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Abstract. We establish the convergence of a speed-up version of the Halpern iteration with
adaptive anchoring parameters in the general geodesic setting of Hadamard spaces, generalizing
a recent result by He, Xu, Dong and Mei from a linear to a nonlinear setting. In particular,
our results extend the fast rates of asymptotic regularity obtained by these authors for the
first time to a nonlinear setting. Our approach relies on a quantitative study of these previous
results in the linear setting, combined with certain optimizations and an elimination of the
weak compactness arguments employed crucially in the linear setting, which not only allows
for the lift of the result to a nonlinear setting but also streamlines the previous convergence
analysis considerably. This work is set in the context of recent developments in proof mining,
and as byproduct of our approach, we further obtain quantitative information in the form of
highly uniform rates of metastability of low complexity, which are new already in the context
of Hilbert spaces.
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1. Introduction

Let X be a Hilbert space and T : X → X be a nonexpansive map, i.e.

‖Tx− Ty‖ ≤ ‖x− y‖

for all x, y ∈ X. We write Fix(T ) := {x ∈ X | Tx = x} for the set of fixed points of T .

It is a fundamental problem of nonlinear analysis to study methods for finding fixed points
of nonexpansive maps, not at least since a very wide variety of computational problems can
be captured by associated fixed point equations of nonexpansive operators. This task is made
highly nontrivial by the fact that nonexpansive mappings may fail to have fixed points at all,
and even if they do, usual methods such as the Picard iteration or the Krasonselskii-Mann it-
eration may even fail to convergence or only converge weakly in the infinite-dimensional setting.

The so-called Halpern iteration alleviates the problem of weak convergence by utilizing a
so-called anchor point u ∈ X together with a sequence of parameters (λn) ⊆ [0, 1] to construct
the sequence

xn+1 = λnu+ (1− λn)Txn

from a given arbitrary starting point x0 ∈ X. This iteration, originally studied by Halpern [19]
in the special case of u = 0, can be shown to converge strongly to the projection of the anchor u
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onto the fixed point set Fix(T ) under suitable conditions on the anchoring parameters. Besides
the two conditions

lim
k→∞

λk = 0 and
∞∑
k=0

λk =∞,

already isolated as necessary conditions by Halpern [19], work in the years following the in-
troduction of this method has focused on various, successively improving, conditions on these
parameters sufficient for guaranteeing strong convergence, notably as in the works of Halpern
[19], Lions [31], Wittmann [46], Reich [37] and Xu [48], to only name a few. Beyond these
technicalities, Halpern’s iteration is also very important from a conceptual standpoint, as in
the case where T is a linear operator and λn = 1/(n+ 1) (a choice which was for the first time
possible through the conditions introduced in Wittmann’s work [46]), the Halpern iteration
reduces to the usual ergodic averages and the convergence result consequently presents itself as
a nonlinear variant of the von Neumann mean ergodic theorem.

Quantitatively, Halpern’s iteration is known to fastly producing approximate fixed points for
suitable anchoring parameters as expressed through the following rate of asymptotic regularity

‖xn − Txn‖ ≤
2

n+ 1
‖x0 − p‖

in the case λn = 1/(n+ 2) (and assuming u = x0) where p ∈ Fix(T ) is an arbitrary fixed point
of T , as recently established by Lieder [30] as well as Sabach and Shtern [39]. Moreover, this
rate is known to be optimal in general.

To further speed up the asymptotic regularity of Halpern’s iteration, in the recent work [20],
He, Xu, Dong and Mei proposed an iteration where each anchoring parameter λn is chosen
adaptively (in a rather novel way compared to previous adaptive parameter selections, see the
discussion in [20]) along the iteration to increase the speed of asymptotic regularity in concrete
applied circumstances and still guarantee the strong convergence of Halpern’s iteration. This
adaptive iteration concretely takes the following form: given a point x0 ∈ X, define a sequence
(xn) recursively via the clauses

xn+1 :=

{
xn if Txn = xn,(

1
ϕn+1

)
x0 +

(
ϕn
ϕn+1

)
Txn if Txn 6= xn,

where

ϕn :=
2〈xn − Txn, x0 − xn〉
‖xn − Txn‖2

+ 1

in the case where Txn 6= xn. As shown in [20], this method in particular allows for the following
estimate on the asymptotic regularity

‖xn − Txn‖ ≤
2

ϕn−1 + 1
‖x0 − p‖ ≤

2

n+ 1
‖x0 − p‖

for all n ≥ 1, where p ∈ Fix(T ) is again an arbitrary fixed point of T . The latter inequality
follows by the fact that ϕn ≥ n+ 1 and so one obtains an analogous result on the convergence
speed of Halpern’s iteration as given in [30]. Beyond matching the speed of the optimal con-
vergence result for Halpern’s iteration due to [30], as illustrated in [20], certain examples of
application can be constructed where the above asymptotic regularity result yields substantially
better theoretical estimates on the asymptotic regularity than the previous ones. But, beyond
these theoretical bounds, experimental results presented in [20] make it further clear that the
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use of the adaptive anchoring parameters leads to a considerable speedup very general practical
circumstances.

It is now the aim of this paper to study the above adaptive Halpern iteration in the nonlinear
context of Hadamard spaces (see the next section for precise definitions), one of the most im-
portant classes of nonlinear hyperbolic spaces and which present a suitable nonlinear analogue
to that of Hilbert spaces.

