
ON LOGICAL ASPECTS OF EXTENSIONALITY AND CONTINUITY FOR
SET-VALUED OPERATORS WITH APPLICATIONS TO NONLINEAR

ANALYSIS

NICHOLAS PISCHKE

Department of Mathematics, Technische Universität Darmstadt,
Schlossgartenstraße 7, 64289 Darmstadt, Germany,

E-mail: pischke@mathematik.tu-darmstadt.de

Abstract. We discuss the logical principle of extensionality for set-valued operators and its
relation to mathematical notions of continuity for these operators in the context of systems of
finite types as used in proof mining. Concretely, we initially exhibit an issue that arises with
treating full extensionality in the context of the prevalent intensional approach to set-valued
operators in such systems. Motivated by these issues, we discuss a range of useful fragments of
this full extensionality statement where these issues are avoided and discuss their interrelations.
Further, we study the continuity principles associated with these fragments of extensionality
and show how they can be introduced in the logical systems via a collection of axioms that
do not contribute to the growth of extractable bounds from proofs. In particular, we place an
emphasis on a variant of extensionality and continuity formulated using the Hausdorff-metric
and, in the course of our discussion, we in particular employ a tame treatment of suprema over
bounded sets developed by the author in previous work to provide the first proof-theoretically
tame treatment of the Hausdorff metric in systems geared for proof mining. To illustrate the
applicability of these treatments for the extraction of quantitative information from proofs, we
provide an application of proof mining to the Mann-iteration of set-valued mappings which are
nonexpansive w.r.t. the Hausdorff metric and extract highly uniform and effective quantitative
information on the convergence of that method.
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1. Introduction

At least since the emergence of the fundamental correspondence between mathematical proofs
and programs, it has been one of the main driving interests of proof theory to describe the com-
putational content, and by that measuring the strength, of a mathematical theorem. In that
vein, the research program of proof mining emerged in the 1990s through the work of Kohlen-
bach (following the spirit of Kreisel’s program of unwinding of proofs, see [33, 34]) which aims at
providing this content by analyzing the (prima facie) noneffective proofs of mathematical theo-
rems as they are found in the usual literature. While this is a highly nontrivial task through the
prevalent use of classical logic and infinitary set-theoretical (sometimes called ideal) principles
in mainstream mathematics, this research program of proof mining is nevertheless substanti-
ated by a firm logical basis developed using central proof-theoretic tools like Gödel’s functional
interpretation (see [11]) and Howard’s majorizability (see [13]), and their variants, and has
since its inception lead to hundreds of novel applications in core mathematics and computer
science. We refer to the monograph [19] for a detailed exposition of proof mining up to 2008
and to the surveys [20, 22, 31] for further details on the theoretical developments of the field
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as well as on applications.

In more detail, the central results of the logical foundation of proof mining are the so-called
general logical metatheorems which comprise an underlying logical system together with a the-
orem about that system so that, for one, this corresponding system is suitably designed so that
it facilitates (relatively) easy applications to large classes of objects and proofs from the core lit-
erature of the intended area of application and, for another, the associated logical metatheorem
guarantees the extractability of tame and highly uniform computational information from large
classes of non-effective proofs carried out in this system, the complexity of which corresponds
to the logical strength of the principles used in the proof. Further, the proofs of the logical
metatheorems even provide algorithms to (in principle) extract this information.1

In the context of this enterprise of extractive proof theory, one of the prime (logical) issues
actually arises in connection with the, from a mathematical perspective perhaps trivial, princi-
ple of extensionality. Concretely, working over the higher-type system Aω[X, ‖·‖] for classical
analysis over an abstract normed space X defined as in the seminal works [10, 17] (see Section
2 for further details), the prevalent system used in proof mining for extracting programs from
proofs pertaining to the theory of normed spaces, the extensionality of an operator T : X → X
for the normed space (represented by) X is naturally formulated as

∀xX , yX (x =X y → Tx =X Ty)

where equality in X is internally defined using the norm of the space represented by X via

x =X y := ‖x−X y‖X =R 0R,

utilizing a suitable representation of the real numbers in the underlying language. This prin-
ciple, if provable in a system (say, extending Aω[X, ‖·‖]) that is amenable to proof mining
metatheorems, would immediately entail (see e.g. the discussion in [19]) the extractability of a
(computable) functional ω : N3 → N such that

∀k, b ∈ N∀x, y ∈ Bb(0)
(
‖x− y‖ < 2−ωB(k,b) → ‖Tx− Ty‖ < 2−k

)
holds for all B-bounded mappings T : X → X (i.e. ‖Tx‖ ≤ B for all x ∈ X with B ∈ N) and
all normed spaces (X, ‖·‖) axiomatized by the system,2 where Bb(0) := {x ∈ X | ‖x‖ ≤ b}. So
one could directly derive the uniform continuity on bounded sets for bounded operators T from
its associated extensionality statement. Therefore, if discontinuous objects should be treated,
one has to have issues with (and therefore has to restrict) extensionality as a principle in formal
systems used in proof mining. In the practice of applying methods from proof mining, especially
in the context of nonlinear analysis and fixed point theory, this has previously, more often than
not, had relatively little relevance for operators of that type as for most single-valued operators
considered in the respective applications, their defining properties (like e.g. nonexpansivity)
immediately entail the uniform continuity and hence extensionality for these maps (as centrally
also discussed in [10, 17]).

In the case of set valued operators T : X → 2X , this situation changes as first highlighted
in [53] where, for one, already fragments of the extensionality principle give rise to very strong

1Examples of such metatheorems can in particular be found in [7, 10, 12, 17, 19, 30, 35, 36, 43, 45, 48, 51,
53, 54, 59].

2In fact, a more general statement holds for which the above is just a special case. Concretely, in general
the results holds for all mappings T which are majorizable, i.e. bounded on bounded sets in this case, and the
modulus ω in this case depends on such a majorant instead of B. See [19] for further details on this.
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uniform continuity principles excluding a wide range of natural instances of such operators and
where, for another, it has been shown that the key defining properties of some of the central
classes of such operators considered in the literature actually are already equivalent to the
associated extensionality principle, creating an a priori dire situation for extending methods
from proof mining to such objects. This issue is made even more pressing by the fact that
these set-valued operators have become one of the prime foci of proof mining applications in
the recent years, as exemplified by the the many case studies carried out utilizing these ob-
jects (see e.g. the many works on the seminal proximal point algorithm and its variants as in
[5, 6, 23, 24, 25, 27, 37, 38, 46, 52, 57] as well as case studies on nonlinear semigroups and their
relation to accretive set-valued operators as in [8, 26, 47, 56] as well as other central consider-
ations on iterations featuring these operators like in [21, 32, 50, 60, 61] among others).

It is therefore even more surprising that, contrary to these theoretical limitations, this appar-
ent proof-theoretic strength is rarely observed in practice. In particular, essentially none of the
case studies mentioned above (besides a central illustrative example [50]) require a quantitative
treatment of extensionality at all if they did not feature a uniform continuity assumption in the
first place. As first outlined in [53], this can be explained from a proof-theoretical perspective
by the empirical fact that in many proofs from the mainstream literature of m-accretive or
maximally monotone operator theory, the areas where these case studies are situated in (see
[1, 65] for canonical textbooks on these subjects), one does not require the full extensionality of
the operator in question but it actually suffices to have a certain so-called intensional treatment
thereof together with access to the so-called resolvent which in turn is proof-theoretically tame
and can be utilized to design applicable systems with accompanying metatheorems in the usual
style of proof mining for these areas (see the discussions in [53] for further information).

If, however, the proof is not of that nature and really requires the extensionality of the op-
erator, then a quantitative treatment of such will be necessary (as was e.g. the case in the
previously mentioned application from [50]). This might in some situations further hinder a
proof-theoretic treatment as some of the central uniform continuity principles for set-valued
operators, which crucially feature in many proofs in that area and naturally imply an asso-
ciated extensionality statement, are not immediately recognized as proof-theoretically tame
statements and instead seem to carry computational strength already due to the use of appar-
ently logically complicated objects like e.g. the Hausdorff metric.

The purpose of this paper is now twofold:

(1) We discuss some central issues with treating the full extensionality statement in the
context of an intensional approach to set-valued operators, similar to the approach
towards accretive and monotone operators taken in [53] (see also [51]). In particular,
we show that, in a way, no bound extraction result akin to the metatheorems of proof
mining exists for intensional systems treating suitable classes of set-valued operators
and which prove the associated full extensionality principle for the operator. This in
particular puts strong emphasis on extensionality as a central logical issue for proof
mining in the context of set-valued operator theory.

(2) Motivated by these negative results of item (1), we discuss a range of fragments of the
full extensionality principle, which arise by considering said principle from a more math-
ematically motivated perspective, and study the relations among them, highlighting a
certain robustness. Contrary to the negative results on the rather “naive” and logically
motivated full extensionality principles, we illustrate how these fragments all represent
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the extensionality of the operator in a mathematically fruitful, and essentially equiva-
lent, way. In particular, they allow for a computational interpretation which generates
useful uniform continuity statements for set-valued operators that can be introduced in
the logical systems via a collection of axioms that do not contribute to the growth of ex-
tractable bounds from proofs. In particular, we in that context illustrate how the most
prominent uniform continuity principle for set-valued operators as formulated using the
Hausdorff metric can be treated in a logically tame way in the context of an intensional
approach to these operator, which presents the first proof-theoretically tame approach
to the Hausdorff metric and hence for the first time enables proof mining applications
utilizing this mapping in an essential way. This is then in particular illustrated in the
later half of the paper by a case study where we extract quantitative information on the
convergence of an iterative method devised in [62] for the approximation of fixed points
of set-valued maps that are nonexpansive relative to the Hausdorff metric.

