibly infinite) well-founded rooted trees where every node is labeled with
a hypersequent and every edge is labeled with a rule such that the arities of the rules are respected and the
applications are correct. If d is such derivation with a root hypersequent H, then we write d `sSHGDω1,ω

H or

d `sSHGDω1

H (depending on the used language and systems). We omit the system if it is arbitrary or clear from

the context and then write d `s H. We write `s H if there is any derivation d with d `s H. Also, derivations
with additional hypersequent assumptions are defined as always. The notion of substitution naturally carries
over to sequents and hypersequents as well as derivations and we use the same notation as in formulas and terms.

One quickly verifies that the non-atomic version of (id), i.e. allowing for arbitrary φ, is derivable in the
systems. Further, they are complete w.r.t. to the Hilbert-type systems introduced before in the following sense:
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Theorem 6.1. For any φ ∈ Lω1
, `sSHGDω1

Cφ if, and only if `GDω1
φ. Similarly for SHGDω1,ω and GDω1,ω over

Lω1,ω.

Proof. The only thing we want to remark is that the infinitary distributivity axiom (D) is derivable in the
calculus, akin to the analogous derivation of the first order axiom (QS) e.g. given in [5] (where we omit
weakenings in the derivation):

φC φ ψi C ψi
(com)

{φC ψi} ∪ {ψi C φ} φC φ
(∨, l)

{φC ψi} ∪ {φ ∨ ψi C φ} ψi C ψi
(∨, l)

{φ ∨ ψi C ψi} ∪ {φ ∨ ψi C φ}
2× (

∧
, l)

{
∧
i∈ω(φ ∨ ψi)C ψi} ∪ {

∧
i∈ω(φ ∨ ψi)C φ}

for any i ∈ ω. Using those as input for (
∧
, r), we get

... (
∧
, r)

{
∧
i∈ω(φ ∨ ψi)C

∧
i∈ω ψi} ∪ {

∧
i∈ω(φ ∨ ψi)C φ}

(∨0, r), (∨1, r)∧
i∈ω(φ ∨ ψi)C φ ∨

∧
i∈ω ψi

(→, r).
C
∧
i∈ω(φ ∨ ψi)→ φ ∨

∧
i∈ω ψi

�

6.3. Cut-Elimination in the Schütte-Tait Style. We now turn to cut-elimination. Most cut-elimination
methods fall into one of two categories: Gentzen style methods [16] which remove highest cuts and Schütte-Tait
style methods [30, 33] which remove most complex cuts (in the sense of occurring logical symbols or a similar
complexity measure). Using highest cuts does not generally result in terminating procedures with systems which
have infinitary rules and we thus opt for a Schütte-Tait style proof.

For proving cut-elimination, we closely follow the argument given in [4] by Baaz and Ciabattoni where the
authors provide a Schütte-Tait style cut-elimination proof for the calculus which we have used (together with its
propositional fragment) as a basis for our infinitary extensions. Naturally, the finitary notions used there have
to be appropriately extended to arbitrary countable ordinals and we do this in a similar vein as in Tait’s work [33].

Before moving on to the technical results, we will need to introduce various measures on proofs and formulas.
For this, we first give a short primer on the relevant notions regarding ordinals. For a general overview over
ordinal arithmetic and further notions, see [32]. We write + and · for the usual ordinal addition and multi-
plication. Given a family of ordinals αi, we write sup+

i αi for the smallest ordinal greater than every αi and
supi αi for the smallest ordinal greater or equal than every αi. A function on ordinals is called continuous if it
commutes with sup (although we will not really rely on this notion).

Further, we will need the natural sum and multiplication on ordinals, also called the Hessenberg sum and
multiplication (see [32]), which we denote by x⊕ y and x⊗ y, respectively. The precise definition for ⊕ and ⊗
can be given using Cantor normal forms, among others, but we will only need certain properties of ⊕, ⊗ and
their interplay with sup+ which we list in the following remark.

Remark 6.2. ⊕ and ⊗ are commutative, associative and monotone in both arguments. Further, we have

α⊕ 1 = α+ 1 for any ordinal α and α⊗ (β ⊕ γ) = (α⊗ β)⊕ (α⊗ γ). We have sup
(+)
i (β ⊕ αi) ≤ β ⊕ sup

(+)
i αi

and sup
(+)
i (β ⊗ αi) ≤ β ⊗ sup

(+)
i αi where sup(+) is either sup or sup+.

There is a notion of exponentiation derived from natural multiplication, first considered by de Jongh and
Parikh [14], which we denote by α⊗β and call (super-Jacobsthal) exponentiation, following Altman [2]. This
exponentiation can be formally defined using transfinite recursion by

(1) α⊗0 := 1 for any α,
(2) α⊗(β+1) := α⊗β ⊗ α for any α, β,
(3) α⊗β := supγ<β α

⊗γ for any α and any limit ordinal β,

and has, in particular, the following properties: α⊗β is strictly increasing and continuous in β and

α⊗(β⊕γ) = α⊗β ⊗ α⊗γ .
The first two are immediate by the monotonicity of ⊗ and the definition of exponentiation. A proof of the latter
can be found in [2].
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Inspired by Tait [33], we define the function χ0(α) := 4⊗α and derived from that, we define χz as the function
enumerating the common fixed points of χw for all w < z. These χz are the Veblen iterations of χ0 which exist
(for all countable ordinals) by [38] as χ0 is continuous and strictly increasing. Further, all χz are also continuous
and strictly increasing and this latter property is all that will be needed in the following regarding χz, besides
its definition using fixed points.

We define the complexity |φ| of φ ∈ Lω1
recursively by

(1) |φ| := 0 for atomic φ,
(2) |φ ◦ ψ| := max{|φ|, |ψ|}+ 1,
(3) |

∧
i∈ω φi| := |

∨
i∈ω φi| := sup+

i∈ω |φi|.
| · | is extended to Lω1,ω by adding the clause

(4) |Qxφ| := |φ|+ 1,

for Q ∈ {∀,∃}.

Let d be a derivation with di, i < k ≤ ω, as its direct predecessors (i.e., those subderivations proving the
assumptions of the last rule in d, also called direct subderivations in [33]). As natural generalizations of the
notions defined in [4] (and in some way akin to [33]) we define the rank (or height) |d| of the derivation (without
counting weakenings), |d|, by setting |d| := sup+

i<k |di| if the last rule was not a weakening and |d| := |d0|
otherwise. To complement this, we define the height of the internal weakenings w(d) by w(d) := supi<k w(di)
if the last rule was not an internal weakening and w(d) := w(d0) + 1 otherwise. Similarly, we define W (d) by
using external instead of internal weakenings.

Lastly, we recursively define the cut-degree of d, ρ(d), by

(1) ρ(d) := 0 if d is cut-free,
(2) ρ(d) := supi<k ρ(di) if the last inference is not a cut,
(3) ρ(d) := max{|φ|+ 1, ρ(d0), ρ(d1)} if the last inference is a cut with cut-formula φ.