Concretely, we lift the above iteration to these nonlinear spaces by considering the follow-
ing analogous iteration in a Hadamard space X: given an arbitrary starting point x0 ∈ X
simultaneously serving as an anchor, define a sequence (xn) via

(Hadp) xn+1 :=

{
xn if Txn = xn,(

1
ϕn+1

)
x0 ⊕

(
ϕn
ϕn+1

)
Txn if Txn 6= xn,

where T : X → X is a nonexpansive mapping similar to before and

ϕn :=
2
〈−−−−→
Txnxn,

−−→xnx0

〉
d2(xn, Txn)

+ 1

for Txn 6= xn. Here, we wrote λx⊕ (1− λ)y for the convex combination of two point x, y ∈ X,
an operation which is naturally defined through the use of geodesics in Hadamard spaces, and
〈−→xy,−→zw〉 denotes the so-called quasi-linearization function of the space X, a natural nonlinear
generalization of the inner product in Hilbert spaces (again, we refer to the next section for a
precise introduction to these notions).

In particular, we show that this iteration satisfies an analogous linear asymptotic regularity
result in this metric context by establishing the inequality

d(xn, Txn) ≤ 8

ϕn−1 + 1
d(x0, p) ≤

8

n+ 1
d(x0, p)

for all n ≥ 1, where p is a fixed point of T . Again, the latter inequality follows from the fact
that ϕn ≥ n+ 1. This is worsens the inequality given in [20] for Hilbert spaces by a factor of 4,
where an argument based on the linear structure of the Hilbert space (akin to [30]) can be given
to remove that factor and obtain the previous rates. However the constant improves the best
known for Halpern’s iteration in the context of Hadamard spaces [7] (see also [9]). It remains
an open question whether the associated inequality for Halpern’s iteration in Hadamard spaces
given in [7] is optimal and analogously we do not know if the above inequality is optimal for
the adapted Halpern iteration in Hadamard spaces.

Beyond this, we in particular also show the metric convergence of the above iteration in
Hadamard spaces. Naturally, as every Hilbert space is a Hadamard space, this result for (Hadp)
in particular also contains the result from [20] as a special case but, as our results here show,
it is certainly not limited to its original linear context. This also in particular answers an open
problem phrased in [9] which asked for extensions of the method given in [20] to more general,
nonlinear, settings and to provide similar asymptotic regularity results as in [20].

The approach we took toward obtaining these results relies on the logical methodology of
proof mining, a program in mathematical logic which aims at the extraction of quantitative and
effective information from prima facie non-effective proofs (we refer to the seminal monograph
[23] for a comprehensive overview of both theoretical as well as applied aspects of this program
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up to 2008 and to the survey [26] for comments on more recent applications to nonlinear analy-
sis). In particular, proof mining has previously been highly successful in providing quantitative
versions of the convergence result for Halpern’s iteration and its many variants as considered in
the literature, with notable instances ranging from the first analysis of Wittmann’s proof of the
strong convergence of Halpern’s iteration given in the seminal paper of Kohlenbach [25] and the
first rates of asymptotic regularity for Halpern’s iteration given by Leuştean [28] and the sub-
sequent extension of these results to Hadamard spaces in [27] by an analysis of a corresponding
convergence proof by Saejung [40] to analyses of involved extensions of the Halpern iteration
like in [41] for the modified Mann iteration introduced in [21] (and extended to nonlinear spaces
in [10]) as well as Tikhonov-Mann-type methods and their extensions as introduced in [49] and
[4] and analyzed in [7, 8, 9, 13] (with [7] notable as therein, linear rates of asymptotic regularity
were obtained for the first time in the context of applications of proof mining) or the recently
introduced Halpern-Mann method [14, 29].

Now, we concretely arrived at the results presented here by first deriving a finitary quanti-
tative variant of the above result from [20] set in linear spaces, which by virtue of this analysis
was accompanied with an elementary proof which was stripped of any infinitary arguments and
in particular made no use of sequential weak compactness.1 This elementary proof then allowed
for a more straightforward generalization to the nonlinear setting of Hadamard spaces, yielding
a corresponding finitary quantitative convergence result therein which then can be brought in
the form of a usual convergence result by “forgetting” about these finitary quantitative aspects.2

However, we want to emphasize that while this logical perspective was crucial in obtaining the
present results, the paper does not rely on any notions from logic at all.

Therefore, as a sort of byproduct of our approach, we also obtain a quantitative version of
our convergence result in the form of a rate of metastability for the sequence (xn), i.e. in the
form of a function ρ(k, f) which bounds the quantifier ∃n ∈ N in the expression

∀k ∈ N ∀f : N→ N ∃n ∈ N ∀i, j ∈ [n;n+ f(n)]

(
d(xi, xj) ≤

1

k + 1

)
in terms of k and f , where we write [a; b] = [a, b] ∩ N. This so-called metastability property
is, albeit noneffectively, equivalent to the usual Cauchy property for (xn) and presents a highly
fruitful phrasing of that property in the context of quantitative considerations on convergence,
a fact that is not only put forward by proof mining (we refer to the discussion in [23]) but
was also crucially highlighted in the work of Tao on finitary analysis [44, 45] (where the term
metastability was actually coined). In particular, rates of metastability are in general the best
one can hope for if one aims at computable information on convergence statements as com-
putable rates of convergence are in general ruled out for wide classes of iterations (including
Halpern’s iteration), as can be shown by adapting results from recursion theory [42]. Further,
the rate of metastability that we give is highly uniform, depending only on a few number the-
oretic data bounding crucial parameters of the iteration, and they in particular do not depend

1This crucial absence of the use of weak compactness in proofs originating from analyses as provided by
proof mining was already a main feature of the first application of proof mining to Halpern’s iteration given in
[25] and can be in particular explained as an a priori feature of such proofs by underlying logical methods, as
highlighted in [15].

2This type of strategy for generalizing results in nonlinear analysis by generalizing quantitative finitary
variants as provided by proof mining methods was frequently used in some recent works, and we in particular
refer to the works [33, 35, 36] which were explicitly obtained in that manner and we refer to [34] for further
discussions on this type of strategy.
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on the space or the points of the iteration. Importantly, as our convergence result in particular
contains the one presented in [20] as a special case, also our quantitative results apply to the
context of [20] where they are also already novel.