With these two contributions, we therefore provide highly necessary information for the
practice of proof mining regarding proofs featuring the extensionality of set-valued operators as
it is carried out using these intensional approaches, highlighting with (1) and (2) the subtlety
of expressing mathematically meaningful notions of extensionality and uniform continuity in
respective formal systems, where we in particular illustrate that even complicated uniform
continuity statements using the Hausdorff metric can be approached in a proof-theoretically
tame way, a fact that in this paper, as mentioned above, also immediately leads to novel
applications.

2. Logical aspects of full extensionality principles for set-valued operators

In this section, we discuss the main aspects of the first of the previously mentioned objectives
of this paper, i.e. the issues with extensionality in the context of an intensional treatment of
set-valued operators T : X → 2X over a normed vector space X.3 In the context of these
set-valued operators, we write

domT := {x ∈ X | Tx 6= ∅},
for the domain of T and

ranT :=
⋃
x∈X

Tx

for the range of T . As we are dealing with objects on normed spaces, the main system for proof
mining over abstract normed spaces Aω[X, ‖·‖] as introduced in [17] (see also [10]) consequently
forms a logical basis for these investigations. While this system is central for the present paper,
we nevertheless only rely on a handful of key properties of it which we shortly discuss in the
following. For any other background on this system, we refer to the presentation in [19].

Concretely, the system Aω[X, ‖·‖] extends Aω = WE-PAω + QF-AC + DC, i.e. a weakly-
extensional variant of Peano arithmetic in all finite types together with the principle of quantifier-
free choice in all types and the principle of dependent choice (see [19] and [68] for further details),
with an additional abstract base type X and additional constants and universal axioms utilizing
this type to axiomatize that X is a normed space. As such, the system Aω[X, ‖·‖] operates
over an extended set of types TX defined by

0, X ∈ TX , ξ, τ ∈ TX ⇒ τ(ξ) ∈ TX ,
3We want to note that the discussion given here extends also to operators T : X → 2Y for a second space Y ,

e.g. the dual space X∗ of X as considered in [51, 54].
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with pure types abbreviated via natural numbers through recursively defining n+1 := 0(n). To
induce a normed linear structure on X, one adds the constants 0X , 1X of type X, +X of type
X(X)(X), −X of type X(X), ·X of type X(X)(1) and ‖·‖X of type 1(X) together with suitable
axioms stating that X with these operations is a real normed vector space with 1X representing
a unit vector and −X producing the additive inverse of its argument (see [10, 17, 19] for further
details). In any way, equality at type 0, i.e. on the natural numbers, is the only primitive
relation and equality at higher types is treated as a defined notion by setting

xX =X yX := ‖x−X y‖X =R 0,

using a suitable representation of the real numbers as objects of type 1 (see e.g. [19]) and by
extending this to higher types via

s =σ(τ) t := ∀xτ (sx =σ tx).

An intended model of this language arises from the full set-theoretic type structure Sω,X defined
by

S0 := N, SX := X, Sσ(τ) := SSτσ
for a given normed space (X, ‖·‖) by suitably interpreting the additional constants present in
Aω[X, ‖·‖] (see [10] for further details).

Crucially, this system is suitably designed so that by an application of a negative translation
together with a monotone variant of Gödel’s functional interpretation arising through a com-
bination with Howard’s majorizability (due to the seminal work of Kohlenbach [15], see also
already [14]), the following logical metatheorem in the style of proof mining can be established
for that system:

Theorem 1 ([10]). Let ρ be admissible4 and let B∀(x, u)/C∃(x, v) be purely universal/existential,
respectively, where the types of the internal quantifiers are admissible and such that they only
contain x, u/x, v freely. Assume that

Aω[X, ‖·‖] ` ∀xρ
(
∀u0B∀(x, u)→ ∃v0C∃(x, v)

)
.

Then there exists a partial functional Φ : Sρ̂ ⇀ N which is defined on all strongly majorizable
elements of Sρ̂ (see [10]), where the corresponding restriction to these elements is bar-recursively
computable and where the following holds for any model Sω,X defined by a non-trivial real
normed vector space (X, ‖·‖): for all x ∈ Sρ and x∗ ∈ Sρ̂, if x∗ & x, then

Sω,X |= ∀u ≤0 Φ(x∗)B∀(x, u)→ ∃v ≤0 Φ(x∗)C∃(x, v).

Here, & is the extension due to [10, 17] of the strong majorizability relation of Bezem and ρ̂ ∈ T
is the type of the majorants of objects of type ρ ∈ TX .

By an intensional approach to a set-valued operator T over X, we now understand that T
is treated formally via its graph as coded by its characteristic function which is an object of
type 0(X)(X).5 To generically talk about such systems here, we assume that the language of
the system Aω[X, ‖·‖] is extended with a new constant χT of type 0(X)(X). We write y ∈ Tx,
(x, y) ∈ T or (x, y) ∈ graT for the formal statement χTxy =0 0 in the extended language and
we write x ∈ domT for ∃yX (y ∈ Tx). Note that inclusions in the graph of T are in particular

4A type is called admissible if it is of the form X(σk) . . . (σ1) or 0(σk) . . . (σ1) where each σi is a so-called
simple type, i.e. each σi is of the form X(0) . . . (0) or 0(0) . . . (0).

5This approach to treating set-valued operators was first employed in [53] and is by now a staple in the logical
approaches to such objects in the context of systems used for proof mining.
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quantifier-free. We denote the extension of the system Aω[X, ‖·‖] by this constant χT together
with the characteristic function axiom

(χ)T ∀xX , yX (χTxy ≤0 1)

by Aω[X, ‖·‖ , T ]. Naturally, an intended model Sω,XT for this extended system arises from a
normed space (X, ‖·‖) and a set-valued operator T : X → 2X by extending the induced model
Sω,X for the system Aω[X, ‖·‖] by interpreting χT via

[χT ]Sω,XT
:= λx, y ∈ X.

{
0 if (x, y) ∈ T,
1 otherwise.

It rather immediately follows6 that this simple extension Aω[X, ‖·‖ , T ] of Aω[X, ‖·‖] also sat-
isfies a proof mining metatheorem akin to that presented in Theorem 1.

By the (full) extensionality axiom for T , we now mean the following formal statement in the
corresponding language of Aω[X, ‖·‖ , T ]:

(E)χT ∀xX , yX , zX , wX (x =X y ∧ z =X w ∧ z ∈ Tx→ w ∈ Ty) .

Naturally, a system like the above might now serve as the basis for further extensions with
additional constants and axioms in order to axiomatize certain specific classes of set-valued
operators, like e.g. done in [53] for treating (m-)accretive and (maximally) monotone operators
on Hilbert spaces and in [51] for (maximally) monotone operators on Banach spaces, but this
approach is not limited by these classes of objects and rather is immediately applicable for any
extension of this system by additional constants, as long as these are majorizable, and suitable
axioms, as long as these have a monotone functional interpretation (see [19] for further details
on both of these aspects).

In the following, we however want to study the behavior of a (suitably) generic but fixed
extension of that very minimal base Aω[X, ‖·‖ , T ] which we in the following denote by Cω.
Crucially, we only assume for Cω that is satisfies the following two properties:

(1) The system Cω satisfies a metatheorem in the style of proof mining, i.e. akin to Theorem
1, where the conclusion is (of course) only true for a certain class of intended models

Sω,XT , which we here fix to arise only from spaces X of a certain non-empty class CSp of
normed spaces and from set-valued operators T : X → 2X of an associated non-empty
class COp(X).

(2) The system Cω axiomatizes a class of non-empty and closed set-valued operators, i.e.
X ∈ CSp and T ∈ COp(X) implies that T is closed in X ×X and that domT 6= ∅.

It should be emphasized that this in particular holds true for most systems considered for proof
mining applications, in particular for the systems devised for (nonempty) m-accretive and max-
imally monotone operators in [51, 53] (and even for operators continuous w.r.t. the Hausdorff
metric as will be discussed later on). In fact, for these classes of m-accretive or maximally
monotone set-valued operators, the closedness of them in X ×X is even actually equivalent to
the extensionality of these mappings over respective suitable intensional systems (akin to Cω,
i.e. extending Aω[X, ‖·‖ , T ] and satisfying a logical metatheorem in the style of proof mining)
as shown in [51, 53].

6Note for this that the only additional axiom (χ)T is purely universal and that the constant χT , by virtue of
this axiom, is trivially majorizable, see [19] for details.
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We now want to investigate what consequences there are when such a system actually proves
the extensionality of T or fragments thereof. So, let us initially assume that Cω ` (E)χT . Then,
using the bound extraction theorem, i.e. property (1), assumed for Cω, we would be able to
extract a functional ωX,T : N→ N (potentially depending on X and T ) such that

∀b ∈ N∀x, y, z, w ∈ Bb(0)(‖x− y‖ , ‖z − w‖ ≤ 2−ωX,T (b) ∧ z ∈ Tx→ w ∈ Ty)

holds for any normed space X ∈ CSp and operator T ∈ COp(X). Now, any such operator has
to be open in X ×X (in a uniform way on bounded sets): given (x, z) ∈ T with ‖x‖ , ‖z‖ ≤ b
and y, w such that

‖x− y‖ , ‖z − w‖ ≤ 2−ωX,T (b+1),

we have ‖y‖ , ‖w‖ ≤ b + 1 and so (y, w) ∈ T . However, this provides a semantic clash with
property (2) assumed for Cω as any T ∈ COp(X) is, by that assumption, closed in X ×X and
hence clopen and so, since X (and with that X ×X) is a normed space, that means any T is
either equal to X × X or ∅, the latter being excluded as T is also assumed to be non-empty.
Not only is this restriction already here so severe that it completely trivialized the semantically
considered operators, but in the context of many of the central classes of set-valued operators
studied in the literature of convex analysis, as is e.g. the case for m-accretive and maximally
monotone operators, the analytical properties imposed on them often already further exclude
the full operator X × X. In such cases, there are therefore no operators T ∈ COp(X). Con-
sequently, if a system Cω with the properties (1) and (2) as above has a model based on the
standard structure using spaces X ∈ CSp and operators T ∈ COp(X), it can not prove the
extensionality of the operator T .

