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Abstract. We study the topic of realization from classical justification logics in the context of the recently

introduced Gödel justification logics. We show that the standard Gödel modal logics of Caicedo and Rodriguez
are not realized by the Gödel justification logics and followingly, we study possible extensions of the Gödel

justification logics which are strong enough to realize the standard Gödel modal logics. On the other hand,
we study the fragments of the standard Gödel modal logics which are realized by the usual Gödel justification

logics. We prove the corresponding Realization Theorem by using Fitting’s merging of realizations as well as

appropriate hypersequent calculi on the modal side, adapting the work of Metcalfe and Olivetti. For these
hypersequent calculi, we also show a cut-elimination theorem. We provide natural semantical characterizations

for all of these newly introduced logics.

1. Introduction

The study of justification logics began in the ’90s when Artemov introduced the logic of proofs (see [1, 2])
to provide an arithmetical interpretation of the classical modal logic S4 in Peano arithmetic, a possibility
anticipated by Gödel in [18] (where he actually introduced the modern Hilbert-style calculus for S4). In
comparison to the usual necessity statements “�φ” of unexplicit modal logics, the logic of proofs contains
modal formulae of the form “t : φ”, indexed by so-called proof terms t which encode an explicit reason for
the necessity statement directly in the language. In that way, one can also reason about the dynamics within
these reasons of necessity statements in addition to just reasoning about dynamics between necessity statements.
Artemov provided a complete arithmetical semantics for this logic of proofs, where proof terms are interpreted
by codes of proofs in classical Peano arithmetic, and further embedded S4 into the logic of proofs which, in
combination, yielded the arithmetical completeness result of S4. This embedding is established by the so-called
Realization Theorem: for every modal theorem of S4, the different occurrences of �’s in the theorem can be
replaced by appropriate proof terms to yield a theorem of the logic of proofs.

In the following years, research into the logic of proofs yielded various subsystems and extensions forming the
modern framework of justification logics (see [3] for a survey and the recent textbooks [4, 25]) and the develop-
ment of a corresponding epistemic semantics, spanning this whole framework, prompted that the interpretation
of the proof terms broadened to representing general epistemic justifications, lifting the whole framework into
formal epistemology. While the arithmetical semantics remains a feature confined pretty much to the logic of
proofs, the Realization Theorem extends to these other justification logics together with corresponding, unex-
plicit, modal companions and forms the central relationship between justification logics and unexplicit modal
logics.

In this paper, we investigate this property for fuzzy variants of modal and justification logics, namely for the
standard Gödel modal logics as introduced by Caicedo and Rodriguez in [9] and the Gödel justification logics as
introduced by Ghari in [15] and by Pischke in [29]. These variants replace the typical boolean base of classical
justification (or modal) logics with [0, 1]-valued Gödel logic, one of the three main t-norm based fuzzy logics
in the sense of Hájek [19] (although it initially originated from an intuitionistic perspective along the lines of
Gödel [17], Dummett [11] and Horn [20]).

On the modal side, a first resulting difference to the classical case is that the natural semantic dual of �
in the context of the standard Gödel modal logics is not internally definable while the natural semantic dual
operator of � in classical modal logics is (via ♦θ := ¬�¬θ). This gives rise to three different types of fuzzy
Gödel modal logics: bi-modal versions containing both �- and ♦ as primitives interpreted by their respective
semantic duals (see [10]) and the respective � and ♦-fragments (see [9]).

As the justification modality “t :”, in its standard (semantical) interpretation (both classically and in the
Gödel-case), is a necessity-style operator, we only consider the �-fragments of the standard Gödel modal logics
as there is no immediate dual notion of “t :”, neither in the context of the classical nor in the context of the
Gödel justification logics.1 Therefore, there is also no immediate way of interpreting ♦ in the fuzzy justification
setting.