The rest of the paper is now organized as follows: In Section 2, we give the necessary
background on the theory of Hadamard spaces together with some basic lemmas needed for the
main results, later presented in Section 3.

2. Preliminaries and basic lemmas

A triple (X, d,W ) is called a hyperbolic space [22] if (X, d) is a metric space and W :
X ×X × [0, 1]→ X is a function satisfying for all x, y, z, w ∈ X and λ, λ′ ∈ [0, 1]:

(W1) d(W (x, y, λ), z) ≤ (1− λ)d(x, z) + λd(y, z),
(W2) d(W (x, y, λ),W (x, y, λ′)) = |λ− λ′|d(x, y),
(W3) W (x, y, λ) = W (y, x, 1− λ),
(W4) d(W (x, y, λ),W (z, w, λ)) ≤ (1− λ)d(x, z) + λd(y, w).

Hyperbolic spaces allow for discussions in generalized settings where the central arguments
rely on the notion of convex combinations, and the reader may easily convince themselves that
the function W has all the natural properties one would expect from a convex combination.
Several similar notions exist in the literature. The convexity function W was first considered
by Takahashi in [43] where a triple (X, d,W ) satisfying (W1) is called a convex metric space.

The notion used here was introduced by Kohlenbach in [22] motivated by proof-theoretical
considerations, and it is frequently considered the nonlinear generalization of convexity in
normed spaces. We note that this notion is more general than that of hyperbolic spaces in
the sense of Reich and Shafrir [38], and slightly more restrictive that the setting due to Goebel
and Kirk [16] of spaces of hyperbolic type. In particular, we note that the class of hyperbolic
spaces includes the normed spaces and their convex subsets (with W being the usual linear
convex combination), and the Hilbert ball [17], among many more examples (we refer in par-
ticular to the seminal monograph [5]). We refer to [22] for further motivating considerations
on these spaces.

To ease the notation, we write the more intuitive expression λx ⊕ (1 − λ)y for the point
W (x, y, 1− λ). One easily sees that

d(x, λx⊕ (1− λ)y) = (1− λ)d(x, y) and d(y, λx⊕ (1− λ)y) = λd(x, y).

A subset C ⊆ X is said to be convex if for all λ ∈ [0, 1], λx⊕ (1− λ)y ∈ C, whenever x, y ∈ C.

An important subclass of hyperbolic spaces is that of CAT(0) spaces. These spaces, intro-
duced by Aleksandrov [1] and named as such by Gromov [18], are characterized as the hyperbolic
spaces that satisfy the CN− property (which, in the presence of (W1)–(W4), is equivalent to
the Bruhat-Tits CN-inequality [6]): for all x, y, z ∈ X and λ ∈ [0, 1],

(CN−) d2

(
1

2
x⊕ 1

2
y, z

)
≤ 1

2
d2(x, z) +

1

2
d2(y, z)− 1

4
d2(x, y).

This relation extends beyond the midpoint (see e.g. [12, Lemma 2.5]) and we have,

(CN+) d2(λx⊕ (1− λ)y, z) ≤ λd2(x, z) + (1− λ)d2(y, z)− λ(1− λ)d2(x, y)
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It follows from the work of Berg and Nikolaev [3] that CAT(0) spaces can be equivalently
characterized as the hyperbolic spaces that satisfy the inequality

(CS) 〈−→xy,−→uv〉 ≤ d(x, y)d(u, v)

for all x, y, u, v ∈ X, where the expression on the left-hand side is the so-called quasi-linearization
function, defined for all x, y, u, v ∈ X by

〈−→xy,−→uv〉 :=
1

2

(
d2(x, v) + d2(y, u)− d2(x, u)− d2(y, v)

)
using −→xy to denote pairs (x, y). In any metric space, this function is the unique function
X2 ×X2 → R satisfying the following properties for all x, y, u, v ∈ X (see [3, Proposition 14]):

(1) 〈−→xy,−→xy〉 = d2(x, y),
(2) 〈−→xy,−→uv〉 = 〈−→uv,−→xy〉,
(3) 〈−→xy,−→uv〉 = −〈−→yx,−→uv〉,
(4) 〈−→xy,−→uv〉+ 〈−→xy,−→vw〉 = 〈−→xy,−→uw〉.

Therefore, this function enjoys properties similar to an inner product, and the condition (CS)
can be regarded as a metric version of the Cauchy-Schwarz inequality. Indeed, CAT(0) spaces
are often considered the canonical nonlinear counterpart of inner product spaces (in which case
〈−→xy,−→uv〉 = 〈x − y, u − v〉). A complete CAT(0) space is called a Hadamard space and is the
canonical nonlinear generalization of a Hilbert space (we refer to the seminal monograph [5] for
a comprehensive overview of CAT(0) and Hadamard spaces and also refer to [2] for a shorter
treatment focused on aspects of convex analysis and optimization).

We have the following essential results regarding the quasilinearization function.

Lemma 2.1. For any metric space X and x, y, z ∈ X:

d2(x, y) = d2(x, z) + d2(z, y) + 2 〈−→xz,−→zy〉 .
Proof. Immediate from the definition of the quasi-linearization function. �

Lemma 2.2. Let X be a CAT(0) space, x, y, z ∈ X and λ ∈ [0, 1]. Then

λ 〈−→zy,−→xy〉 ≤ 〈−→zy,−→wy〉 ,
where w = λx⊕ (1− λ)y.

Proof. Using (CN+), we have the following:

2λ 〈−→zy,−→xy〉 − 2 〈−→zy,−→wy〉 = λ
(
d2(z, y) + d2(x, y)− d2(z, x)

)
−
(
d2(z, y) + d2(w, y)− d2(z, w)

)
= λ

(
d2(z, y) + d2(x, y)− d2(z, x)

)
− d2(z, y)− λ2d2(x, y) + d2(z, w)

≤ λd2(z, y) + λd2(x, y)− λd2(z, x)

− d2(z, y)− λ2d2(x, y) + λd2(x, z)

+ (1− λ)d2(y, z)− λ(1− λ)d2(x, y)

= d2(y, z) (λ− 1 + (1− λ))

+ λd2(x, y) (1− λ− (1− λ))

+ λd2(x, z)− λd2(z, x)

= 0. �
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The next lemma will be useful in the sequel.