A kind of internalized version of the above argument can be given using the principle of
uniform boundedness Σ0

1-UBX
− as introduced in [12] (see also [18] as well as [16], the latter being

where this principle was first introduced, outside of the context of abstract types however). By
the results of [12] (see also [18]), Σ0

1-UBX
− can be consistently added to a system that enjoys

bound extraction theorems in the above sense. In particular, the systemAω[X, ‖·‖ , T ]+Σ0
1-UBX

−
enjoys the same bound extraction theorems as the system Aω[X, ‖·‖ , T ]. Now, the principle
Σ0

1-UBX
− represents a carefully defined intensional version of the usual uniform boundedness

principle Σ0
1-UBX (see also [12] and [18]), a necessary restriction in order to stay admissible

in the context of unbounded spaces. However, as shown in Lemma 6.25 in [12], Σ0
1-UBX

− and

Σ0
1-UBX coincide for sentences that are extensional. Now, in our context it however in particular

follows that

Aω[X, ‖·‖ , T ] + (E)χT ` Ext(A∃)

where, following [12], Ext(A∃) represents the extensionality of the formula A∃ defined by

A∃(x, y, z, w, j) := ‖x− y‖ , ‖z − w‖ ≤ 2−j ∧ z ∈ Tx→ w ∈ Ty

as by (E)χT , inclusions of the form z ∈ Tx are extensional (and since the norm is provably
extensional). Hence, by Lemma 6.25 from [12], in the context of Σ0

1-UBX
− we can actually apply

Σ0
1-UBX to A∃ which, by internalizing the above argument, immediately allows one to derive

that T is open as before, i.e. we can thereby derive that

Aω[X, ‖·‖ , T ] + Σ0
1-UBX

− + (E)χT ` (Open)T
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where

∃ω0(0)∀b0∀xX , yX , zX , wX
(
‖x‖X , ‖y‖X , ‖z‖X , ‖w‖X ≤R b ∧(Open)T

‖x−X y‖X , ‖z −X w‖X ≤R 2−ω(b) ∧ z ∈ Tx→ w ∈ Ty
)

is a formalization of the fact that T is open (uniform on bounded sets) as above. Therefore,
the system Aω[X, ‖·‖ , T ] + Σ0

1-UBX
− + (E)χT + (Clsd)T proves that

∀xX , yX (y ∈ Tx) ∨ ∀xX , yX (y 6∈ Tx)

where (Clsd)T is some suitable formalization of the closure of T . In particular, let us now
consider the systems Vω or T ω from [53] which provide a treatment of m-accretive operators
in normed spaces and maximally monotone operators in inner product spaces, respectively.
There, we in particular find that the conclusions ∀xX , yX (y 6∈ Tx) and ∀xX , yX (y ∈ Tx) are
excluded as, for one, T is provably non-empty in these cases and, for another, as the total
operator is provably not accretive or monotone. Further, by utilizing special properties of the
operators axiomatized therein, one has (by Theorem 3.1 and Theorem 3.3 in [53]) that (Clsd)T
is provably equivalent to (E)χT . Together, we obtain that the system Vω + Σ0

1-UBX
− + (E)χT , and

similarly the variant formulated with T ω, are actually inconsistent, while Vω + Σ0
1-UBX

− and

T ω + Σ0
1-UBX

− still satisfy highly meaningful bound extraction theorems.

It should be noted that similar issues persist if (E)χT is restricted to the domain of T by
considering the weakened extensionality principle

(E)χdT ∀xX , yX , zX , wX , vX (x =X y ∧ z =X w ∧ z ∈ Tx ∧ v ∈ Ty → w ∈ Ty) .

For, suppose that Cω ` (E)χdT for the previously presumed system Cω, then the bound extraction
theorem, i.e. property (1), assumed for Cω would yield the existence of a functional ωX,T : N→ N
such that

∀b ∈ N∀x, y, z, w, v ∈ Bb(0)(‖x− y‖ , ‖z − w‖ ≤ 2−ωX,T (b) ∧ z ∈ Tx ∧ v ∈ Ty → w ∈ Ty)

holds for any normed space X ∈ CSp and any operator T ∈ COp(X). This still at least implies
that Tx is open for any x ∈ domT as if z ∈ Tx with ‖z‖ , ‖x‖ ≤ b are given, and w is such that
‖z − w‖ ≤ 2−ωX,T (b+1), then w ∈ Tx. Again, this provides a semantic clash with property (2)
assumed for Cω by which, since such a T is closed in X ×X, any Tx in particular is also closed
so that the only operators T ∈ COp(X) are of the form

T : x 7→

{
X if x ∈ domT,

∅ otherwise.

In the special case of the previously mentioned systems for, e.g., m-accretive or maximally
monotone operators, this limitation on the class of axiomatized operators is now slightly less
severe as it does not necessarily render models based on Sω,XT (as induced by the previously fixed
classes of spaces and operators) impossible (take e.g. the normal cone operator N{x} for a given
point x ∈ X in a Hilbert space, see [1], which is maximally monotone but of the above form
and so is feasible for the previously mentioned system T ω, for example). Nevertheless, the class
is of course still extremely restrictive, presumably making any extracted results qualitatively
uninteresting and so of little practical relevance. Also this result can be internalized akin to
the previous discussion.
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3. Useful fragments of the extensionality principle and their formal
treatment

All the observations made above clearly highlight that the “naive” extensionality principles
(E)χT and (E)χdT , derived by requiring the extensionality of the graph of T as coded intensionally
via χT , is unsuitable for any applied considerations. In a way, this comes at no big surprise
as the principles essentially require an inherently intensional object χT to now act extensional
again.

Now, even though the use of extensionality can often be (at least partially) avoided in prac-
tice, as discussed in the introduction, there are nontrivial cases where it nevertheless features
prominently, and since (E)χT and (E)χdT are not amenable in any real sense to an applied proof-
theoretic treatment using the intensional approach to set-valued operators, we are inclined to
look for alternative formulations of extensionality to faithfully represent that property formally
in this context, meanwhile being of practical, mathematical, use. Guided by the perspective
of applied proof theory, we in this section study a range of fragments of the full extensionality
principles, which are motivated by uniform continuity statements for set-valued operators al-
ready prominently investigated in the literature of nonlinear analysis and which in that sense
all represent the extensionality of the operator in a mathematically fruitful way.

3.1. A refined extensionality principle and its closed variant. We begin our investi-
gation regarding well-behaved fragments of the full extensionality principle with a uniform
continuity principle for set-valued operators based on the so-called Hausdorff-like predicate as
introduced by Kohlenbach and Powell in [32]. Concretely, in [32], they introduced a form of
uniform continuity for a set-valued operator T : X → 2X on a normed space X by assuming
the existence of a modulus ω : N→ N such that

∀k ∈ N∀x, y ∈ domT
(
‖x− y‖ < 2−ω(k) → H∗[Tx, Ty, 2−k]

)
where H∗ is the aforementioned Hausdorff-like predicate defined by

H∗[P,Q, ε] = ∀p ∈ Q∃q ∈ Q (‖p− q‖ ≤ ε) .

This notion was introduced in [32] by logical motivations to avoid the use made of the full
Hausdorff metric H, defined by

H(P,Q) := max

{
sup
p∈P

inf
q∈Q
‖p− q‖ , sup

q∈Q
inf
p∈P
‖p− q‖

}
for non-empty, closed and bounded sets P,Q ⊆ X, in the proofs analyzed therein, which features
there in the form of a uniform continuity assumption (and hence an associated extensionality
statement). Further, the uniform continuity statement also features crucially in the only other
previously mentioned proof mining case study from [50] that had to resolve an extensionality
statement for a set-valued operator. We here now want to argue that this uniform continuity
statement already represents, or at least indicates, the correct refined extensionality principle
for set-valued operators, which in particular then also indicates that the above uniform conti-
nuity statement represents the faithful uniform quantitative strengthening of the extensionality
of a set-valued operator as suggested by the perspective of proof mining.

For this, we first turn to the associated extensionality principle suggested by the above uni-
form continuity principle relative to H∗ which, following [53] where this principle was already
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discussed from a logical perspective (albeit embedded in the context of systems treating mono-
tone and accretive set-valued operators), takes the following form:

∀xX , yX
(
x, y ∈ domT ∧ x =X y → ∀k0

(
H∗[Tx, Ty, 2−k]

))
(E)∗T

≡ ∀xX , yX
(
x, y ∈ domT ∧ x =X y → ∀k0∀u ∈ Tx∃v ∈ Ty

(
‖u− v‖ ≤R 2−k

))
.