Intuitively, ρ(d) is an upper bound on the complexity of all cut-formulas in d.

Lemma 6.3. If d `s H, then d[t/x] `s H[t/x] with |d[t/x]| = |d|, w(d[t/x]) = w(d), W (d[t/x]) = W (d) and
ρ(d[t/x]) = ρ(d).

It is straightforward to check that d[t/x] is a correct proof since d is. Both d[t/x] `s H[t/x] and the other
properties are then immediate.

The proofs which we give in the following rely on a (formal) tracking of the cut formula through the proof
based on so-called decorations as introduced by Baaz and Ciabattoni in [4], extended to the infinitary case.

Definition 6.4. Given d `s H and given a decoration of H, that is H where some (but not necessarily all)
occurrences of a formula φ are decorated, denoted by φ∗, the decorated version of d is defined by recursion on
the tree: if we have a decoration of an occurring hypersequent H ′, then the premises are decorated according to
which rule was used to derive H ′. The definitions for the rules (EW), (w, l), (w, r), (com) and (com) are exactly
as in [4]. Suppose the rule used is a (possibly infinitary) logical rule with arity k ≤ ω, i.e. we have

G ∪ {Γi C∆i | i < k}
G ∪ {ΓC∆}

.

Then if

(1) φ is the principal formula of the rule: if φ∗ ∈ Γ then φ is decorated in Γi iff φ already occurs in Γi.
(2) φ is not the principal formula of the rule then φ is decorated in Γi or ∆i iff it is decorated in Γ or ∆,

respectively.

Further, in both cases, G \ {Γi C∆i | i < k} is decorated as in the conclusion.

Lemma 6.5. The following inversions are valid:

(i) If d `s G ∪ {Γ, φ ∨ ψ C∆}, then there are proofs d0 `s G ∪ {Γ, φC∆} and d1 `s G ∪ {Γ, ψ C∆}.
(ii) If d `s G ∪ {Γ, φ ∧ ψ C∆}, then there is a proof d0 `s G ∪ {Γ, φ, ψ C∆}.

(iii) If d `s G ∪ {ΓC φ ∧ ψ}, then there are proofs d0 `s G ∪ {ΓC φ} and d1 `s G ∪ {ΓC ψ}.
(iv) If d `s G ∪ {ΓC φ→ ψ}, then there is a proof d0 `s G ∪ {Γ, φC ψ}.
(v) If d `s G ∪ {Γ,∃xφC∆}, then there is a proof d0 `s G ∪ {Γ, φ[a/x]C∆}.

(vi) If d `s G ∪ {ΓC ∀xφ}, then there is a proof d0 `s G ∪ {ΓC φ[a/x]}.
(vii) If d `s G ∪ {Γ,

∨
i∈ω φi C∆}, then there are proofs dj `s G ∪ {Γ, φj C∆} for each j ∈ ω.

(viii) If d `s G ∪ {ΓC
∧
i∈ω φi}, then there are proofs dj `s G ∪ {ΓC φj} for each j ∈ ω.
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In any case, we respectively have ρ(di) ≤ ρ(d) and |di| ≤ |d|.
Proof. The proof for items (i) to (vi) follows exactly the reasoning of [4] for the respective finitary result (see
Lemma 4 there). We give the proofs for (vii) and (viii) in the same spirit.

(vii) We consider a decoration of d starting withG∪{Γ, (
∨
i∈ω φi)

∗C∆}. Replace every occurring {Γ′, (
∨
i∈ω φi)

∗C
∆′} by {Γ′, φj C ∆′}. Delete all the subderivations but the j-th one above any application of (

∨
, l)

where (
∨
i∈ω φi)

∗ occurs as a decorated formula and is principle. As all initial hypersequents are atomic,
correctness of the resulting dj can be shown by an induction over |d| ⊕w(d)⊕W (d). Clearly |dj | ≤ |d|
and ρ(dj) ≤ ρ(d).

(viii) We consider a decoration of d starting from G ∪ {Γ C (
∧
i∈ω φi)

∗}. Replace every occurring {Γ′ C
(
∧
i∈ω φi)

∗} by {Γ′ C φj} and delete all subderivations but the j-th one above any application of (
∧
, r)

in which (
∧
i∈ω φi)

∗ occurs decorated and is principle. Again, the correctness of dj follows by a straight-
forward induction on |d|⊕w(d)⊕W (d) and we have |dj | ≤ |d| and ρ(dj) ≤ ρ(d) already by construction.

�

Lemma 6.6. Suppose d `s G∪{Γ, φC∆} where φ is atomic and not the cut-formula of any cut in d. Then for
any Σ, there is a d′ with assumption G∪{ΣCφ} such that d′ `s G∪{Γ,ΣC∆} with |d′| ≤ |d| and ρ(d′) ≤ ρ(d).

Proof. The proof can be easily obtained by generalizing the proof of the respective finitary result from [4]:
Decorate d, starting from G ∪ {Γ, φ∗ C∆}, replace any occurring {Γ′, φ∗ C∆′} by {Γ′,Σ C∆′} and add G to
every hypersequent. This tree now needs to be corrected to yield a correct proof. As in [4], weakenings which
produce decorated φ∗ are replaced by (potentially more) weakenings producing Σ. Initial sequents

ψ C ψ
(id) and

⊥C
(⊥)

which don’t introduce φ∗ are respectively replaced by

ψCψ

G ∪ {ψ C ψ}
and ⊥C

G ∪ {⊥C}
where we added sufficiently many weakenings to introduce G, while initial sequents introducing φ∗ are replaced
by G∪ {ΣC φ} which is an allowed assumption for d′. That proof is now correct as φ is not the cut-formula of
any cut in d. As weakenings do not lengthen |d|, we get |d′| ≤ |d| and as we didn’t introduce any new cut, we
get ρ(d′) ≤ ρ(d). �

Lemma 6.7. Suppose d0 `s G ∪ {ΓC φ} and d1 `s G ∪ {Γ, φC∆} with ρ(di) ≤ |φ| for i = 0, 1. Then there is
a d `s G ∪ {ΓC∆} with ρ(d) ≤ |φ| and |d| ≤ 2⊗ (|d0| ⊕ |d1|).
Proof. The proof is a natural extension of the corresponding finitary result from [4]. Note that since ρ(di) ≤ |φ|,
φ is not the cut-formula of any cut in di.

For φ = ⊥, decorate d0 starting from G ∪ {Γ C ⊥∗} and replace any {Γ′ C ⊥∗} by {Γ′ C∆}. We now have
to correct the proof at the points where ⊥∗ originates. In this simple case, ⊥∗ arises by either an internal or
external weakening. The internal weakenings can be either removed if ∆ is empty or replaced by an internal
weakening with ∆ if ∆ is nonempty. Similarly, the external weakenings get appropriately replaced.