Lemma 2.3. Let X be a metric space. For any r > 0 and points x, y, z ∈ X such that
d(x, y), d(x, z) ≤ r, we have d2(x, y) ≤ d2(x, z) + 2r · d(y, z).

Proof. By triangle inequality, d(x, y)− d(x, z) ≤ d(y, z), and so

d2(x, y)− d2(x, z) = (d(x, y)− d(x, z)) (d(x, y) + d(x, z)) ≤ 2rd(y, z),

entailing the result. �

We recall a result regarding sequences of real numbers due to Xu [47], which is frequently
used in the study of Halpern-type iterations.

Lemma 2.4. Consider sequences of nonnegative real numbers (an), (bn), (cn) ⊆ [0,∞), and
(λn) ⊆ (0, 1) such that an+1 ≤ (1− λn)an + λnbn + cn, for all n ∈ N. If

(i)
∑

λn =∞, (ii) lim sup bn ≤ 0, (iii)
∑

cn <∞,

then lim an = 0.

The first quantitative formulations of the previous lemma featured in [25, 28], and here we
will require a variant of [27, Lemmas 5.2 and 5.3] (see also [32, Lemmas 14 and 16]). As we use
a slight modification of said results, we include the proof for completeness.

Lemma 2.5. Let (an) ⊆ [0,∞) be a bounded sequence and D ∈ N \ {0} be an upper bound on
(an). Consider sequences (λn) ⊆ [0, 1] and (bn) ⊆ R. For any k,A,B ∈ N and any Γ : N→ N,
if

∀n ∈ [A;B]

(
an+1 ≤ (1− λn)an + λnbn +

1

3(B + 1)(k + 1)
and bn ≤

1

3(k + 1)

)
,

and
∑Γ(L)

k=0 λk > L for all L ≤ A+ dln (3D(k + 1))e, then

∀n ∈ [Θ;B]

(
an ≤

1

k + 1

)
,

where Θ := Γ(A+ dln (3D(k + 1))e) + 1.

Proof. Inductively, we have

aA+m+1 ≤

(
A+m∏
n=A

(1− λn)

)
aA +

(
1−

A+m∏
n=A

(1− λn)

)
1

3(k + 1)
+

m+ 1

3(B + 1)(k + 1)

for all m ≤ B − A. Hence we get

(+) aA+m+1 ≤ D ·

(
A+m∏
n=A

(1− λn)

)
+

2

3(k + 1)

for m ≤ B − A. Take M := Γ (A+ dln (3D(k + 1))e) − A. Note that M ∈ N, otherwise since
(λn) ⊆ [0, 1] and dln(3D(k + 1))e ≥ 2, we would get the contradiction

A+ 2 ≤ A+ dln(3D(k + 1))e <
Γ(A+dln(3D(k+1))e)∑

n=0

λn ≤
A∑
n=0

λn ≤ A+ 1.

For m ≥M , we now have

A+m∑
n=0

λn ≥
Γ(A+dln(3D(k+1))e)∑

n=0

λn > A+ ln (3D(k + 1)) ≥
A−1∑
n=0

λn + ln (3D(k + 1)) ,
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and so
∑A+m

n=A λn ≥ ln (3D(k + 1)) for such m. Since for x ≥ 0 we have 1 − x ≤ exp(−x), we
get

A+m∏
n=A

(1− λn) ≤ exp

(
−

A+m∑
n=A

λn

)
≤ 1

3D(k + 1)

for m ≥M . Therefore, together with (+), we can conclude that

∀m ∈ [M ;B − A]

(
aA+m+1 ≤

1

k + 1

)
,

entailing the result. �

For S a nonempty convex closed subset of a Hadamard space X, and for any u ∈ X, let
PS(u) denote the metric projection of u onto S. Then, by [11], PS(u) is characterized as the
unique point x ∈ S satisfying

∀y ∈ S (〈−→ux,−→yx〉 ≤ 0) .

For the case at hand, the set S will be the set of fixed points of a nonexpansive map T , which
is easily seen to be closed, convex, and will be assumed to be nonempty.

We shall require a quantitative version regarding the characterization of the projection. The
first proof mining studies on the metric projection are due to Kohlenbach in [24] and [25]. The
formulation that we use here (essentially) featured in [14], and is a simple (nonlinear) variation
of the corresponding result in [15].

Proposition 2.6 (essentially Proposition 4.4 in [14]). Let x0 ∈ X and let b ∈ N be such that b ≥
d(x0, p) for some p ∈ Fix(T ). For any k ∈ N and f : N→ N, there exist n ≤ 24b(h̃

(R)
f (0) + 1)2

and x ∈ Bb(p)

d(x, Tx) ≤ 1

f(n) + 1

and ∀y ∈ Bb(p)

(
d(y, Ty) ≤ 1

n+ 1
→ 〈−→x0x,

−→yx〉 ≤ 1

k + 1

)
,

with R := 4b4(k+1)2 and hf (m) := max{f(24b(m+1)2), 24b(m+1)2}, where h̃
(R)
f is the R-fold

composition of h̃f with h̃f (m) := max{hf (m′) | m′ ≤ m}.

3. Main results

For the rest of this paper, unless said otherwise, we let (X, d,W ) be a CAT(0) space. Further,
let (xn) be the iteration defined via (Hadp) for a given nonexpansive map T : X → X where
we assume Fix(T ) 6= ∅. As we care for the asymptotic behavior of the sequence generated by
(Hadp), we throughout assume that xn 6= Txn for all n ∈ N.