Indeed, it can be immediately recognized that the uniform continuity principle suggested by the
perspective of the monotone functional interpretation of (E)∗T amounts to the above uniform
continuity statement, actually in a slightly less uniform variant where ω does additionally
depend on a norm upper bound b on the points from X involved. Further, as discussed in [53],
this uniform continuity principle can be formalized in a proof-theoretically tame way over a
system treating such operators intensionally as outline above in the following way: A “naive”
first formalization of the principle, resolving in particular the hidden quantifiers in x, y ∈ domT ,
yields

∀k0, b0, xX , yX , zX , uX∃vX
(
‖x‖X , ‖y‖X , ‖z‖X , ‖u‖X <R b ∧ z ∈ Ty ∧ u ∈ Tx

∧‖x−X y‖X <R 2−ω(k,b) →
(
v ∈ Ty ∧ ‖u−X v‖X ≤R 2−k

) )
where ω is a suitable constant of type 0(0)(0). As any such v naturally satisfies ‖v‖ ≤ ‖u‖ +
‖u− v‖ ≤ ‖u‖+ 1, the above statement can be further specified as

∀k0, b0, xX , yX , zX , uX∃vX �X (‖u‖X + 1)1X

(
‖x‖X , ‖y‖X , ‖z‖X , ‖u‖X <R b ∧ z ∈ Ty

(UC)∗T

∧u ∈ Tx ∧ ‖x−X y‖X <R 2−ω(k,b) →
(
v ∈ Ty ∧ ‖u−X v‖X ≤R 2−k

) )
where xX �X yX means ‖x‖X ≤R ‖y‖X . As the existential quantifier over v is now bounded
in terms of the preceding universal quantifiers and the inner matrix is universal, the principle
(UC)∗T can be recognized as a statement of type ∆ as defined in [12] for languages involving ab-
stract types (originally stemming from the earliest works on proof mining such as [14], see also
[19]), a class of formulas with a particularly trivial monotone functional interpretation, which
hence are admissible in the context of systems tailored for the extraction of bounds using the
monotone functional interpretation.

Now, the above extensionality principle (E)∗T seems to suggest a further extensionality prin-
ciple as follows: If H∗ would be “continuous” in its last argument, we could move from
∀k0

(
H∗[Tx, Ty, 2−k]

)
to H∗[Tx, Ty, 0], whereby the above statement then would in particular

imply the following even more concise extensionality principle

∀xX , yX (x, y ∈ domT ∧ x =X y → H∗[Tx, Ty, 0])(E)T

≡ ∀xX , yX (x, y ∈ domT ∧ x =X y → ∀u ∈ Tx∃v ∈ Ty (u =X v)) .

Here, compared to (E)∗T , the closedness of the image sets of T is already “infused”, in a way,
as it does not only allow us to conclude the existence of a sequence in Ty approximating u
but actually allows us to conclude the existence of an extensionally equal witness v. Further,
the above principle can be thought of as an “extensionalized version” of the principle (E)χT in
the sense that it posits the extensional equality of the set Tx not as formalized by u ∈ Tx ≡
χ(x, u) =0 0 but by the “extensionalized variant” u ∈E Tx ≡ ∃u′ ∈ Tx (u =X u′). Now, while
there is certainly a subtle difference between (E)T and (E)∗T , the following result makes their
close relationship based on the topology of the set Tx formally precise:
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Proposition 2. Over Aω[X, ‖·‖ , T ], the principle (E)T implies (E)∗T .
Further, define the closure principle

(pClsd)T
∀xX , zX , yX(0)

(·)
(
x ∈ domT ∧ ∀n0(yn ∈ Tx) ∧ (yn →X z)→ ∃wX (w =X z ∧ w ∈ Tx)

)
,

where yn →X z is some formal representation of convergence in X, say

∀k0∃N0∀n ≥0 N
(
‖yn −X z‖X ≤R 2−k

)
,

expressing that Tx is closed for any x ∈ domT . Then over Aω[X, ‖·‖ , T ] + (pClsd)T , the
principle (E)∗T implies (E)T .

Proof. That (E)T implies (E)∗T is obvious. To see that (E)∗T implies (E)T under the assumption
of the closure of each Tx with x ∈ domT , let u ∈ Tx and y ∈ domT with y = x be given. By
(E)∗T , for any k of type 0 there exists a vk ∈ Ty with ‖u− vk‖ ≤ 2−k. Thus we have vk →X u
and by (pClsd)T , there exists a w ∈ Ty with w = u. Thus we have shown (E)T . �

So, in essence, both (E)T and (E)∗T represent the same extensionality principle which posits
the equality of Tx and Ty, seen as extensional sets, for x = y in the domain of T , with the
difference that (E)∗T only requires a weaker approximating sequence to witness this equality
which suffices in the context of closed operators.

Remark 3. For the central classes of monotone and accretive operators with total resolvents,
these fragments of the full extensionality principle are equivalent to suitable “extensionalized”
variants of the closure of the graph of the operator as well as the resolvent identity and the
maximality. Further, for these classes, removing the restriction to domT and the dependence
on the norm-bounds from ω already from the principle (UC)∗T results in a very strong uniform
continuity statement which, by utilizing results of [2], implies that the operator T is actually
single-valued. We refer to [55] for a further discussion of both of these aspects.

Naturally, also (E)T entails its own uniform continuity principle via the perspective of the
monotone functional interpretation which takes the form

∀xX , yX , zX , uX∃vX �X (‖u‖X + 1)1X∀k0, b0
(
‖x‖X , ‖y‖X , ‖z‖X , ‖u‖X <R b ∧ z ∈ Ty

(UC)T

∧u ∈ Tx ∧ ‖x−X y‖X <R 2−ω(k,b) →
(
v ∈ Ty ∧ ‖u−X v‖X ≤R 2−k

) )
,

where we already have highlighted the natural boundedness of the quantifier over v which il-
lustrates that (UC)T , similar to (UC)∗T before, is a statement of type ∆ and so is similarly
admissible in the context of systems tailored for the extraction of bounds using the monotone
functional interpretation.

In particular, compared to (E)χT and (E)χdT , the fragments (E)T and (E)∗T are now very appli-
cable as their uniform quantitative versions as guided by the monotone functional interpretation,
i.e. the above uniform continuity principles (UC)T and (UC)∗T , are highly non-trivially popu-
lated. This also allows us to see formally that (E)T and hence (E)∗T are properly weaker than
(E)χdT . For that, we first consider the following result which shows that any suitable operator
T : X → 2X that is uniformly continuous in the sense of (UC)∗T is closed in X ×X:

Proposition 4. Any operator T : X → 2X such that any set Tx is closed and which is
uniformly continuous in the sense of (UC)∗T is closed in X ×X.
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Proof. As T is uniformly continuous in the sense of (UC)∗T , there exists a ω with

∀k, b ∈ N∀x, y, z, u ∈ Bb(0)
(
z ∈ Ty ∧ u ∈ Tx ∧ ‖x− y‖ < 2−ω(k,b)

→ ∃v ∈ X
(
v ∈ Ty ∧ ‖u− v‖ ≤ 2−k

) )
.

Let (xn, yn) ⊆ T be a sequence in T such that (xn, yn) → (x, y) for n → ∞. As (xn, yn)
converges, the sequence is bounded and thus, using the existence of ω, we get that for any
n ∈ N, there exists a vn ∈ Tx such that the sequence vn converges to y. As Tx is closed, we
have y ∈ Tx. Thus T is closed. �

Hence the results from Section 2 apply in this context and yield that Aω[X, ‖·‖ , T ]+(UC)T 6`
(E)χdT as there are operators which are uniformly continuous in the sense of (UC)T that are not
of the form

T : x 7→

{
X if x ∈ domT,

∅ otherwise,

the most trivial example being the operator defined by T (x) := {x} on a space that is nontriv-
ial. So (E)T is properly weaker than (E)χdT .

Now, as mentioned before, the predicate H∗ and the associated uniform continuity principle
for set-valued operators was introduced in [32] to avoid formal considerations on the Hausdorff
metric. This was in particular possible as the precise value of the Hausdorff metric was not a
required quantity in the proof but was only used, by means of a uniform continuity assumption,
to derive certain approximation properties of the involved sets. While this was possible in [32],
there certainly are other proofs from the literature where the value of the Hausdorff metric
seems to feature much more essential in the proof and where hence a quantitative treatment
thereof would be desirable to allow a more direct access to those proofs as they are found in the
literature. In the next section, we provide such an access here by leveraging the strengths of the
intensional approach and showing that in such a context, one can indeed treat the Hausdorff
metric and its associated uniform continuity principle for a set-valued operator in a proof-
theoretically tame way amenable to proof mining metatheorems.

In that section, we in particular further show that the associated extensionality principle is
equivalent to (E)∗T whenever H(Tx, Ty) is well-defined, showing that (E)∗T and hence (E)T are
very robust as extensionality principles in the sense that small perturbations yields equivalent
principles. Based on this robustness and the applicability of the principles (E)T and (E)∗T and
their associated uniform continuity principles (UC)T and (UC)∗T as evidenced from the previous
proof mining literature together with the logical motivations of this section, we thereby want to
argue in this paper that (E)T and with that this cluster of related extensionality principles are
the faithful and correct representation of the notion of extensionality of a set-valued operator
in the context of this intensional approach.