For atomic φ 6= ⊥, note first that ρ(di) ≤ |φ| = 0 implies that d1 and d0 are cut-free. In particular, φ is not
the cut-formula of any cut in d1 and thus, there is a derivation d′1 with assumption G ∪ {ΓC φ} such that

d′1 `s G ∪ {ΓC∆}
as well as |d′1| ≤ |d1| and ρ(d′1) = 0. We form d by replacing every assumption G ∪ {ΓC φ} with the proof d0.
It is straightforward to check that |d| ≤ |d0| ⊕ |d1| ≤ 2⊗ (|d0| ⊕ |d1|) and we have ρ(d) = 0 by Lemma 6.6.

For φ =
∨
i∈ω φi, consider a decoration of d0 starting from G ∪ {Γ C (

∨
i∈ω φi)

∗}. Replace any occurring
{ΣC (

∨
i∈ω φi)

∗} by {Γ,ΣC∆} and add G to every hypersequent and Γ to every premise of any sequent. This
resulting tree is not a correct proof anymore and we consider the following correction steps on the initial rules
and on the rules which introduce a decorated instance of φ:

(1) Replace any initial rule

ψ C ψ
(id) or

⊥C
(⊥)

by

ψCψ (id)

G ∪ {Γ, ψ C ψ}
or ⊥C (⊥)

G ∪ {Γ,⊥C}
,

respectively, using sufficiently many applications of (EW).



ON INFINITARY GÖDEL LOGICS 21

(2) Suppose (
∨
i∈ω φi)

∗ originates as the principal formula of a logical rule. Then, replace any part of the
form

...
G′ ∪ {Γ′ C φj}

(
∨
, r)

G′ ∪ {Γ′ C (
∨
i∈ω φi)

∗}

occurring in the decorated version of d0 by

...

G ∪ (G
′ ∪ {Γ,Γ′ C φj})[∆/(

∨
i∈ω φi)

∗]

... d−1
1

G ∪G′ ∪ {Γ,Γ′, φj C∆}
(cut)

G ∪G′ ∪ {Γ,Γ′ C∆}

where d−1
1 is obtained by Lemma 6.5 from d1 ` G ∪ {Γ,

∨
i∈ω φi C ∆}. Here, G

′
is the hypersequent

G′ after the possible internal replacements. In the above presentation, we have suppressed the needed
external and internal weakenings as they have no effect on the resulting rank.

(3) If (
∨
i∈ω φi)

∗ originates from an internal weakening, replace any such

...
G′ ∪ {Γ′C}

(w, r)
G′ ∪ {Γ′ C (

∨
i∈ω φi)

∗}

by

...

G
′ ∪G ∪ {Γ′C}

(w, r)
G
′ ∪G ∪ {Γ,Γ′ C∆}

if ∆ is nonempty and remove them otherwise.
(4) If (

∨
i∈ω φi)

∗ originates from an external weakening, replace any

...
G′ (EW)

G′ ∪ {Γ′ C (
∨
i∈ω φi)

∗}

by

...

G
′ ∪G (EW).

G
′ ∪G ∪ {Γ,Γ′ C∆}

The resulting proof d is correct as can be verified by transfinite induction on |T |⊕w(T )⊕W (T ) for subderivations
T of d0. Here, it is important that φ is not the cut-formula of any cut.

Furthermore, any newly introduced cut uses one of the φi as a cut-formula. We thus get, using ρ(d−1
1 ) ≤ ρ(d1)

from Lemma 6.5, that

ρ(d) ≤ max

{
ρ(d0), ρ(d1), sup

i∈ω
(|φi|+ 1)

}
= max

{
ρ(d0), ρ(d1), sup+

i∈ω
|φi|
}
≤ |φ|

as ρ(di) ≤ |φ| for i = 0, 1 by assumption and |φ| = sup+
i∈ω |φi| by definition.

Regarding the rank, let T ′ be the replacement of any rooted sub derivation T of d0 after the replacement
and correction procedure. Then we can prove, by transfinite induction on |T | ⊕ w(T ) ⊕ W (T ), that |T ′| ≤
2⊗ (|d−1

1 | ⊕ |T |).
(1) If T is just a single initial rule, then |T ′| = |T | as only weakenings were added.
(2) If T ends with an application of (

∨
, r) which introduces φ∗ in the annotation, let T0 be its preceding

derivation. Note that T ′ ends with an application of cut with preceding derivations T ′0 and d−1
1 (modulo
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additional weakenings). We get

|T ′| = max{|T ′0|, |d−1
1 |}+ 1

≤ max{2⊗ (|T0| ⊕ |d−1
1 |), |d

−1
1 |}+ 1

≤ 2⊗ ((|T0|+ 1)⊕ |d−1
1 |)

= 2⊗ (|T | ⊕ |d−1
1 |)

which completes this case. Here, the first inequality follows from the induction hypothesis.
(3) If T ends with a weakening which introduces φ∗, then we still have |T0|⊕w(T0)⊕W (T0) < |T |⊕w(T )⊕

W (T ) and thus, we get

|T ′| = |T ′0| ≤ 2⊗ (|d−1
1 | ⊕ |T0|) = 2⊗ (|d−1

1 | ⊕ |T |)
as by definition |T0| = |T | and as only weakenings were added.

(4) If the last rule of T does not introduce φ∗ and is not a weakening, then for the preceding derivations
T ′i of T ′, we have

|T ′| = sup+

i∈ω
|T ′i | ≤ sup+

i∈ω
2⊗ (|d−1

1 | ⊕ |Ti|) ≤ 2⊗ (|d−1
1 | ⊕ sup+

i∈ω
|Ti|) = 2⊗ (|d−1

1 | ⊕ |T |).

(5) If the last rules does not introduce φ∗ but is a weakening, then the reasoning is as in case (3).

We in particular thus have (taking d = d′0)

|d| ≤ 2⊗ (|d−1
1 | ⊕ |d0|) ≤ 2⊗ (|d1| ⊕ |d0|)

as |d1| ≤ |d−1
1 | by Lemma 6.5.

For φ =
∧
i∈ω φi, consider a decoration of d1 starting from G ∪ {Γ, (

∧
i∈ω φi)

∗ C∆}. Replace any occurring
{Γ′, (

∧
i∈ω φi)

∗ C∆′} by {Γ′,ΓC∆′}, add G to every hypersequent and add Γ to the premise of every sequent.
This resulting tree is not a correct proof anymore and we consider the following correction steps:

(1) For initial rules, this is the same as the previous correction step (1).
(2) If (

∧
i∈ω φi)

∗ originates as the principal formula of a logical rule, then replace any part of the form

...
G′ ∪ {Γ′, φj C∆′}

(
∨
, r)

G′ ∪ {Γ′, (
∧
i∈ω φi)

∗ C∆′}
of the current proof by

...