Key words and phrases. Justification Logic, Modal Logic, Fuzzy Logic, Gödel Logic, Realization.
1There is some work on providing explicit analogues of the ♦-operator in some settings where it represents a (semantic) dual

which is not internally definable, especially [23] in the context of constructive modal logics.
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In this setup, we find that the standard Gödel modal logics are not realized by the Gödel justification logics.
This gives rise to two natural questions. For one: what are the fragments of the standard Gödel modal logics
which are realized by the standard Gödel justification logics? For another: what are feasible extensions of the
standard Gödel justification logics which do realize the standard Gödel modal logics? We study both of these
questions in this paper.

For the latter, we introduce extensions of the standard Gödel justification logics, defined over a broadened
language augmented with a new operator on the justification terms, and show that adding a characteristic axiom
for this operator to the previous axiomatic systems suffices to prove an analogue of the classical Realization
Theorem in the many-valued cases with the usual versions of the standard Gödel modal logics. We also provide
strongly complete semantics for these extensions based on the Gödel-Fitting and Gödel-Mkrtychev models
previously introduced for the usual Gödel justification logics (see [29]).

For the former, we introduce fragments of the standard Gödel modal logics by dropping a specific problematic
axiom in the usual Hilbert-style formulation and show that these fragments are the ones realized by the standard
Gödel justification logics. We also devise a semantics for this realized fragment of the standard Gödel modal
logics which suitably generalizes the [0, 1]-valued semantics over Gödel-Kripke models from [9].

Both realization results are proved constructively using (partly new) hypersequent calculi for which we also
provide a cut-elimination theorem. For this proof of the realization results, we adapt Fitting’s merging of
realizations (see [14]) to the Gödel-case.

2. Preliminaries

Throughout the paper, we write x� y := min{x, y} and x⊕ y := max{x, y} for x, y ∈ [0, 1].

2.1. Gödel justification logics. Syntactically, we define the set of justification terms Jt by

Jt : t ::= c | x | [t+ t] | [t · t] | !t | ?t
with c ∈ C := {ci | i ∈ N} (called a justification constant) and x ∈ V := {xi | i ∈ N} (called a justification
variable). The justification constants and variables are used to represent atomic justifications. Together with
the operations +, ·, ! and ?, the resulting terms are then able to model the dynamics of justifications under
various styles of inference.

The corresponding language of justification logics LJ is then given by

LJ : φ ::= ⊥ | > | p | (φ→ φ) | (φ ∧ φ) | (φ ∨ φ) | t : φ

with t ∈ Jt and p ∈ V ar := {pi | i ∈ N} (called a propositional variable). Negation ¬ is introduced as a
syntactical abbreviation via ¬φ := (φ→ ⊥). We write var(φ) for the set of propositional variables occurring in
a formula φ and jvar(t), jvar(φ) for the sets of justification variables occurring in some term t or some formula
φ, respectively. A term t is called closed if it contains no justification variables, i.e. if jvar(t) = ∅. Also, we
write sf(φ) for the set of all subformulae of φ (including φ).

2.1.1. Proof calculi. We define the following proof systems for the Gödel justification logics over LJ , based on
Hájek’s strongly complete Hilbert-style proof calculus for propositional [0, 1]-valued Gödel logic given in [19]:2

Definition 1. The Hilbert-style calculus GJ 0 is given by the following axiom schemes and rules over LJ :

(A1): (φ→ ψ)→ ((ψ → χ)→ (φ→ χ));
(A2): (φ ∧ ψ)→ φ;
(A3): (φ ∧ ψ)→ (ψ ∧ φ);
(A5a): (φ→ (ψ → χ))→ ((φ ∧ ψ)→ χ);
(A5b): ((φ ∧ ψ)→ χ)→ (φ→ (ψ → χ));
(A6): ((φ→ ψ)→ χ)→ (((ψ → φ)→ χ)→ χ);
(A7): ⊥ → φ;
(G4): φ→ (φ ∧ φ);
(>): > ↔ ¬⊥;
(∨): (φ ∨ ψ)↔ ((φ→ ψ)→ ψ) ∧ ((ψ → φ)→ φ);
(J): t : (φ→ ψ)→ (s : φ→ [t · s] : ψ);
(+): t : φ→ [t+ s] : φ, s : φ→ [t+ s] : φ;
(MP ): from φ→ ψ and φ, infer ψ.