3.2. An extensionality principle based on the Hausdorff-metric. We now show how
the Hausdorff metric and its associated extensionality and uniform continuity principles can
be formally approached in the context of systems providing and intensional treatment of set-
valued operators like Aω[X, ‖·‖ , T ] (or related systems). For that, we begin with showing
that for certain sets P,Q, the Hausdorff distance H(P,Q) can indeed be treated in a proof-
theoretically tame way in the context of the systems considered in the context of proof mining
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over normed linear spaces.7 For this, we work over the basic system Aω[X, ‖·‖] for now. Now,
to approach the Hausdorff metric, let concretely P now be a set in a normed space X which
is bounded, i.e. ‖p‖ ≤ c for all p ∈ P with c ∈ N. Then we can treat the real-valued distance
function

d(x, P ) = inf
p∈P
‖x− p‖

by adding an additional constant d(·, P ) of type 1(X) with the following two axiom schemes:

(dP )1 ∀xX , pX (P (p)→ d(x, P ) ≤R ‖x−X p‖X)

as well as (writing c for the real number arising from c seen as a numeral)

(dP )2 ∀xX , k0∃p ≤X c1X
(
P (p) ∧ ‖x−X p‖X ≤R d(x, P ) + 2−k

)
where P (p) is a predicate describing p ∈ P . These two axioms schemes completely characterize
the facts that, for one, d(x, P ) is supposed to be a lower bound on the norm distance ‖x− p‖
from x to any element p ∈ P as governed by P (p), and for another, that d(x, P ) is arbitrarily
well approximated by any such norm distance. In other words, the two schemes exactly specify
that d(x, P ) is the greatest lower bound of all norm distances ‖x− p‖ for all p ∈ P .8

These schemes become admissible if they are instantiated with a P such that the two axioms
have a monotone functional interpretation. This can in particular be guaranteed if the formula
P , besides potential parameters, is quantifier-free (as is e.g. naturally the case in the context of
an intensional description of a set akin to the way we previously treated set-valued operators).
Concretely, in this quantifier-free case (which will actually be the only concrete case occurring
in the applications given in this paper), the axiom (dP )2 is of type ∆, since the existential
quantifier in (dP )2 is bounded (which crucially uses the boundedness of the set specified by P ),
and hence admissible in systems with bound extraction theorems in the style of proof mining.

Similarly, we can add a constant d(·, Q) of the same type for a second bounded set Q (w.l.o.g.
also bounded by c) together with the following axioms determined as above over a (in all
practical circumstances of this paper quantifier-free) predicate Q(q) describing q ∈ Q:

∀xX , qX (Q(q)→ d(x,Q) ≤R ‖x−X q‖X) ,(dQ)1

∀xX , k0∃q ≤X c1X
(
Q(q) ∧ ‖x−X q‖X ≤R d(x,Q) + 2−k

)
.(dQ)2

In the context of both d(x, P ) and d(x,Q), we can then introduce the quantities

d(P,Q) = sup
p∈P

d(p,Q) and d(Q,P ) = sup
q∈Q

d(q, P )

into the system by following a dual idea as the above approach towards the treatment of
the infima d(x, P ) and d(x,Q) and hence adding corresponding constants (for simplicity also
denoted by) d(P,Q) and d(Q,P ) of type 1 into the language together with another set of similar
axiom schemes, concretely taking

∀pX(P (p)→ d(P,Q) ≥R d(p,Q)),(dP,Q)1

∀k0∃p ≤X c1X
(
P (p) ∧ d(p,Q) ≥R d(P,Q)− 2−k

)
,(dP,Q)2

7Naturally, a similar approach would already work over underlying metric spaces but we here only focus on
the normed case.

8As such, these two axioms follows the general approach to the tame treatment of infima and suprema over
certain well-behaved sets using two schemes (S)1, (S)2 in systems geared for proof mining as outlined in [54].
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for the quantity d(P,Q) as well as

∀qX(Q(q)→ d(Q,P ) ≥R d(q, P )),(dQ,P )1

∀k0∃q ≤X c1X
(
Q(q) ∧ d(q, P ) ≥R d(Q,P )− 2−k

)
,(dQ,P )2

for the quantity d(Q,P ).

Again, also these axiom schemes are of the form ∆ if the predicates P and Q are both
quantifier-free (again making use of the fact that the existential quantifiers can be bounded as
the specified sets are assumed to be bounded), and so these schemes are admissible in systems
with bound extraction theorems in the style of proof mining.

Lastly, we move to the concrete Hausdorff metric which can now just be introduced by a
closed term involving d(P,Q) and d(Q,P ):

H(P,Q) := max
R
{d(P,Q), d(Q,P )}.

Of course, this distance can also be introduced uniformly for a family of sets described by
formulas P (p, x), Q(q, x) with parameters x of type σ if the sets described by P (p, x), Q(q, x)
are bounded by a function c(x) pointwise in the parameters.

Note that the non-emptiness of the sets P,Q is not needed to define these formulas but the
non-emptyness is required on a semantic level in order for these formulas to actually have a
model as the objects, mapping to type 1, have to be interpreted by a real number (or by a
function mapping into real numbers, respectively).

As mentioned before, this abstract treatment is fruitful at least in the context of sets describ-
able by quantifier-free formulas, where these constants and axioms then allow for extending a
previous metatheorem of an underlying system via suitable interpretations of the constants in
the model9 since the axioms are admissible as discussed before. Crucial for this however is the
majorizability of the constants. This however can be easily achieved: For d(·, P ), via the axiom
(dP )1, we have

d(x, P ) ≤ ‖x− p‖ ≤ ‖x‖+ ‖p‖ ≤ ‖x‖+ c

where p is some point witnessing that P is non-empty (and thus the non-emptyness is also
important for majorization). Further, we have

d(Q,P ) ≤ d(q, P ) + 1 ≤ ‖q‖+ c+ 1 ≤ 2c+ 1

for a suitable q chosen with axiom (dQ,P )2. From this, majorants for d(·, P ) and d(Q,P ) are
immediate.

By a similar reasoning, d(·, Q) as well as d(P,Q) are majorizable and this extends to any
variant using additional parameters if the sets are non-empty and bounded pointwise for all
parameters. Naturally, also the resulting bounding function c(x) then has to be majorizable as
a function of type 0(σt).

We are now in particular interested in using this way of formulating the Hausdorff-distance
to talk about uniform continuity formulations and extensionality principles for set-valued op-
erators T treated as in the previous basic system Aω[X, ‖·‖ , T ]. Then the sets P and Q can

9Concretely, the new constants d(·, P ), d(·, Q), d(P,Q) and d(Q,P ), which produce real numbers based on
their inputs, are naturally interpreted in the respective models via a functional (·)◦ canonically selecting a
representing Cauchy sequence with a fast rate, see [17, 19] for details.
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be taken to be of the form Tx with a parameter x of type X for a given set-valued operator
T which is represented in the system by an intensional description over its graph via χT as
discussed before. Formally, this is naturally represented by taking P (p, x) := χT (x, p) =0 0. As
this resulting formulation of the set Tx is quantifier-free, the above axioms in particular become
admissible for bound extraction results if, as discussed before, the operator T is actually such
that all Tx are bounded with a bounding function c of type 0(X) that is majorizable. In the
language of [53], the existence of such a c is equivalent to the operator T being uniformly ma-
jorizable, i.e. to being bounded on bounded sets. Thus, to treat such operators in the Hausdorff
metric, we consider an additional constant T ∗ of type 1 together with the axiom

(T ∗) ∀xX , yX , b0 (y ∈ Tx ∧ ‖x‖X <R b→ ‖y‖X ≤R T
∗b)

which serves as a majorant (and hence witness) to c. Then we can as above introduce constants
d(·, Tx) and d(Tx, Ty) for x, y ∈ domT into the language using χT and T ∗ to form H such that
the expression H(Tx, Ty) is represented by a term for any x and y.

With this, an extensionality statement corresponding to the Hausdorff metric now indeed
can be written as a formal sentence in this extended language via

(E)HT ∀xX , yX (x, y ∈ domT ∧ x =X y → H(Tx, Ty) =R 0) .

In that context, this extensionality principle (E)HT is provably equivalent to the previous
principle (E)∗T as the following result shows. For that, let Aω[X, ‖·‖ , T,H] refer to the sys-
tem which results from Aω[X, ‖·‖ , T ] by adding the respective constants and axioms for the
Hausdorff metric required to introduce H(Tx, Ty) as detailed above.

Proposition 5. Over Aω[X, ‖·‖ , T,H], the principles (E)HT and (E)∗T are equivalent.

Proof. To show that (E)∗T implies (E)HT , let x = y for x, y ∈ domT . Fixing k of type 0, let
u ∈ Tx be such that d(u, Ty) + 2−(k+1) ≥ d(Tx, Ty), using the axioms for d(Tx, Ty). Then use
(E)∗T to pick v ∈ Ty with ‖u− v‖ ≤ 2−(k+1). We now have

d(Tx, Ty) ≤ d(u, Ty) + 2−(k+1) ≤ ‖u− v‖+ 2−(k+1) ≤ 2−k

using the axioms for d(u, Ty). As k was arbitrary, we have d(Tx, Ty) = 0, and similarly we
can show d(Ty, Tx) = 0. This yields H(Tx, Ty) = 0 and we have shown (E)HT .

To show that (E)HT implies (E)∗T , again let x = y for x, y ∈ domT and fix k of type 0 as
well as u ∈ Tx. As (E)HT implies H(Tx, Ty) = 0, we have d(Tx, Ty) = 0. Using the axioms
for d(Tx, Ty), we have d(u, Ty) = 0 and so using the axioms for d(u, Ty), we have that there
exists a v ∈ Ty with

‖u− v‖ ≤ d(u, Ty) + 2−k = 2−k.

Thus we have shown (E)∗T . �

Further, the monotone functional interpretation then associates to this a corresponding uni-
form continuity principle for set-valued operators. Further, this principle is actually the usual
notion of uniform continuity for set-valued operators w.r.t. the Hausdorff metric (as commonly
used in the analytic literature, see e.g. [41]). Concretely, the monotone functional interpretation
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posits the existence of a modulus ω of type 0(0)(0) satisfying10

∀xX , yX , uX , vX , k0, b0((x, u), (y, v) ∈ T ∧ ‖x‖X , ‖y‖X , ‖u‖X , ‖v‖X <R b(UC)HT

∧ ‖x−X y‖X <R 2−ω(k,b) → H(Tx, Ty) ≤R 2−k).