G ∪ (G
′ ∪ {Γ,Γ′, φj C∆′}[Γ/(

∧
i∈ω φi)

∗]

... d−1
0

G ∪G′ ∪ {Γ,Γ′ C φj}
(cut)

G ∪G′ ∪ {Γ,Γ′ C∆}
where d−1

0 is obtained via Lemma 6.5 from d0 ` G ∪ {ΓC
∧
i∈ω φi}.

(3) If (
∧
i∈ω φi)

∗ originates from an internal weakening, replace any such

...
G′ ∪ {Γ′ C∆′}

(w, r)
G′ ∪ {Γ′, (

∧
i∈ω φi)

∗ C∆′}
by

...

G
′ ∪G ∪ {Γ′ C∆′}

G
′ ∪G ∪ {Γ′,ΓC∆′}

using stepwise internal weakenings for members of Γ.
(4) If (

∧
i∈ω φi)

∗ originates from an external weakening, replace any

...
G′ (EW)

G′ ∪ {Γ′, (
∧
i∈ω φi)

∗ C∆′}
by
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...

G
′ ∪G (EW)

G
′ ∪G ∪ {Γ′,ΓC∆′}

As φ is again not the cut-formula of any cut in d1, one can verify the correctness of the resulting proof d by
transfinite induction on |T | ⊕ w(T )⊕W (T ) of subdervations T of d1.

Using the same reasoning as before, we also again derive ρ(d) ≤ |φ| as well as |T ′| ≤ 2⊗ (|d−1
0 | ⊕ |T |) where

T ′ is the replacement of any rooted subderivation T of d1 after the replacement and correction procedure, as
before. The latter implies |d| ≤ 2⊗ (|d0| ⊕ |d1|) as before.

The cases of φ = φ0 ∨ φ1 and φ = ∃xφ0 are similar to that of φ =
∨
i∈ω φi (see [4] for the latter). The

quantifier case in particular uses Lemma 6.3.
Similarly, the cases of φ = φ0 ∧ φ1, φ = ∀xφ0 and φ = φ0 → φ1 are analogous to that of φ =

∧
i∈ω φi (see

again [4] for the last). As with ∃, the ∀-case uses Lemma 6.3. �

Lemma 6.8. Let d `s H with ρ(d) ≤ v + ωz. Then there is a derivation d′ `s H with |d′| ≤ χz(|d|) and
ρ(d′) ≤ v.

Proof. The theorem is proved by induction on the lexicographically ordered pair (z, |d| ⊕ w(d) ⊕W (d)). So

assume the claim for any (ẑ, |d̂|⊕w(d̂)⊕W (d̂)) with ẑ < z or ẑ = z and |d̂|⊕w(d̂)⊕W (d̂) < |d|⊕w(d)⊕W (d).
We divide the proof on whether the last inference rule of d was a cut, a weakening or neither.

Suppose the last rule was not a cut and not a weakening. Let k ≤ ω be the arity of the last rule and let di,
i < k, be the direct predecessors with di `s Hi. Naturally, |di| < |d| for all i < k as the last rule was not a
weakening and also

v + ωz ≥ ρ(d) ≥ ρ(di)

for all i < k by definition. Using the induction hypothesis on di, we get derivations d′i `s Hi with |d′i| ≤ χz(|di|)
and ρ(d′i) ≤ v. Using the same last rule as in d, we combine the d′i to a proof d′ ` H. First, we have ρ(d′) ≤ v
as the last rule was not a cut. Further, we get

|d′i| ≤ χz(|di|) < χz(|d|)
using that |di| < |d| and that χz is increasing. As |d′| is the least ordinal α with |d′i| < α for all i, as the last
rule was not a weakening, we get |d′| ≤ χz(|d|).

Suppose the last rule was a cut. Then we get two preceding derivations

d0 `s G ∪ {ΓC φ} and d1 `s G ∪ {Γ, φC∆}
and by definition, we have

v + ωz ≥ ρ(d) = max{|φ|+ 1, ρ(d0), ρ(d1)}.
and, as the last rule was not a weakening, we get |di| < |d|. We can apply the induction hypothesis to d0, d1 to
get derivations d′0 `s G ∪ {ΓC φ} and d′1 `s G ∪ {Γ, φC∆} with |d′i| ≤ χz(|di|) and ρ(d′i) ≤ v.

If z = 0, then ρ(d) ≤ v + ωz = v + 1 and therefore |φ| ≤ v. Now, either

(i) max{ρ(d′0), ρ(d′1)} ≤ |φ|, or
(ii) max{ρ(d′0), ρ(d′1)} > |φ|.

For (i), we may apply Lemma 6.7 to get a derivation

d′ ` G ∪ {ΓC∆}
with ρ(d′) ≤ |φ| ≤ v and

|d′| ≤ 2⊗ (χ0(|d0|)⊕ χ0(|d1|))

≤ 2⊗ (4⊗|d0| ⊕ 4⊗|d1|)

≤ 2⊗ (2⊗ 4⊗max{|d0|,|d1|})

≤ 4⊗(max{|d0|,|d1|}+1)

= 4⊗|d| = χ0(|d|)
where we in particular used that ⊕ and ⊗ are increasing in both arguments as well as commutative, associative
and distributive, that χ0 is increasing, that α⊕ 1 = α+ 1, and that max{|d0|, |d1|}+ 1 = |d| by definition.

For (ii), we combine d′0 and d′1 using cut on φ to a derivation d′ ` G ∪ {ΓC∆}. Now, we get

ρ(d) = max{|φ|+ 1, ρ(d′0), ρ(d′1)} = max{ρ(d′0), ρ(d′1)} ≤ v
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as |φ|+ 1 ≤ max{ρ(d′0), ρ(d′1)} by the assumption (ii) and as ρ(d′i) ≤ v from the induction hypothesis. Further,
we have

|d′| = max{|d′0|, |d′1|}+ 1 ≤ max{4⊗|d0|, 4⊗|d1|}+ 1 ≤ 4⊗|d| = χ0(|d|)
which completes the case for (ii).

If z 6= 0, then there are y < z and k ∈ N such that ρ(φ) ≤ v + ωy · k. We can combine d′0 and d′1 using cut

to a derivation d̂ `s G ∪ {ΓC∆}.
This immediately gives |d̂| ≤ max{χz(|d0|), χz(|d1|)}+ 1 and ρ(d̂) ≤ v + ωy · k. As y < z, we can apply the

induction hypothesis k-times and get a derivation d′ `s G ∪ {ΓC∆} with ρ(d′) ≤ v as well as

|d′| ≤ (χy)(k)(max{χz(|d0|), χz(|d1|)}+ 1)

We have |di| < |d| and thus χz(|di|) < χz(|d|) which implies χz(|di|)+1 ≤ χz(|d|). This gives max{χz(|d0|), χz(|d1|)}+
1 ≤ χz(|d|).