We begin with essential properties of the adaptive parameters. Crucially, as established in
[20], in the normed context these satisfy

‖xn+1 − Txn+1‖2 ≤ 2

ϕn
〈xn+1 − Txn+1, x0 − xn+1〉

as well as ϕn+1 > ϕn ≥ n + 1 which is then used to derive the corresponding asymptotic
regularity and also the main convergence results. In the context of CAT(0) spaces, we get the
following extended result:
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Lemma 3.1. For all n ∈ N:

(1) d2(xn+1, Txn+1) ≤ 2
ϕn

〈−−−−−−−→
Txn+1xn+1,

−−−−→xn+1x0

〉
,

(2) ϕn+1 > ϕn ≥ n+ 1.

Proof. For item (1), note that by (CN+) and since xn+1 =
(

1
ϕn+1

)
x0 ⊕

(
ϕn
ϕn+1

)
Txn, we get

d2(xn+1, Txn+1) ≤ 1

ϕn + 1
d2(x0, Txn+1) +

ϕn
ϕn + 1

d2(Txn, Txn+1)− ϕn
(ϕn + 1)2

d2(x0, Txn).

Thus, we get

d2(x0, Txn+1) ≥ (ϕn + 1)d2(xn+1, Txn+1)− ϕnd2(Txn, Txn+1) +
ϕn

ϕn + 1
d2(x0, Txn).

Using Lemma 2.1, we get

d2(x0, Txn+1) = d2(xn+1, Txn+1) + d2(x0, xn+1) + 2
〈−−−−−−−→
Txn+1xn+1,

−−−−→xn+1x0

〉
and combined with the previous, this yields

d2(xn+1, Txn+1) + d2(x0, xn+1) + 2
〈−−−−−−−→
Txn+1xn+1,

−−−−→xn+1x0

〉
≥ (ϕn + 1)d2(xn+1, Txn+1)− ϕnd2(Txn, Txn+1) +

ϕn
ϕn + 1

d2(x0, Txn)

which, using the nonexpansivity of T , in particular implies

d2(xn+1, Txn+1)

≤ 1

ϕn
d2(x0, xn+1) +

2

ϕn

〈−−−−−−−→
Txn+1xn+1,

−−−−→xn+1x0

〉
+ d2(Txn, Txn+1)− 1

ϕn + 1
d2(x0, Txn)

≤ 1

ϕn
d2(x0, xn+1) +

2

ϕn

〈−−−−−−−→
Txn+1xn+1,

−−−−→xn+1x0

〉
+ d2(xn, xn+1)− 1

ϕn + 1
d2(x0, Txn).(∗)

Using Lemma 2.1 again, we get

d2(xn, xn+1) = d2(xn, Txn) + d2(Txn, xn+1)− 2
〈−−−−→
xnTxn,

−−−−−→
xn+1Txn

〉
= d2(xn, Txn) +

1

(ϕn + 1)2
d2(Txn, x0)− 2

〈−−−−→
xnTxn,

−−−−−→
xn+1Txn

〉
.(+)

From the definition of ϕn, we now have

ϕn =
2
〈−−−−→
xnTxn,

−−→x0xn

〉
d2(xn, Txn)

+ 1

=
2
〈−−−−→
xnTxn,

−−→x0xn

〉
+ d2(xn, Txn)

d2(xn, Txn)

=
2
(〈−−−−→
xnTxn,

−−→x0xn

〉
+
〈−−−−→
xnTxn,

−−−−→
xnTxn

〉)
−
〈−−−−→
xnTxn,

−−−−→
xnTxn

〉
d2(xn, Txn)

=
2
〈−−−−→
xnTxn,

−−−−→
x0Txn

〉
d2(xn, Txn)

− 1
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and hence

(◦) d2(xn, Txn) =
2

ϕn + 1

〈−−−−→
xnTxn,

−−−−→
x0Txn

〉
.

Using Lemma 2.2 combined with the previous (+) and (◦) then yields

(�) d2(xn, xn+1) ≤ 1

(ϕn + 1)2
d2(Txn, x0).

Noting that
1

ϕn
d2(x0, xn+1) =

ϕn
(ϕn + 1)2

d2(x0, Txn),

we therefore derive using (∗) and (�) that

d2(xn+1, Txn+1)

≤ 2

ϕn

〈−−−−−−−→
Txn+1xn+1,

−−−−→xn+1x0

〉
+

1

ϕn
d2(x0, xn+1) + d2(xn, xn+1)− 1

ϕn + 1
d2(x0, Txn)

≤ 2

ϕn

〈−−−−−−−→
Txn+1xn+1,

−−−−→xn+1x0

〉
+

ϕn
(ϕn + 1)2

d2(x0, Txn) +
1

(ϕn + 1)2
d2(Txn, x0)− 1

ϕn + 1
d2(x0, Txn)

=
2

ϕn

〈−−−−−−−→
Txn+1xn+1,

−−−−→xn+1x0

〉
which is the claim.

We now prove item (2) by induction on n. For n = 0, we clearly have ϕ0 = 1. For the
induction step, assume ϕn ≥ n+ 1. Then by item (1), we get

ϕn+1 =
2
〈−−−−−−−→
Txn+1xn+1,

−−−−→xn+1x0

〉
d2(xn+1, Txn+1)

+ 1 ≥ ϕn + 1 ≥ n+ 2.

This inequality also entails ϕn+1 > ϕn. �

Lemma 3.2. The sequence (xn) is bounded and

d(Txn, p) ≤ d(xn, p) ≤ d(x0, p)

holds for any p ∈ Fix(T ).

Proof. As T is nonexpansive and p ∈ Fix(T ), we have d(Txn, p) ≤ d(xn, p). We can then show
d(xn, p) ≤ d(x0, p) by induction on n. Immediately, this holds for n = 0 and if d(xn, p) ≤ d(x0, p)
holds, then

d(xn+1, p) ≤
1

ϕn + 1
d(x0, p) +

ϕn
ϕn + 1

d(Txn, p) ≤
1

ϕn + 1
d(x0, p) +

ϕn
ϕn + 1

d(xn, p) ≤ d(x0, p).