By G, we denote the fragment without the axiom schemes (J) and (+). We then define the following axiomatic
extensions of GJ 0 over LJ :

2In Hájek’s work [19], the symbols > and ∨ are not primitives but introduced as abbreviations. The additional axiom schemes
(>) and (∨) encode these definitions.
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(1) GJ T 0 is the extension of GJ 0 by the scheme (F ) : t : φ→ φ;
(2) GJ 40 is the extension of GJ 0 by the scheme (!) : t : φ→!t : t : φ;
(3) GLP0 is the extension of GJ 0 by the schemes (F ) and (!);
(4) GJ 450 is the extension of GJ 0 by the schemes (!) and (?) : ¬t : φ→?t : ¬t : φ;
(5) GJ T 450 is the extension of GJ 0 by the scheme (F ), (!) and (?).

2.1.2. Constant Specifications. Let GJL0 ∈ {GJ 0,GJ T 0,GJ 40,GLP0,GJ 450,GJ T 450}. A constant specifi-
cation for GJL0 is a set CS of formulae of the form

cin : · · · : ci1 : φ,

with n ≥ 1 and where φ is an axiom instance of GJL0, where cik ∈ C whenever 1 ≤ k ≤ n, and which is
downwards closed, that is

if cin : · · · : ci1 : φ ∈ CS, then cik : · · · : ci1 : φ ∈ CS

for every k ∈ {1, . . . , n}.
CS is called axiomatically appropriate for GJL0 if for every axiom instance φ of GJL0, there is a constant

c ∈ C such that c : φ ∈ CS and if it is upwards closed, that is

if cin : · · · : ci1 : φ ∈ CS, then cin+1
: cin : · · · : ci1 : φ ∈ CS

for some cin+1 ∈ C.
CS is called schematic for GJL0 if, whenever φ and ψ are instances of the same axiom scheme of GJL0,

then

c : φ ∈ CS if, and only if c : ψ ∈ CS
for any c ∈ C.

Naturally, there is only one total (that is, maximal with respect to ⊆) constant specification CS for GJL0

defined by

cin : · · · : ci1 : φ ∈ CS
for every n ≥ 1, every i1, . . . , in ∈ N and every axiom instance φ of GJL0.

Given a constant specification CS for GJL0, we define the logic GJLCS as the extension of GJL0 by the
corresponding rule

(CS) : from c : φ ∈ CS, infer c : φ.

Provability (under assumptions Γ ⊆ LJ) of a formula φ ∈ LJ in GJLCS is defined as it is usually done in
Hilbert-style calculi and is denoted by Γ `GJLCS φ.

A distinctive feature of [0, 1]-valued propositional Gödel logic, in comparison with other many-valued logics
based on t-norms, is that the classical Deduction Theorem holds for Gödel logic, that is the Gödel implication
captures the deducibility relation. This carries over to the justification variants:

Lemma 1 (Deduction Theorem). Let

GJL0 ∈ {GJ 0,GJ T 0,GJ 40,GLP0,GJ 450,GJ T 450}

and CS be a constant specification for GJL0. For any Γ ∪ {φ, ψ} ⊆ LJ , we have

Γ ∪ {ψ} `GJLCS φ iff Γ `GJLCS ψ → φ.

The proof is a natural generalization of the classical case (see e.g. [25] for the case of LP).

Another important result on the Gödel-based systems is the corresponding version of the Lifting Lemma,
analogous to the classical case.