Now, assuming α ≤ χz(β) and y < z, then

χy(α) ≤ χy(χz(β)) = χz(β)

where the first inequality follows from χy being increasing and the latter equality follows from the definition of
χz(β) being the β-th simultaneous solution for γ = χx(γ) for all x < z. This implies, in combination with the
above, that

|d′| ≤ (χy)(k)(max{χz(|d0|), χz(|d1|)}+ 1) ≤ χz(|d|).
If the last rule was a weakening, let d0 be the direct predecessor with d0 `s H0. Then by definition ρ(d0) = ρ(d).
Depending on whether the weakening was internal or external, we get w(d0) < w(d) or W (d0) < W (d),
respectively. Thus, the induction hypothesis applies to d0 and H0 and we get d′0 `s H0 with |d′0| ≤ χz(|d0|) and
ρ(d′0) ≤ v. By applying the same weakening again, we get some derivation d′ `s H with |d′| = |d′0| ≤ χz(|d0|) =
χz(|d|) and with ρ(d′) = ρ(d′0) ≤ v. �

From Lemma 6.8, cut-elimination immediately follows:

Theorem 6.9 (Cut-elimination). For any derivation d `s H, there exists a cut-free derivation d′ `s H.

Further, we of course get a bound on |d′| which, in the case of finitary proofs with finitary formulas, matches
that of Baaz and Ciabattoni [4].

Remark 6.10. One could immediately introduce versions of the systems considered before which use the tradi-
tional hypersequents based on multisets. One can then generalize Lemma 2 from [4] to these systems and by
that obtain a cut-elimination result for them.

7. The Range of the Results and Extensions

We want to use this section to give an overview over some other topics extending the previous ones and some
initial observations, at varying depth, regarding those.

7.1. Extensions of the Completeness Results. At first, it should be noted that the completeness theorems
for Gω1 and Gω1,ω do not generalize to uncountable sets Γ. Consider the following two notions of compactness
from [1]:

Definition 7.1 (essentially Aguilera [1]). Let ⊆ P(Lκ,λ)× Lκ,λ or ⊆ P(Lκ)× Lκ be a relation. Then  is
called

(1) weakly compact if for every Γ, φ with at most κ many different atomics, there is a ∆ with size < κ such
that Γ  φ implies ∆  φ,

(2) compact if for every Γ, φ, there is a ∆ with size < κ such that Γ  φ implies ∆  φ.

Indeed, the relations `G(D)
ω1

and `G(D)
ω1,ω

are compact as any proof only involves countably many formulas.

However, as Aguilera shows in [1], the consequence relation |=Gω1,ω
(i.e. |=[0,1]R) is not even weakly compact.

This follows from the following general result:

Proposition 7.2 (Aguilera [1]). If |=Gκ,ω is weakly compact, then κ is weakly compact, i.e. it is strongly
inaccessible and any tree of size κ, such that every level has < κ nodes, has a branch of length κ.

As ω1 is not strongly inaccessible, it is not weakly compact and therefore |=Gω1,ω
is not either.

It turns out that Aguilera’s proof is, in itself, “propositional” and can be straightforwardly adapted to Gκ.
We therefore have the following result which implies the same limitation for Gκ:
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Proposition 7.3. If |=Gκ is weakly compact, then κ is weakly compact.

We omit the proof as it is, as mentioned above, literally that of Aguilera [1], rephrased in the propositional
language.

Before moving on to other topics, we want to mention a peculiar application of the above result of Aguilera
and its propositional version. Although we don’t dive into the rich (and difficult) topic of interpolation for
Gödel logics, we can use the the fact that `G(D)

ω1

and `G(D)
ω1,ω

are compact while |=Gω1,ω
and |=Gω1

are not even

weakly compact to show the following negative result.

Proposition 7.4. There is no countable ∆ ⊆ Lω1,ω such that for any φ, ψ ∈ Lω1,ω, |=Gω1,ω
φ→ ψ implies that

there is a δ ∈ ∆ with |=Gω1,ω
φ→ δ and |=Gω1,ω

δ → ψ. Similarly for Lω1
and Gω1

.

Proof. Suppose such a ∆ would exist. Constructing the Lindenbaum-Tarski algebra over Lω1,ω, the set {[δ] | δ ∈
∆} would form a countable dense subset of LTΓ, i.e. for any φ, ψ ∈ Lω1,ω with [φ] ≤LT [ψ] there exists a δ ∈ ∆

such that [φ] ≤LT [δ] ≤LT [ψ], and that even for uncountable Γ. As LTΓ is therefore separable, it embeds into

[0, 1]R with an embedding preserving infima and suprema (by first embedding LTΓ ∩ {[δ] | δ ∈ ∆} into [0, 1]Q
and then extending that embedding to LTΓ by completion). If we assume Γ 6`GDω1,ω

φ with said uncountable

Γ, then this embedding would provide a countermodel by Lemma 4.14, verifying Γ 6|=Gω1,ω
φ. Thus, we would

have completeness of GDω1,ω for Gω1,ω w.r.t. uncountable Γ which is a contradiction to Proposition 7.2.
The argument works similarly also for the propositional Gω1 . �

Although it is probably expected that there is no countable set of interpolants in this infinitary case (as we
already work over an uncountable language), it is maybe still instructive to note how cardinality considerations
can have an impact on these type of questions.

In a similar vein, a generalization of the completeness results to Lω1,ω1 is problematic. As is well-known by
a theorem of Scott (and Karp, see [23]2), the set of classical validities over Lω1,ω1

is not definable in H(ω1),
the collection of hereditarily countable sets, and thus in particular not Σ1 on H(ω1), a property which would,
however, be implied by the existence of a complete classical proof calculus with proofs of countable lengths.
These results should generalize to the Gödel case:

Question 7.5. Is the set of theorems of Gω1,ω1
non-definable over H(ω1)?

7.2. Other Sets of Variables. As common in propositional and first-order Gödel logics, one could consider
closed sets V with {0, 1} ⊆ V ( [0, 1] instead of [0, 1] as truth-value sets, thereby forming the propositional
variants GVκ and the first-order variants GVκ,λ by extending the semantic definitions from before to take values
in V . The most common instances of V are among

VR := [0, 1],

V0 := {0} ∪ [1/2, 1],

V↓ := {1/k | k ≥ 1} ∪ {0},
V↑ := {1− 1/k | k ≥ 1} ∪ {1},
Vn := {1− 1/k | 1 ≤ k ≤ n− 1} ∪ {1} with n ≥ 2,

following the selection from [8]. In that notation, we have Gκ = GVR
κ and Gκ,λ = GVR

κ,λ. A few easy observations

from [8] directly carry over to the infinitary case.