�

Akin to [20], the above then can be immediately employed to give the following asymptotic
regularity result, in particular yielding a linear rate of asymptotic regularity, which is the first
main result of our paper.
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Theorem 3.3. The iteration (xn) generated by the schema (Hadp) satisfies

d(xn, Txn) ≤ 4

ϕn−1

d(x0, p) ≤
8

ϕn−1 + 1
d(x0, p) ≤

8

n+ 1
d(x0, p)

for any n ≥ 1 and p ∈ Fix(T ). In particular, the sequence (xn) is asymptotically regular relative
to T with a rate α(k) := 4b(k + 1), i.e.

∀k ∈ N ∀n ≥ α(k)

(
d(xn, Txn) ≤ 1

k + 1

)
,

where b ∈ N is such that b ≥ d(x0, p) for some p ∈ Fix(T ).

Proof. From Lemma 3.1 and Lemma 3.2, we get

d(xn+1, Txn+1) ≤ 2

ϕn
d(x0, xn+1) ≤ 4

ϕn
d(x0, p) ≤

4

n+ 1
d(x0, p).

for any n ∈ N. The rate α is immediate from these inequalities. Further, since ϕn ≥ 1, we have
1/ϕn ≤ 2/(ϕn + 1) and so in particular

4

ϕn
≤ 8

ϕn + 1

which, with ϕn ≥ n+ 1, yields the other inequalities. �

We now move on to the main convergence result. For that, we fix a p ∈ Fix(T ) 6= ∅ and we
fix a b ∈ N \ {0} such that b ≥ d(x0, p).

As discussed in the introduction, we establish our convergence result by means of an initial
quantitative result which gives a rate of metastability for the sequence. For that, we in following
now give the necessary quantitative lemmas required for that construction. We begin with the
following approximate projection result:

Lemma 3.4. For any natural number k ∈ N and function f : N → N, there exist n ≤ β(k, f)
and x ∈ Bb(p) such that d(x, Tx) ≤ 1/(f(n) + 1) and

∀m ≥ n

(
〈−→x0x,

−−→xmx〉 ≤
1

k + 1

)
,

where β(k, f) := 96b2(h̃
(R)
fα

(0) + 1)2 + 4b, with h̃(·) and R as defined in Proposition 2.6 and with
the function fα(n) := f(α(n)) = f(4b(n+ 1)).

Proof. Given k and f , apply Proposition 2.6, to get an n0 ≤ 24b(h̃
(R)
fα

(0) + 1)2 and x ∈ Bb(p)
such that d(x, Tx) ≤ 1/(fα(n0) + 1) and

∀y ∈ Bb(p)

(
d(y, Ty) ≤ 1

n0 + 1
→ 〈−→x0x,

−→yx〉 ≤ 1

k + 1

)
.

From Lemma 3.2, we have (xn) ⊆ Bb(p), and by Proposition 3.3,

∀m ≥ 4b(n0 + 1)

(
d(xm, Txm) ≤ 1

n0 + 1

)
.

Therefore,

∀m ≥ 4b(n0 + 1)

(
〈−→x0x,

−−→xmx〉 ≤
1

k + 1

)
and clearly the result holds with n = 4b(n0 + 1) ≤ β(k, f). �
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The proof of the main convergence result given in [20] now proceeds on a case distinction
whether the adaptive parameters λn := 1/(ϕn + 1) satisfy

∞∑
n=0

λn =∞ or
∞∑
n=0

λn <∞,

deducing the convergence of the sequence in each of the cases. Quantitatively, we will resolve
this case distinction by first analyzing the two cases individually, giving a rate of metastability
in dependence on a quantitative reformulation of the associated condition on the series over
the parameters. In a final step, these results will then be joined together. We now begin with
the case of

∑∞
n=0 λn =∞:

Lemma 3.5. For any k ∈ N and functions f,Γ : N→ N, if

∀L ≤ ω1(k, f,Γ)

Γ(L)∑
n=0

λn > L

 ,

then

∃n ≤ ω2(k, f,Γ) ∃x ∈ Bb(p) ∀i ∈ [n;n+ f(n)]

(
d2(xi, x) ≤ 1

k + 1

)
,

with

A(n) := max
{
n, 144b2(k + 1)

}
,

A0 := A(β(18k + 17, F )),

Θ(n) := Γ
(
A(n) + dln

(
12b2(k + 1)

)
e
)

+ 1,

F (n) := 48b3 (Θ(n) + f(Θ(n)) + 1) (k + 1),

ω1(k, f,Γ) := A0 + dln
(
12b2(k + 1)

)
e,

ω2(k, f,Γ) := max {Θ(n) | n ≤ β(18k + 17, F )} ,

and where β is as in Lemma 3.4.

Proof. Let k, f and Γ be given. Applying the Lemma 3.4 (with k = 18k + 17 and f = F ), we
conclude the existence of an n0 ≤ β(18k + 17, F ) and x ∈ Bb(p) such that d(x, Tx) ≤ 1

F (n0)+1

and

∀m ≥ n0

(
〈−→x0x,

−−→xmx〉 ≤
1

18(k + 1)

)
.

Note that for all m ≥ 144b2(k + 1), we have

d(xm, Txm) ≤ 1

36b(k + 1)
,

by Theorem 3.3. Using Lemma 3.1, a fortiori we also have

λm =
1

ϕm + 1
≤ 1

m+ 2
≤ 1

36b2(k + 1)



ON THE HALPERN METHOD WITH ADAPTIVE ANCHORING PARAMETERS 13

for such m. For all m ∈ N, using Lemma 2.3, we thus get

d2(xm+1, x) = (1− λm)2d2(Txm, x) + λ2
md

2(x0, x) + 2λm(1− λm)
〈−→x0x,

−−−→
Txmx

〉
≤ (1− λm)d2(xm, x) + 4bd(x, Tx)

+ λ2
md

2(x0, x) + 2λm(1− λm) 〈−→x0x,
−−→xmx〉+ 2λmd(x, x0)d(xm, Txm)

≤ (1− λm)d2(xm, x) + λmbm +
4b

F (n0) + 1
,

with

bm := 4b2λm + 2(1− λm) 〈−→x0x,
−−→xmx〉+ 4bd(xm, Txm).