As this statement (UC)HT is now universal based on our treatment of the Hausdorff-metric, it
can thus be freely added to a system with bound extraction theorems in the style of proof min-
ing together with an accompanying constant ω and the preceding treatment of H so that, for
this extension, one retains the bound extraction results. Even further, a quantitative analysis of
Proposition 5 immediately yields that if ω(k, b) is a modulus of uniform continuity for T in the
sense of (UC)HT , we have that ω(k+ 1, b) is a corresponding modulus for the uniform continuity
of T in the sense of (UC)∗T and similarly we conversely have that if ω(k, b) is a modulus of uni-
form continuity for T in the sense of (UC)∗T , then ω(k+1, b) is a corresponding modulus for the
uniform continuity of T in the sense of (UC)HT (in this context where H(Tx, Ty) is well-defined).

In the next section, we will illustrate the applicability of this approach towards the Hausdorff
metric by analyzing iterative methods related to set-valued mappings which are uniformly
continuous w.r.t. the Hausdorff metric.

4. An application: Quantitative results on Mann-iterations for nonexpansive
set-valued mappings in Banach spaces

In this section, we illustrate the applicability of the treatment of the continuity principle
based on the Hausdorff metric developed formally in a framework for proof mining for the first
time in this paper by providing quantitative results on a Mann-type iteration of set-valued
mappings which are nonexpansive w.r.t. the Hausdorff metric.

Concretely, let X be a Banach space and denote by CB(X) the collection of nonempty, closed
and bounded subsets of X. We still write H(A,B) for the Hausdorff metric for A,B ∈ CB(X)
which is well-defined and real-valued and we write

d(x,A) = inf
a∈A
‖x− a‖

for a given set A ∈ CB(X) as before. A set-valued map T : D ⊆ X → CB(X) is called
nonexpansive if

H(Tx, Ty) ≤ ‖x− y‖

for any x, y ∈ D. We say that a point x is a fixed point of T if x ∈ Tx and we denote the set
of fixed points of T by F (T ).

The following is a rather immediate consequence of the definition of the Hausdorff metric:

Lemma 6 (see e.g. [42]). Let A,B ∈ CB(X). For any a ∈ A and ε > 0, there exists some
b ∈ B with

‖a− b‖ ≤ H(A,B) + ε.

10As already discussed in the context of (UC)∗T , while the following principle stipulates uniform continuity on
bounded subsets, the literature often even considers situations where the continuity is uniform over the whole
space, i.e. with ω independent of b.
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Based on this lemma, it is immediately clear that given a nonempty convex set K and starting
points x0 ∈ K, y0 ∈ Tx0 together with scalars αn ∈ [0, 1] and γn ∈ (0,∞), one can inductively
define an iteration

(†) xn+1 = (1− αn)xn + αnyn

where yn+1 ∈ Txn+1 is chosen such that ‖yn+1 − yn‖ ≤ H(Txn+1, Txn) + γn. This iteration
defined in that way was studied in [62] and in the case that the set K is additionally compact,
the authors obtained the following convergence result:

Theorem 7 ([62]). Let K ⊆ X be nonempty, convex and compact. Let T : K → CB(K) be
a set-valued map that is nonexpansive and suppose that F (T ) 6= ∅ as well as T (p) = {p} for
each p ∈ F (T ). Let (xn) be defined as in (†) with starting points x0 ∈ K, y0 ∈ Tx0 and scalars
(αn) ⊆ [0, 1] and (γn) ⊆ (0,∞) such that

(1) limn→∞ γn = 0,
(2) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1.

Then (xn) converges strongly to a fixed point of T .

The main feature of the sequence exploited in the proof is that it is Fejér monotone (see
in particular [3, 4]). This well-studied class of sequences possesses very general convergence
theorems which guarantee the weak convergence of such sequences under very mild asymptotic
regularity assumptions. In compact (metric) spaces, like in the above result, the convergence
is in particular strong.

These general convergence results for Fejér monotone sequences from compact sets were
analyzed through the lens of proof mining in [27] where, under the assumption of the existence
of moduli which witness uniform quantitative reformulations of the central properties involved,
a construction of a rate of metastability for the sequence in question is presented, i.e. a bound
on the n in the expression

∀k ∈ N, g ∈ NN∃n ∈ N∀i, j ∈ [n;n+ g(n)]

(
‖xi − xj‖ ≤

1

k + 1

)
in terms of k and g. This noneffectively equivalent phrasing of the Cauchy property is par-
ticularly useful for more uniform and finitary considerations on convergence, as in particular
also highlighted in [67, 66], and such a bound is in general the most one can hope for if one
aims at computable information for Fejér monotone sequences as already in the most simple
cases of ordinary Fejér monotonicity, there, in general, are no computable rates of convergence
as one can show using methods from computability theory (essentially reducing to the seminal
paper [63], see also [44], and see [27] for a more detailed discussion of this). However, aiming
for computable rates of convergence, in [29], a general principle of metric regularity is studied
(encompassing various forms of well-known regularity assumptions from nonlinear analysis and
optimization like metric subregularity, weak sharp minima, error bounds, etc.) and under the
assumption of such a metric regularity principle, the authors then provide a construction for
a computable as well as highly uniform full rate of convergence for a given Fejér monotone
iteration which moreover holds in the absence of any compactness assumptions.

These general but abstract proof mining results were previously successfully instantiated for
many different situations in which Fejér monotone sequences occur to derive rates of metastabil-
ity and rates of convergence. In particular, we want to mention the applications in the context
of the composition of two firmly nonexpansive mappings in nonlinear spaces from [28], the
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proximal point algorithm in uniformly convex Banach spaces from [24] and in CAT(0)-spaces
as in [39, 40] as well as algorithms for finding zeros of differences of monotone operators from
[50] and Korpelevich’s extragradient method as in [49].

It is also here that we apply the results from [27, 29] to derive rates of metastability and
rates of convergence (under a metric regularity assumption) for the above iteration which are, as
before, not only computable in their parameters but also highly uniform. For that, we need to
extract the previously mentioned moduli witnessing uniform quantitative versions of the Fejér
monotonicity and asymptotic regularity which themselves arise from an application of proof
mining to the respective proofs of these properties given in the course of the proof of Theorem
7 in [62]. As these proofs in particular rely on the utilization of the Hausdorff metric, this
application given here is in particular to be seen as a case study to illustrate the applicability
of the treatment of the Hausdorff metric discussed in the previous section.

4.1. The central assumptions and their quantitative content. In this section, we now
first discuss the central assumptions present in Theorem 7 and in particular discuss (using the
underlying logical methodology) what kind of quantitative assumptions they entail to poten-
tially feature in the analysis of the main theorem.

The first important assumption present in Theorem 7 is the compactness of the set K.
This compactness assumption on K is witnessed in the following by a quantitative modulus of
compactness introduced in [9] under the name of a modulus of total boundedness11 which takes
the form of a function γ : N→ N such that for any k ∈ N and for any (xn) ⊆ K:

∃0 ≤ i < j ≤ γ(k)

(
‖xi − xj‖ ≤

1

k + 1

)
.

Such a modulus exists if, and only if, K is compact and we refer to [27] for various discussions
on the construction of such moduli for certain concrete classes of compact sets and spaces.

As a second assumption, we find the non-emptyness of the fixed point set F (T ) which will
be represented by a concrete witness p0 (i.e. p0 ∈ K and p0 ∈ Tp0) in the following. As follows
by the perspective of majorization, the bounds extracted later will of course only depend on
an upper bound on the norm of p0, which by the compactness and therefore the boundedness
of K, is in particular represented by any upper bound on the diameter of K.

One of the most crucial assumptions, in some sense, is the single-valuedness of T on actual
fixed points, i.e. the assumption that Tp = {p} if p ∈ F (T ). This implication is equivalent to

(∗) ∀p ∈ K (d(p, Tp) = 0→ H({p}, Tp) = 0)

which in turn unravels into

∀p ∈ K∀k ∈ N∃j ∈ N
(
d(p, Tp) ≤ 1

j + 1
→ H({p}, Tp) ≤ 1

k + 1

)

11In [27], the name II-modulus of total boundedness is used but we here follow the conventions from [9] where
such a modulus is just called a modulus of total boundedness.
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and in that way the logical methodology induces12 a modulus θ : N → N bounding (and thus
witnessing) such a j in terms of k, i.e. such that13

∀p ∈ K∀k ∈ N
(
d(p, Tp) ≤ 1

θ(k) + 1
→ H({p}, Tp) ≤ 1

k + 1

)
.

Note that by a simple compactness argument, possessing such a modulus is equivalent to the
property (∗) in compact spaces:

Lemma 8. Let K be compact and let T : K → CB(K) be a nonexpansive operator. Then T
satisfies (∗) if, and only if,

(∗∗) ∀k ∈ N∃j ∈ N∀p ∈ K
(
d(p, Tp) ≤ 1

j + 1
→ H({p}, Tp) ≤ 1

k + 1

)
.

Proof. Clearly, (∗∗) implies (∗). Conversely, suppose that (∗∗) fails, i.e. suppose there exists a
k ∈ N such that for any j ∈ N:

∃pj ∈ K
(
d(pj, Tpj) ≤

1

j + 1
∧H({pj}, Tpj) >

1

k + 1

)
.

Then d(pj, Tpj) ≤ 1
j+1

implies that for any j ≥ 1, there exists a qj ∈ Tpj such that ‖pj − qj‖ ≤
1/j. Further, H({pj}, Tpj) > 1

k+1
now implies that there exists a q′j ∈ Tpj such that

∥∥pj − q′j∥∥ >
1

k+1
.