Proposition 7.6. Let GV be either GVκ or GVκ,λ for arbitrary κ, λ (for λ ≤ κ). The following relations hold:

(1) GVR =
⋂
V GV

(2) GVn ) GVn+1

(3) GVn ) GV↑ ) GVR

(4) GVn ) GV↓ ) GVR

(5) GV0 ) GVR .

We omit the proof as it is essentially a replica of the analogous result in the finitary first-order case (see [8]).
Still, we want to emphasize the following differences to the finitary case: already in the finitary propositional

case, G
V↑
ω , G

V↓
ω and GV0

ω differ in entailment (see [10]) while they coincide, as observed first by Dummett [15], in
tautologies unlike the finitary first-order versions. So, it is natural that in this infinitary case the propositional
(and first-order) versions differ in entailment as well.

2As Karp remarks, the proof of hers is based on an outline circulated by Scott in 1960 which was not published.
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But, in the infinitary case, the propositional variants already differ with respect to tautologies and, moreover,
the witnessing (non-)tautologies are natural analogues of the finitary first-order examples: consider C↑ :=∨
i∈ω(pi →

∧
j∈ω pj), C

↓ :=
∨
i∈ω(

∨
j∈ω pj → pi) and ISO0 :=

∧
i∈ω ¬¬pi → ¬¬

∧
i∈ω pi.

Then C↑ is valid in GV↑ but not in GV↓ . C↓ is valid in GV↑ and GV↓ . Both are not valid in GV0 and GVR . ISO0

is valid in GV0 but not in GVR .

Further, we can give the following analogous result on the relationship between GV↑ and the finite-valued
GVn .

Proposition 7.7. We have

G
V↑
κ =

⋂
n≥2

GVnκ and G
V↑
κ,λ =

⋂
n≥2

GVnκ,λ.

Proof. Again, let GV be either GVκ or GVκ,λ. Item (3) of Proposition 7.6 gives

GV↑ ⊆
⋂
n≥2

GVn .

For the converse, suppose that Γ 6|=GV↑ φ, i.e. there is an evaluation v such that v[Γ] ⊆ {1} but v(φ) < 1 in

the propositional case or an interpretation I such that I[Γ] ⊆ {1} but I(φ) < 1 in the first-order case. As v
(respectively I) evaluates into V↑, there is a k such that v(φ) = 1− 1

k (respectively I(φ) = 1− 1
k ). Let x ∈ [0, 1]

be such that 1− 1
k < x < 1− 1

k+1 and

x 6∈ v[sub(Γ ∪ {φ})]
in the propositional case or such that

x 6∈ ValI(Γ ∪ {φ})
in the first-order case. We form vx or Ix by Lemma 4.9 or Lemma 4.15, respectively. The above choice of x is
such that vx[Γ] ⊆ {1} but vx(φ) < 1 in the propositional case and Ix[Γ] ⊆ {1} but Ix(φ) < 1 in the first-order
case by the previous lemmas. But, by the choice of x, we have that vx or Ix evaluate into Vk+1 which gives
Γ 6|=GVk+1 φ. �

By the results of [8, 15], the status quo on complete proof calculi in the finitary setting in very clear cut: GVω,ω
is axiomatizable iff V is finite or uncountable with either 0 contained in the perfect kernel of V or isolated. In

particular, already the tautologies of G
V↑
ω,ω and G

V↓
ω,ω are not recursively enumerable. On the propositional side,

while the tautologies of all GVω are axiomatizable (again, see [15]), the only axiomatizable entailment relations
are GVnω and GVR

ω (see [10]).

Now, the situation is different in the infinitary cases. In the following, we will obtain analogous axiomati-
zations for the instances of V which were axiomatizable already in the finite but we further obtain infinitary

axiomatizations of G
V↑
ω1,ω and G

V↑
ω1 .

We don’t know the state of GVω1,ω/GVω1
for V = V↓ or any other V but in the finitary, as shown by Hájek

[19], the tautologies of G
V↓
ω,ω are not arithmetical. So we leave with the following question regarding the other

truth-value sets:

Question 7.8. Have any GVω1
or GVω1,ω (countable) infinitary axiomatizations for any V which has not been

considered here?

To approach the axiomatizability questions, we follow the general route of [8] which relies on tools from the
theory of Polish spaces, like the Cantor-Bendixson theorem, which we briefly want to recall. In the following,
we write AV for the Heyting algebra associated with a Gödel set V . Note that every V , as a closed subset of
R, is a Polish space. A subset P of R is perfect if it is closed and every point is a limit point in the topology
induced by R.

Theorem 7.9 (Cantor-Bendixson). Any Polish space X can be partitioned as X = P ∪ C with P perfect and
C countable and open.

The following result is then the central connection between the Cantor-Bendixson theorem and evaluations
over Gödel sets.

Lemma 7.10 (Preining [28]). Let M ⊆ [0, 1] be countable and P ⊆ [0, 1] be perfect. Then there is a strictly
monotone h : M → P which preserves any infima and suprema existing in M and if inf M ∈M , then h(inf M) =
inf P .
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7.2.1. V is finite. We consider the axiom scheme

FIN(n) := (φ0 → φ1) ∨ (φ1 → φ2) ∨ · · · ∨ (φn−1 → φn)

as in the finitary axiomatizations.

Theorem 7.11. For any countable Γ ∪ {φ} ⊆ Lω1 , we have

Γ `GDω1
+FIN(n) φ iff Γ |=GVnω1

φ.

Similarly, for any countable Γ ∪ {φ} ⊆ Lω1,ω where all formulas of Γ are closed, we have

Γ `GDω1,ω
+FIN(n) φ iff Γ |=GVnω1,ω

φ.

In fact, FIN(n) can, in both cases, be replaced by FINa(n) :=“all atomic instances of FIN(n)”.

Proof. Soundness is routine. For the converse, define LA := frag(Γ ∪ {φ}) and write LaA for the atomics of LA.
We consider

Π := {(φ0 → φ1) ∨ (φ1 → φ2) ∨ · · · ∨ (φn−1 → φn) | φi ∈ LaA}.
Π is countable as Γ, and therefore LA, is countable. Now suppose Γ 6`(GDω1

+FIN(n))(LA) φ. Then clearly Γ ∪
Π 6`GDω1

(LA) φ and by strong completeness of GDω1
(LA), we have Γ ∪ Π 6|=[0,1]R(LA) φ, i.e. there is an evaluation

v : LA → [0, 1] with

v[Γ ∪Π] ⊆ {1} but v(φ) < 1.