Writing an := d2(xn, x), for which we have (an) ⊆ [0, 4b2], we derive for all m ∈ N:

am+1 ≤ (1− λm)am + λmbm +
4b

F (n0) + 1

≤ (1− λm)am + λmbm +
1

3(4b2)(Θ(n0) + f(Θ(n0)) + 1)(k + 1)
.

Moreover, for m ≥ A(n0), we get

bm ≤
4b2

36b2(k + 1)
+

2

18(k + 1)
+

4b

36b(k + 1)
≤ 1

3(k + 1)
.

Hence, under this assumption, by Lemma 2.5, we conclude that

∀i ∈ [Θ(n0); Θ(n0) + f(Θ(n0))]

(
d2(xi, x) ≤ 1

k + 1

)
Therefore, the result clearly holds with n := Θ(n0). �

Lemma 3.6. For any k ∈ N and functions f,Γ : N→ N, if

∀L ≤ Ω1(k, f,Γ)

Γ(L)∑
n=0

λn > L

 ,

then

∃n ≤ Ω2(k, f,Γ) ∀i, j ∈ [n;n+ f(n)]

(
d(xi, xj) ≤

1

k + 1

)
,

with Ωi(k, f,Γ) := ωi(4(k + 1)2 − 1, f,Γ), for i ∈ {1, 2} and where the ωi are as in Lemma 3.5.

Proof. Given k, f and Γ, apply Lemma 3.5 with 4(k + 1)2 − 1 to conclude

∃n ≤ Ω2(k, f,Γ) ∃x ∈ Bb(p) ∀i ∈ [n;n+ f(n)]

(
d2(xi, x) ≤ 1

4(k + 1)2

)
under the assumption that

∑Γ(L)
n=0 λn > L for all L ≤ Ω1(k, f,Γ). Hence, for i ∈ [n;n + f(n)],

we get d(xi, x) ≤ 1
2(k+1)

and the result follows by triangle inequality. �

We now consider the case of
∑∞

n=0 λn < ∞. For that, we crucially rely on the following
finitary quantitative variant of the monotone convergence theorem and an associated result for
series:
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Lemma 3.7 (folklore, see e.g. [23] and [45]). For all k, b ∈ N and f : N → N and for any
nondecreasing finite sequence

(an)
φb(k,f)
n=0 ⊆ [0, b],

there exists an n ∈ N such that n+ f(n) ≤ φb(k, f) and

∀i, j ∈ [n;n+ f(n)]

(
|ai − aj| ≤

1

k + 1

)
where φb(k, f) := f

(b(k+1))
+ (0) with f+(n) := n+ f(n).

Proof. Suppose that there are k, b and f as well as a nondecreasing finite sequence (an)
φb(k,f)
n=0 ⊆

[0, b] such that

∀n ∈ N
(
n+ f(n) ≤ φb(k, f)→

(
an+f(n) − an >

1

k + 1

))
.

Considering the sequence f
(i)
+ (0) for i ≤ b(k + 1), we thus get

a
f
(i+1)
+ (0)

>
1

k + 1
+ a

f
(i)
+ (0)

for i < b(k + 1) so that

aφb(k,f) >
b(k + 1)

k + 1
= b

which is a contradiction. In particular, let now n be such that n + f(n) ≤ φb(k, f) and
an+f(n) − an ≤ 1/(k + 1). For any i < j ∈ [n;n+ f(n)], we then have

|ai − aj| = aj − ai ≤ an+f(n) − an ≤
1

k + 1
. �

Lemma 3.8. Let (αl) ⊆ [0,∞) be a given sequence. For any k, L ∈ N and f : N→ N, if

φL(k,f̂)∑
l=0

αl ≤ L,

then

∃n ≤ φL(k, f̂) + 1

n+f(n)∑
l=n

αl ≤
1

k + 1

 ,

where f̂(n) := f(n+ 1) + 1 and with φ(·) as in Lemma 3.7.

Proof. The sequence (
∑n

l=0 αl) for n = 0, . . . , φL(k, f̂) is a monotone nondecreasing finite se-

quence in [0, L]. Thus, it follows from Lemma 3.7 that there is a n̂ ≤ φL(k, f̂) such that

∀i, j ∈ [n̂; n̂+ f̂(n̂)]

(∣∣∣∣∣
i∑
l=0

αl −
j∑
l=0

αl

∣∣∣∣∣ ≤ 1

k + 1

)
.

In particular, for n = n̂+ 1 and i = n+ f(n) = n̂+ f̂(n̂) and j = n̂, we have

n+f(n)∑
l=n

αl =

n+f(n)∑
l=0

αl −
n̂∑
l=0

αl ≤
1

k + 1

and so this n ≤ φL(k, f̂) + 1 yields the claim. �

This now allows for the following quantitative version of the case of
∑∞

n=0 λn <∞:
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Lemma 3.9. For any k, L ∈ N and f : N→ N, if

Φ1(k,f,L)∑
n=0

λn ≤ L,

then

∃n ≤ Φ2(k, f, L) ∀i, j ∈ [n;n+ f(n)]

(
d(xi, xj) ≤

1

k + 1

)
,

where
Φ1(k, f, L) := φLb(k, f̂),

Φ2(k, f, L) := φLb(k, f̂) + 1,

with Lb := (10L+ 2)b and where φ(·) as in Lemma 3.7 and f̂ as in Lemma 3.8.