We now pick subsequences pji , qji and q′ji such that pji → p, qji → q and q′ji → q′ with
p, q, q′ ∈ K. Then ‖p− q‖ = 0 and H(Tpji , Tp)→ 0 for i→∞ as T is nonexpansive. Thus in
particular d(qji , Tp), d(q′ji , Tp)→ 0 which yields

d(q, Tp) ≤ ‖q − qji‖+ d(qji , Tp)→ 0

and thus d(p, Tp) = d(q, Tp) = 0. Similarly d(q′, Tp) = 0 and thus q′ ∈ Tp. However, we have
‖p− q′‖ ≥ 1

k+1
and so H({p}, Tp) ≥ ‖p− q′‖ ≥ 1

k+1
. This is a contradiction to (∗). �

In that way, the existence of such a modulus is implied already by the assumptions in The-
orem 7.

At last, we consider the assumptions on the auxiliary sequences γn and αn. For γn, where it
is assumed that

lim
n→∞

γn = 0,

we will later rely on a rate of convergence τ witnessing this property, i.e. on a τ satisfying

∀k ∈ N∀n ≥ τ(k)

(
γn ≤

1

k + 1

)
.

12To formalize the above statement in the language of the previous systems, we have to represent the set {p}
using an additional constant χs of type 0(X)(X) together with two axioms expressing that χs(p, ·) intensionally
codes the singleton {p} for all p:

∀pX (χs(p, p) =0 0) ,

∀pX , xX (χs(p, x) =0 0→ x =X p) .

In that way, the treatment of {p} is intensional as we can not prove that for x = p, we also have x ∈ {p} in the
sense that χs(p, x) =0 0. Then H({p}, Tx) can be introduced using χs and some χT coding T as discussed in
the first part of this paper. In particular, this utilizes that T is bounded since it maps into CB(K) and K is
bounded.

13Note that the (full) independence on p is suggested by the logical methodology as the set K is in particular
bounded.
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For αn, the assumption that

0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1

is witnessed by a value a ∈ N∗ with the property

∀n ≥ a

(
1

a
≤ αn ≤ 1− 1

a

)
in similarity to [5].

Remark 9. For the previous treatment of the Hausdorff metric, it was crucial that the sets come
equipped with a modulus witnessing their boundedness. Note again that the existence of such
a modulus is immediate for sets of the form Tx as Tx ∈ CB(K) and thus Tx ⊆ K which is
bounded as K is compact. In that way, for the quantitative results, we will later rely on a bound
on the diameter of K (as mentioned before). Note that such a bound can not be computed from
the modulus of total boundedness γ for K as this modulus is only non-effectively equivalent
to the total boundedness of K in the usual sense and thus only implies the boundedness of K
non-effectively (see [27] for a further discussion of this).

4.2. Suzuki’s lemma and its analysis. The main analytical ingredient of the convergence
proof from [62] is a well-known lemma from [64]:

Lemma 10 ([64]). Let (xn), (yn) be bounded sequences in a Banach space X and let (αn) ⊆ [0, 1]
be such that 0 < lim infn→∞ αn ≤ lim supn∈N αn < 1. Suppose that xn+1 = αnxn + (1 − αn)yn
as well as

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖xn − yn‖ = 0.

This lemma was analyzed quantitatively in [5] and we will rely in the following on this
analysis:

Lemma 11 ([5]). Let (xn), (yn) be sequences in a Banach space X with ‖xn‖ , ‖yn‖ ≤ b for
some b ∈ N∗ and let (αn) ⊆ [0, 1] be such that there exists a a ∈ N∗ with the property

∀n ≥ a

(
1

a
≤ αn ≤ 1− 1

a

)
.

Suppose that xn+1 = αnxn+(1−αn)yn as well as that there exists a monotone function τ : N→ N
such that

∀k ∈ N∀n ≥ τ(k)

(
(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤

1

k + 1

)
.

Then for any k ∈ N and any g : N→ N:

∃n ≤ ϕa,τ,b(k, g)∀m ∈ [n;n+ g(n)]

(
‖xm − ym‖ ≤

1

k + 1

)
,

where ϕa,τ,b(k, g) = max{a, τ(t(2t+ 1)at(k + 1)− 1)}+ (bt(2t+ 1)at(k + 1)− 1)t+ r0 for

ri :=

{
0 if i = b(k + 1),

t+ ri+1 + ĝ(max{a, τ(t(2t+ 1)at(k + 1)− 1)}+ it+ ri+1) if i < b(k + 1).

where ĝ(m) = t+ g(m) and t = 2ba(k + 1).
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4.3. Fejér monotonicity and metastability. We now present the extractions of the quan-
titative versions of Fejér monotonicity and asymptotic regularity.

For this, we first need to define an appropriate notion of an approximate solution (i.e. of
an approximate fixed point) as the results given in [27] rely on uniform reformulations of the
respective properties in terms of such approximate solutions. For our concrete situation here,
note that p is a fixed point of T if, and only if, d(p, Tp) = 0 (as Tp is closed since Tp ∈ CB(K)).
In that vein, we call p a 1

k+1
-approximate fixed point of T if

d(p, Tp) ≤ 1

k + 1

and define correspondingly

AFk =

{
p ∈ K | d(p, Tp) ≤ 1

k + 1

}
as the set of approximate solutions which extend the set of full solutions

F = {p ∈ K | d(p, Tp) = 0} = F (T ).

Now, for the Fejér monotonicity of (xn), we concretely strive to establish the existence of the
following modulus relative to the chosen AFk:

Definition 12 ([27]). A function χ : N3 → N is a modulus of uniform Fejér monotonicity for
(xn) w.r.t. (AFk) if for any n,m, r ∈ N, any p ∈ AFχ(k,m,r) and any l ≤ m:

‖xn+l − p‖ < ‖xn − p‖+
1

r + 1
.

For this, we can now extract the following from the proof of Fejér monotonicity given in [62]
for the sequence (xn) defined as in (†).

Lemma 13. Let θ be such that

∀p ∈ K∀k ∈ N
(
d(p, Tp) ≤ 1

θ(k) + 1
→ H({p}, Tp) ≤ 1

k + 1

)
.

Then sequence (xn) defined as in (†) is uniformly Fejér monotone w.r.t. (AFk) with a modulus

χ(n,m, r) = θ(m(r + 1) + 1).

Proof. Let p be given with d(p, Tp) ≤ 1
χ(n,m,r)+1

. Then

‖xn+1 − p‖ ≤ (1− αn) ‖xn − p‖+ αn ‖yn − p‖
≤ (1− αn) ‖xn − p‖+ αnd(yn, Tp) + αn(‖yn − p‖ − d(yn, Tp))

≤ (1− αn) ‖xn − p‖+ αnH(Txn, Tp) + αn(‖yn − p‖ − d(yn, Tp))

≤ ‖xn − p‖+ (‖yn − p‖ − d(yn, Tp))

and by induction we get

‖xn+l − p‖ ≤ ‖xn − p‖+
l−1∑
i=0

(‖yn+i − p‖ − d(yn+i, Tp))

for any l ≥ 1. It is rather immediate to see that in general, for non-empty sets Y, Z ⊆ X and
a point x, we have d(x, Y ) ≤ d(x, Z) +H(Y, Z) and instantiating this yields

‖yn+i − p‖ = d(yn+i, {p}) ≤ d(yn+i, Tp) +H({p}, Tp)
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and thus ‖yn+i − p‖ − d(yn+i, Tp) ≤ H({p}, Tp). As now p ∈ AFχ(n,m,r), we get

H({p}, Tp) < 1

m(r + 1)
.

In particular, in that case we have

‖xn+l − p‖ ≤ ‖xn − p‖+mH({p}, Tp)

< ‖xn − p‖+
1

r + 1

for l ≤ m. �

Remark 14. Note that if T satisfies (∗), the sequence is Fejér monotone w.r.t. F (T ) in the usual
sense as can be shown by following the proof of the above Lemma 13. In particular, this result
holds without any compactness assumption for K.

For the asymptotic behavior, we are interested in the following type of quantitative informa-
tion:

Definition 15 ([27]). A function Φ is an approximate F -point bound for (xn) w.r.t. (AFk) if
for any k ∈ N:

∃n ≤ Φ(k) (xn ∈ AFk) .

The construction of such a Φ for the sequence studied here relies on analyzing the proof of
the statement d(xn, Txn)→ 0 from [62] which relies on Suzuki’s lemma. Concretely, we get the
following:

Lemma 16. Let b be a bound on the diameter of K and let (αn) ⊆ [0, 1] be such that there
exists an a ∈ N∗ with the property

∀n ≥ a

(
1

a
≤ αn ≤ 1− 1

a

)
.

Let τ be a monotone rate of convergence for γn → 0. Let ϕa,τ,b be defined as in Lemma 11.
Then (xn) defined as in (†) has approximate F -points w.r.t. (AFk) with an approximate F -point
bound

Φ(k) = ϕa,τ,b(k, 0).

Proof. As in [62], we can derive

‖yn+1 − yn‖ ≤ H(Txn+1, Txn) + γn ≤ ‖xn+1 − xn‖+ γn

which yields that
‖yn+1 − yn‖ − ‖xn+1 − xn‖ ≤ γn

and thus τ satisfies the assumption of Lemma 11. Applying Lemma 11, we get that for any
k ∈ N and any g : N→ N:

∃n ≤ ϕa,τ,b(k, g)∀m ∈ [n;n+ g(n)]

(
‖xm − ym‖ ≤

1

k + 1

)
.