Now, the set v[LaA] contains at most n elements as if not, then there are formulas φ0, . . . , φn ∈ LaA with
v(φi) > v(φi+1). In that case, we have

v((φ0 → φ1) ∨ (φ1 → φ2) ∨ · · · ∨ (φn−1 → φn)) < 1

which is a contradiction to v[Π] ⊆ {1}. Thus, we can write v[LaA] ⊆ {0, v1, . . . , vn−2, 1} with vi < vi+1.
By induction on the structure of formulas, we also get v[LA] ⊆ {0, v1, . . . , vn−2, 1}. We define a function
h : v[LA] → Vn by setting h(0) := 0, h(1) := 1 and h(vi) := 1 − 1

i+1 . v[LA] is, with its order <, a Heyting
algebra and therefore h is an isomorphism of Heyting algebras and in particular preserves infima and suprema.
Lemma 4.8 gives that h ◦ v is an LA-evaluation with

(h ◦ v)[Γ] ⊆ {1} but (h ◦ v)(φ) < 1.

As h ◦ v evaluates into Vn, we get Γ 6|=AVn (LA) φ. Therefore also Γ 6|=GVnω1
φ, as AVn is complete.

For the first-order instances, we instead consider

Π := {∀xi1 . . . ∀xim((φ0 → φ1) ∨ · · · ∨ (φn−1 → φn)) | φj ∈ LaA, var(φj) ⊆ {xi1 , . . . , xim}}.
similar to [8] where LaA now represents the atomic formulas of the first-order fragment LA.

For countable fragments LA, Π is countable and as every atomic formulas has only a finite number of variables,
we have that every formula in Π is closed. Then apply Lemma 4.14 in place of Lemma 4.8 as in [8]. �

7.2.2. V is V↑. The strength of infinitary logics is of course that we have infinitary disjunctions available which
we can use to combine the various finitary axioms FIN(n). More precisely, we define the scheme FIN by∨

n≥2

∧
k∈ω

n−1∨
i=0

(
φn,ki → φn,ki+1

)
.

In the first-order case, we will additionally consider a seemingly weakened version FINa given by∨
n≥2

∧
k∈ω

n−1∨
i=0

∀xn,kj1 . . . ∀xn,kjm
(
φn,ki → φn,ki+1

)
where all φn,ki are atomic with var(φn,ki ) ⊆ {xn,kj1 , . . . , xn,kjm }. Now, FIN can be used to obtain an axiomatization

of
⋂
n≥2 G

Vn
ω1

or
⋂
n≥2 G

Vn
ω1,ω for countable sets. In combination with the previous Proposition 7.7, we then obtain

an axiomatization of V↑.

Theorem 7.12. For any countable Γ ∪ {φ} ⊆ Lω1 , we have

Γ `GDω1
+FIN φ iff Γ |=

G
V↑
ω1

φ.

Similarly, for countable Γ ∪ {φ} ⊆ Lω1,ω where all formulas in Γ are closed, we have

Γ `GDω1,ω
+FIN φ iff Γ |=

G
V↑
ω1,ω

φ.
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Proof. FIN is valid in V↑: write ψn,k :=
∨n−1
i=0

(
φn,ki → φn,ki+1

)
and suppose v : Lω1

→ V↑ is such that

v

∨
n≥2

∧
k∈ω

ψn,k

 < 1.

Thus, for some α, we have

v

(∧
k∈ω

ψn,k

)
≤ α < 1

for any n ≥ 2. Let k be such that v
(
ψn,k

)
< 1. Such a k exists as α < 1. For such a k, we get

v(φn,k0 ) > v(φn,k1 ) > · · · > v(φn,kn )

and as v evaluates into V↑, we have

v(φn,k0 ) ≥ 1− 1
n+1 and v(φn,k1 ) ≥ 1− 1

n

and therefore v(φn,k0 → φn,k1 ) ≥ 1− 1
n . This yields v

(
ψn,k

)
≥ 1− 1

n for any such k and we get

v

(∧
k∈ω

ψn,k

)
= min

{
inf

v(ψn,k)<1
v(ψn,k), inf

v(ψn,k)=1
v(ψn,k)

}
= inf
v(ψn,k)<1

v(ψn,k)

≥ 1− 1
n

for any n ≥ 2. But this implies

v

∨
n≥2

∧
k∈ω

ψn,k

 = 1

in contradiction to our assumption.
For the converse, suppose Γ 6`GDω1

+FIN φ. Then, we have

Γ 6`GDω1
+FIN(n) φ

for some n as if Γ `GDω1
+FIN(n) φ for all n, then there are countably many instances

n−1∨
i=0

(
φn,ki → φn,ki+1

)
(k ∈ ω)

of FIN(n), such that

Γ `GDω1

∧
k∈ω

n−1∨
i=0

(
φn,ki → φn,ki+1

)
→ φ

for any n and thus

Γ `GDω1

∨
n≥2

∧
k∈ω

n−1∨
i=0

(
φn,ki → φn,ki+1

)
→ φ

by (Rω)1. The premise is an instance of FIN which implies that Γ `GDω1
+FIN φ, a contradiction. Therefore, there

is an n with Γ 6`GDω1
+FIN(n) φ and thus, using that Γ is countable, we get

(Γ, φ) 6∈
⋂
n≥2

GVnω1

by Theorem 7.11 which implies Γ 6|=
G
V↑
ω1

φ by Proposition 7.7.

The first order case is very similar. Soundness follows in the same way and the converse follows by the
following slightly modified argument: supposing Γ 6`GDω1,ω

+FIN φ, we of course also have Γ 6`GDω1,ω
+FINa φ. As in

the propositional case, we get Γ 6`GDω1,ω
+FINa(n) φ for some n where it is essential that all instances of FINa are

closed to be able to use the deduction theorem. We get Γ 6|=
G
V↑
ω1,ω

φ using Proposition 7.7. �



ON INFINITARY GÖDEL LOGICS 29

7.2.3. 0 contained in the perfect kernel. We obtain the following infinitary version of the well-known finitary
result from [8].

Lemma 7.13. Let V be a Gödel set and P its perfect kernel and W = V ∪ [inf P, 1]. For any fragment LA (of
Lω1

or Lω1,ω) and any countable Γ ∪ {φ} ⊆ LA, we have

Γ |=AV (LA) φ iff Γ |=AW (LA) φ.

Proof. We only present the propositional case which is essentially contained in [8]. The first order case is the
same with Lemma 4.9 replaced by Lemma 4.15 and Lemma 4.8 replaced by Lemma 4.14, respectively

Since V ⊆W , we have that Γ |=AW (LA) φ implies Γ |=AV (LA) φ.
Let v : LA → AW be such that v[Γ] ⊆ {1} but v(φ) < 1. As Γ is countable, there is an x ∈ [0, 1] with

v(φ) < x < 1 and where x 6∈ v[sub(Γ ∪ {φ})]. With vx as in Lemma 4.9, we have

vx(ψ) =

{
v(ψ) if v(ψ) < x,

1 otherwise,

for any ψ ∈ Γ∪ {φ}. Set M := {vx(ψ) | ψ ∈ LA} ∪ {1} and M1 := (M ∩ [inf P, x])∪ {inf P}. Lemma 7.10 gives
a strictly monotone h : M1 → P preserving all infima and suprema such that h(inf M1) = inf P . We define

g : y 7→


y if y ∈ [0, inf P ],

h(y) if y ∈ [inf P, x],

1 if y = 1,

for y ∈ M . g preserves infima, suprema and is strictly monotone with g(0) = 0 and g(1) = 1. g therefore is a
homomorphism of Heyting algebras preserving infima and suprema and by Lemma 4.8, g ◦ vx is an evaluation.
But g ◦ vx maps into V and (g ◦ vx)[Γ] ⊆ {1} but g(vx(φ)) = g(v(φ)) < 1. �

This immediately yields the following completeness result.