Proof. Using Lemma 3.1, we have

d(xn+1, Txn+1) ≤ 2

ϕn
d(x0, xn+1)

and using Lemma 3.2, we have d(x0, xn+1) ≤ 2b. Rewriting this with λn = 1/(ϕn + 1), we get
that

d(xn+1, Txn+1) ≤ 4b

ϕn
≤ 4bλn

1− λn
≤ 8bλn

as λn ≤ 1/(n+ 2) ≤ 1/2.

But then, for n ≥ 1, we have

d(xn+1, xn) ≤ 1

ϕn + 1
d(x0, xn) +

ϕn
ϕn + 1

d(Txn, xn)

≤ 2bλn + 8bλn−1

so that, since we have
∑Φ1(k,f,L)

n=0 λn ≤ L, we get

Φ1(k,f,L)∑
n=1

d(xn+1, xn) ≤ 10bL

and in particular
Φ1(k,f,L)∑
n=0

d(xn+1, xn) ≤ (10L+ 2)b.

Using Lemma 3.8, we get

∃n ≤ Φ2(k, f, L)

n+f(n)∑
l=n

d(xl+1, xl) ≤
1

k + 1


and for i, j ∈ [n;n+ f(n)] (say with i ≤ j), we have

d(xi, xj) ≤
j∑
l=i

d(xl, xl+1) ≤
n+f(n)∑
l=n

d(xl, xl+1) ≤ 1

k + 1
.

�

The following abstract result then allows to “join” the rates of metastability produced by
the previous lemmas which dealt with each case individually.
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Lemma 3.10. Let S(k, f, n) be some statement on k, n ∈ N and f : N → N, and (λn) be a
sequence of nonnegative real numbers. Assume the existence of functions Ω1,Ω2 : N×NN×NN →
N and Φ1,Φ2 : N× NN × N→ N such that

(1) ∀k ∈ N ∀f,Γ : N→ N∀L ≤ Ω1(k, f,Γ)

Γ(L)∑
n=0

λn > L

→ ∃n ≤ Ω2(k, f,Γ) (S(k, f, n))

 ,

(2) ∀k, L ∈ N ∀f : N→ NΦ1(k,f,L)∑
n=0

λn ≤ L→ ∃n ≤ Φ2(k, f, L) (S(k, f, n))

 .

Then for any k ∈ N and any f : N→ N:

∃n ≤ ρ(k, f) (S(k, f, n)) ,

where
ρ(k, f) := max {Ω2(k, f,Γ0),max {Φ2(k, f, L) | L ≤ Ω1(k, f,Γ0)}} ,

with Γ0(L) := Φ1(k, f, L).

Proof. Fix k ∈ N and f : N → N. If
∑Γ0(L)

n=0 λn > L for all L ≤ Ω1(k, f,Γ0), then by (1) with
Γ = Γ0 we have

∃n ≤ Ω2(k, f,Γ0) ≤ ρ(k, f) (S(k, f, n)) .

If on the contrary there exists some L0 ≤ Ω1(k, f,Γ0) such that

Γ0(L0)∑
n=0

λn =

Φ1(k,f,L0)∑
n=0

λn ≤ L0,

then by (2) with L = L0, we have

∃n ≤ Φ2(k, f, L0) ≤ ρ(k, f) (S(k, f, n)) ,

which concludes the proof. �

Combining the two previous cases contained in Lemmas 3.6 and 3.9 using the above Lemma
3.10, we obtain the following finitary quantitative convergence result for the sequence (xn):

Theorem 3.11. For any k ∈ N and any f : N→ N:

∃n ≤ ρ(k, f) ∀i, j ∈ [n;n+ f(n)]

(
d(xi, xj) ≤

1

k + 1

)
,

where
ρ(k, f) := max {Ω2(k, f,Γ0),max {Φ2(k, f, L) | L ≤ Ω1(k, f,Γ0)}} ,

with Γ0(L) := Φ1(k, f, L) and where the Ωi are as in Lemma 3.6 and the Φi are as in Lemma
3.9.

Proof. The result immediately follows from the Lemmas 3.6 and 3.9 together with Lemma 3.10,
taking

S(k, f, n) :≡ ∀i, j ∈ [n;n+ f(n)]

(
d(xi, xj) ≤

1

k + 1

)
in the latter. �
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Now, as said before, we can then immediately deduce the following “usual” convergence
result for the sequence (xn), which is our second main result of this paper:

Theorem 3.12. Let X be a Hadamard space. Let (xn) be generated via (Hadp) for a given
nonexpansive map T with Fix(T ) 6= ∅. Then the sequence (xn) converges to a fixed point of T .

Proof. Either xn = Txn for some n ∈ N, where the claim is then immediate. Or xn 6= Txn for
all n ∈ N, where by Theorem 3.11 we in particular get that the sequence (xn) is metastable,
i.e. that

∀k ∈ N ∀f : N→ N ∃n ∈ N ∀i, j ∈ [n;n+ f(n)]

(
d(xi, xj) ≤

1

k + 1

)
.

This immediately implies that the sequence is Cauchy, i.e. that

∀k ∈ N ∃n ∈ N ∀i, j ∈ N
(
d(xi, xj) ≤

1

k + 1

)
.

For suppose not. Then there is a k ∈ N such that for any n ∈ N there are i, j ≥ n such that
d(xi, xj) > 1/(k + 1). Define a function f : N → N by setting f(n) := max{i − n, j − n} for
such a pair of indices i, j. Then we have a k and f such that for any n ∈ N:

∃i, j ∈ [n;n+ f(n)]

(
d(xi, xj) >

1

k + 1

)
which is a contradiction to the above metastability property. As the sequence (xn) is thus
Cauchy, it is convergent to some limit since the space X is complete. We denote the limit by
x. By Theorem 3.3, we get d(x, Tx) = lim d(xn, Txn) = 0 and so x ∈ Fix(T ). �
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