In particular, we get for any k ∈ N that

∃n ≤ ϕa,τ,b(k, 0)

(
‖xn − yn‖ ≤

1

k + 1

)
which yields that for this n, we have

d(xn, Txn) ≤ ‖xn − yn‖ ≤
1

k + 1
,
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i.e. xn ∈ AFk. �

Remark 17. While the full function ϕa,τ,b is rather complex, in the above special case of con-
sidering the constant-0 function, it simplifies considerably to

ϕa,τ,b(k, 0) = max{a, τ(t(2t+ 1)at(k + 1)− 1)}+ (bt(2t+ 1)at(k + 1)− 1)t+ 2b(k + 1)t

for t = 2ba(k + 1).

Lastly, we show that F (T ) is not only closed but that it is even sufficiently uniformly closed
respective to the approximations AFk in a concrete way introduced in [27]:

Definition 18 ([27]). The solution set F is called uniformly closed w.r.t. (AFk) with moduli
δ, ω if for any k ∈ N, any q ∈ AFδ(k) and any p with ‖p− q‖ ≤ 1/(ω(k) + 1), we have p ∈ AFk.

Lemma 19. The set F = F (T ) is uniformly closed w.r.t. (AFk) with moduli{
δ(k) = 2k + 1,

ω(k) = 4k + 3.

Proof. Note that we have

d(p, Tp) ≤ d(p, Tq) +H(Tp, Tq)

≤ ‖p− q‖+ d(q, T q) + ‖q − p‖

and thus if q ∈ AF2k+1 and ‖p− q‖ ≤ 1
4(k+1)

, then d(p, Tp) ≤ 1
k+1

, i.e. p ∈ AFk. �

Combined, we can now apply the general result from [27] to get the following quantitative
version of Theorem 7:

Theorem 20. Let γ be a modulus of total boundedness for K. Let b be a bound on the diameter
of K and let (αn) ⊆ [0, 1] be such that there exists an a ∈ N∗ with the property

∀n ≥ a

(
1

a
≤ αn ≤ 1− 1

a

)
.

Let (γn) ⊆ (0,∞) be such that γn → 0 and let τ be a monotone rate of convergence for γn → 0.
Let θ be such that

∀p ∈ K∀k ∈ N
(
d(p, Tp) ≤ 1

θ(k) + 1
→ H({p}, Tp) ≤ 1

k + 1

)
.

Let ϕa,τ,b(k, 0) be defined as in Remark 17, i.e.

ϕa,τ,b(k, 0) = max{a, τ(t(2t+ 1)at(k + 1)− 1)}+ (bt(2t+ 1)at(k + 1)− 1)t+ 2b(k + 1)t

for t = 2ba(k + 1). Then (xn) defined as in (†) is Cauchy and moreover, for all k ∈ N and all
g : N→ N,

∃N ≤ Ψ(k, g)∀i, j ∈ [N ;N + g(N)]

(
‖xi − xj‖ ≤

1

k + 1
∧ xi ∈ AFk

)
where Ψ(k, g) = Ψ0(P, k, g) for P = γ(4k + 3) and with{

Ψ0(0, k, g) = 0,

Ψ0(n+ 1, k, g) = ϕa,τ,b(χ
M
k,g(Ψ0(n, k, g), 8k + 7), 0),
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and where

χ(n,m, r) = θ(m(r + 1) + 1),

χk(n,m, r) = max{2k + 1, χ(n,m, r)},
χMk,g(n, r) = max{χk(i, g(i), r) | i ≤ n}.

Proof. The result rather immediately follows from Theorem 5.3 in [27] (which itself builds on
Theorem 5.1 in [27]) by instantiating the bound given there with the moduli obtained in Lemmas
13, 16, 19. Concretely, χ in [27] is instantiated by χ as above and Φ in [27] is instantiated by
ϕa,τ,b(·, 0). Further, δF and ωF in [27] are instantiated by δ and ω as in Lemma 19 and we have
G = H = id and thus αG(k) = βH(k) = k. Note lastly that as τ is monotone, so is ϕa,τ,b(·, 0)
as follows by Remark 17. The bounds given here result from the ones given in [27] only by
immediate simplifications. �

Remark 21. Theorem 20 is a full finitization of Theorem 7 in the sense of Tao as it only
references finite segments of the iteration (xn) but it trivially implies back the original formula-
tion of Theorem 7 as all the moduli naturally exist and since metastability is (non-effectively)
equivalent to convergence (see also Remark 5.5 in [27]).

4.4. Moduli of regularity and rates of convergence. In this section, using the results
from [29], we give constructions for rates of convergence based on the assumption of a (very
general) kind of regularity notion as discussed in the introduction.

The central notion here is consequently the following instantiation of the abstract notion of
a modulus of regularity from [29]:

Definition 22. Let z ∈ F (T ) and r > 0. A function φ : (0,∞) → (0,∞) is called a modulus
of regularity for T w.r.t Br(z) if for all ε > 0 and all x ∈ Br(z):

d(p, Tp) < φ(ε)→ dist(x, F (T )) < ε.

If there is a z ∈ F (T ) such that φ is a modulus of regularity w.r.t. Br(z) for all r > 0, then φ
is just called a modulus of regularity for T .

Remark 23. Note that the work [29] is written in the context of a formal setup where instead of
using sets F/AFk as above to formulate the solutions and approximative solutions, a function
F : X → [0,+∞] is employed and the roles of the sets F/AFk are (conceptually) replaced by
zerF/{x | F (x) ≤ ε} for ε > 0. The above notion arises from the general definition given in
[29] by using F (x) := d(x, Tx) but we in the following suppress this whole setup from [29].

Note that the function d(p, Tp) is continuous in p if T is nonexpansive as

d(p, Tp) ≤ d(p, Tq) +H(Tp, Tq)

≤ ‖p− q‖+ d(q, T q) + ‖q − p‖

and thus

|d(p, Tp)− d(q, T q)| ≤ 2 ‖p− q‖ .
It follows from Proposition 3.3 of [29] that any such nonexpansive map T has a modulus of
regularity (albeit in general being uncomputable) if K is compact.

Under the assumption of such a modulus, we now get the following result on rates of conver-
gence:
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Theorem 24. Let z ∈ F (T ) 6= ∅ and let b be a bound on the diameter of K. Assume that K is
closed. Let (xn) be defined as in (†). Assume that T satisfies (∗). Let (αn) with a and (γn) with
τ as well as ϕa,τ,b(k, 0) be as in Theorem 20 (and Remark 17). Let φ be a modulus of regularity
for T w.r.t. Bb(z). Then (xn) is Cauchy with

∀ε > 0∀i, j ≥ ϕa,τ,b

(⌈
1

φ(ε/2)

⌉
, 0

)
(d(xi, xj) < ε) .

and further (xn) converges to a fixed point of T with a rate of convergence

ϕa,τ,b

(⌈
1

φ(ε/2)

⌉
, 0

)
.

Proof. The result is a straightforward instantiation of the general abstract Theorem 4.1 from
[29], using the previous Lemma 16 by which we have that

∀ε > 0∃n ≤ ϕa,τ,b

(⌈
1

ε

⌉
, 0

)
(d(xn, Txn) < ε) .

Note for this that the sequence (xn) is Fejér monotone w.r.t. F (T ) by Remark 14 since T satisfies
(∗). That (xn) converges to a fixed point of T with the given rate follows from Theorem 4.1,
(i) in [29] for which we need that K is complete (which follows as X is a Banach space and
as K is closed) and that F (T ) is closed which follows from the fact that d(p, Tp) is uniformly
continuous in p and F (T ) = (d(·, T ·))−1(0). �

Remark 25. Note that the above Theorem 24 holds without any compactness assumptions on
K. Thus, in the presence of a modulus of regularity, the convergence result from Theorem
7 immediately holds for any closed, bounded and non-empty set K and any nonexpansive
mapping T with F (T ) 6= ∅ that satisfies (∗).

Finally, we look at a notion for multi-valued mappings where simple instances of such moduli
of regularity can be derived. Following [58], a multivalued mapping T : K → CB(K) is said
to satisfy Condition I if there is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0,
f(r) > 0 for r ∈ (0,∞) and

d(x, Tx) ≥ f(d(x, F (T )))

for all x ∈ K. If the property that f(r) > 0 for r ∈ (0,∞) is witnessed in a uniform and
quantitative way by a function φ : (0,∞)→ (0,∞) with

f(r) < φ(ε)→ r < ε

for any r, ε > 0, then such a φ is clearly already a modulus of regularity for T . This in particular
is true for mappings that satisfy Condition II of [58], i.e. where there exists a real α > 0 such
that

d(x, Tx) ≥ αd(x,F(T ))

where then φ can be given by φ(ε) = αε. Examples of mappings which satisfy Condition II are
for instance discussed in [58] and for these, the above rates of convergence therefore instantiate
immediately.
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functions. Transactions of the American Mathematical Society, 377(10):7475–7517, 2024.

[55] N. Pischke. Proof-Theoretical Aspects of Nonlinear and Set-Valued Analysis. PhD thesis, TU Darmstadt,
2024. Thesis available at https://doi.org/10.26083/tuprints-00026584.

[56] N. Pischke. Rates of convergence for the asymptotic behavior of second-order Cauchy problems. Journal of
Mathematical Analysis and Applications, 533(2), 2024. 128078.

[57] N. Pischke and U. Kohlenbach. Effective rates for iterations involving Bregman strongly nonexpansive
operators. Set-Valued and Variational Analysis, 32(4), 2024. 33, 58pp.

[58] H.F. Senter and W.G. Dotson. Approximating fixed points of nonexpansive mappings. Proceedings of the
American Mathematical Society, 44(2):375–380, 1974.
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