Theorem 7.14. Let V be a Gödel set where 0 is contained in the perfect kernel. For any fragment LA (of Lω1

or Lω1,ω) and countable Γ ∪ {φ} ⊆ LA where Γ is closed in the first-order case, we have

Γ `GD(LA) φ iff Γ |=AV (LA) φ.

Here, we write GD(LA) for GDω1
(LA) or GDω1,ω(LA), respectively, depending the choice of language.

7.2.4. V uncountable and 0 isolated. We now turn to the case of an isolated 0. For the first-order case, we have
to additionally consider the quantifier version QISO0 of ISO0 (from which it was derived) as e.g. seen in [8]:

∀x¬¬φ→ ¬¬∀xφ.

The following lemma is an easy adaption of the finitary first-order case from [8], which only mentions the latter
statement regarding the quantifiers.

Lemma 7.15. For any φi, we have `GDω1
+ISO0

¬
∧
i∈ω φi →

∨
i∈ω ¬φi. Similarly for GDω1,ω. In the first-order

case, we additionally have `GDω1,ω
+QISO0

¬∀xφ→ ∃x¬φ for any φ and x.

Theorem 7.16. Let V be an uncountable Gödel set with 0 isolated. Let LA be a countable fragment of Lω1
or

Lω1,ω where
∧
i∈ω φi ∈ LA iff

∨
i∈ω φi ∈ LA and where

∨
i∈ω φi ∈ LA implies

∨
i∈ω ¬φi ∈ LA.

For any Γ ∪ {φ} ⊆ LA, we have

Γ `(GDω1
+ISO0)(LA) φ iff Γ |=AV (LA) φ

in the propositional case and

Γ `(GDω1,ω
+ISO0+QISO0)(LA) φ iff Γ |=AV (LA) φ

in the first-order case where Γ is assumed to be closed.

Proof. Soundness is clear. For the other direction, note that we know by Lemma 7.13 that

Γ |=AV (LA) φ iff Γ |=AV∪[inf P,1](LA) φ

where P is the perfect kernel of V . So w.l.o.g. [inf P, 1] ⊆ V . We define

Π :=

{
¬
∧
i∈ω

φi →
∨
i∈ω
¬φi |

∧
i∈ω

φi ∈ LA

}
.

By the assumptions on LA, we have Π ⊆ LA and in particular, Π is countable. Suppose that Γ 6`(GDω1
+ISO0)(LA) φ.
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We now either have Π ∪ Γ |=[0,1]R(LA) φ or Π ∪ Γ 6|=[0,1]R(LA) φ. For the former, we get

Π ∪ Γ `GDω1
(LA) φ

by completeness. As by Lemma 7.15, (GDω1
+ ISO0)(LA) proves every element of Π, we have

Γ `(GDω1
+ISO0)(LA) φ

which is a contradiction to our assumption. Therefore we have Π∪Γ 6|=[0,1]R(LA) φ, i.e. there is a v : LA → [0, 1]
with v[Π] ∪ v[Γ] ⊆ {1} and v(φ) < 1. We define

h : x 7→

{
0 if x = 0,

inf P + x
1−inf P otherwise.

Note that (h ◦ v)[LA] ⊆ V . Uniquely extend vh : x 7→ h(v(x)) for x ∈ V arω1
∩ LA to vh on LA. Then we have

vh(ψ) = h(v(ψ))

for any ψ ∈ LA which gives the claim. This can be proven by induction on ψ, see in particular [8] for the similar
finitary case, where v[Π] ⊆ {1} is used to handle the

∧
-case.

The proof in the first-order case is very similar. We then consider

Π :=

{
∀x

(
¬
∧
i∈ω

φi →
∨
i∈ω
¬φi

)
|
∧
i∈ω

φi ∈ LA, x ∈ (V arA)n, n ∈ N

}
∪ {∀y(¬∀xφ→ ∃x¬φ) | φ ∈ LA, x ∈ V arA, y ∈ (V arA)n, n ∈ N}

and one proceeds as above and obtains a I with I[Π] ∪ I[Γ] ⊆ {1} but I(φ) < 1. As Π is not closed, note in
particular Remark 5.6 in that closedness is not needed for both directions of the completeness results, only for
the soundness direction. Note that Π is countable.

With the same h defined as before, one similarly defines I′h for I′ = Imx by changing PM to h ◦ PM for
predicates P in the underlying model M and the key point is to now establish

I′h(ψ) = h(I′(ψ))

for any ψ ∈ LA for any such I′ where, for the
∧

- and ∀-cases, it is important that I[Π] ⊆ {1} and that any
element of Π is universally quantified with arbitrary but finitely many quantifiers such that I[Π] ⊆ {1} implies

I′

(
¬
∧
i∈ω

φi →
∨
i∈ω
¬φi

)
= 1

and
I′(¬∀xφ→ ∃x¬φ) = 1

even for any I′ as above. �

As before, we can now lift the above result to arbitrary LA if we restrict to countably many assumptions.

Corollary 7.17. Let V be an uncountable Gödel set with 0 isolated and let LA be an arbitrary fragment of Lω1

or Lω1,ω with the same additional closure conditions as in Theorem 7.16 but let Γ ∪ {φ} ⊆ LA be countable
with Γ closed in the first-order case.

For any Γ ∪ {φ} ⊆ LA, we have

Γ `(GDω1
+ISO0)(LA) φ iff Γ |=AV (LA) φ

in the propositional case and
Γ `(GDω1,ω

+ISO0+QISO0)(LA) φ iff Γ |=AV (LA) φ

in the first-order case.

The proof follows the same type of argument as in Corollary 5.5 where we now consider the smallest fragment
containing Γ ∪ {φ} with the additional closure properties. The important point is here that for a countable Γ,
this fragment is again countable.

Again, the above gives in particular

Γ `GDω1
+ISO0

φ iff Γ |=GVω1
φ

for countable Γ and
Γ `GDω1,ω

+ISO0+QISO0
φ iff Γ |=GVω1,ω

φ

for countable and closed Γ where 0 is isolated in V .
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[30] K. Schütte. Beweistheorie. Springer Verlag, 1960.

[31] D. Scott and A. Tarski. The sentential calculus with infinitely long expressions. Colloquium Mathematicum, 16:166–170, 1958.
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