Lemma 2 (Lifting Lemma). Let

GJL0 ∈ {GJ 0,GJ T 0,GJ 40,GLP0,GJ 450,GJ T 450}

and CS be an axiomatically appropriate constant specification for GJL0. If
{ψ1, . . . , ψn} `GJLCS φ, then for any justification terms t1, . . . , tn ∈ Jt, there is a justification term t ∈ Jt such
that

{t1 : ψ1, . . . , tn : ψn} `GJLCS t : φ.
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Also here, the proof is a straightforward generalization of the classical case (see e.g. [4]). Note that the
condition {ψ1, . . . , ψn} `GJLCS φ of the Lifting Lemma is equivalent to `GJLCS

∧n
i=1 ψi → φ by repeated

applications of the Deduction Theorem and axiom scheme (A5a).3

A direct consequence of the Lifting Lemma is the Internalization Property for Gödel justification logics with
an axiomatically appropriate constant specification.

Corollary 1 (Internalization). Let

GJL0 ∈ {GJ 0,GJ T 0,GJ 40,GLP0,GJ 450,GJ T 450}
and CS be an axiomatically appropriate constant specification for GJL0. If `GJLCS φ, then there is a t ∈ Jt
such that `GJLCS t : φ.

Remark 2. By an examination of the usual proof of the above Lifting Lemma (see again [4] for the classical
case), it can be seen that one can choose the term t such that the justification variables of t are among those of
t1, . . . , tn. In particular, in the above Internalization Property, t can be chosen to be a closed term.

2.1.3. Semantics. We recap the two main semantics for the Gödel justification logics. These many-valued
models, generalizing the fundamental semantics of Fitting and Mkrtychev for the classical justification logics,
were introduced in [16, 29].

We begin with the so-called Gödel-Mkrtychev models, many-valued analogues of the classical Mkrtychev
models. The classical versions were originally introduced by Mkrtychev in [28] for the logic of proofs, by
Kuznets in [21] for some of the other classical justification logics below the logic of proofs and in [24, 32] for the
justification logics containing negative introspection.

Definition 2. A Gödel-Mkrtychev model is a structure M = 〈E , e〉 where

(1) E : Jt× LJ → [0, 1],
(2) e : V ar → [0, 1],

and which satisfies

(i) E(t, φ→ ψ)� E(s, φ) ≤ E(t · s, ψ),
(ii) E(t, φ)⊕ E(s, φ) ≤ E(t+ s, φ),

for all t, s ∈ Jt and all φ, ψ ∈ LJ .

We denote the class of all Gödel-Mkrtychev models by GM and say that M is a GM-model if M ∈ GM. We
call a GM-model M = 〈E , e〉 crisp if both E and e only take values in {0, 1}.

For a GM-model M = 〈E , e〉, we define its evaluation function | · |M : LJ → [0, 1] by recursion over LJ :

• |⊥|M := 0; |>|M := 1;
• |p|M := e(p) for p ∈ V ar;
• |φ→ ψ|M := |φ|M ⇒ |ψ|M;
• |φ ∧ ψ|M := |φ|M � |ψ|M;
• |φ ∨ ψ|M := |φ|M ⊕ |ψ|M;
• |t : φ|M := E(t, φ).

Here, and in the following, we write ⇒ for the residuum of the minimum t-norm �, that is

x⇒ y :=

{
y if x > y,

1 otherwise,

for x, y ∈ [0, 1]. For the derived connective ¬, we obtain the following derived truth function ∼:

∼ x :=

{
0 if x > 0;

1 otherwise.

We also write ∼2 x for ∼∼ x.
We may extend evaluations to sets of formulae Γ ⊆ LJ by setting |Γ|M := infφ∈Γ |φ|M. We write M |= φ if

|φ|M = 1 and similarly for sets Γ.
We say that a Gödel-Mkrtychev model M = 〈E , e〉 respects a constant specification CS if

E(c, φ) = 1 for every c : φ ∈ CS.
Given a class of Gödel-Mkrtychev models C, we denote the subclass of all models respecting CS by CCS.

Corresponding to the different additional justification principles, given by the axiom schemes (F ), (!) and
(?), we introduce respective model classes capturing them semantically.

3We define the empty conjunction to be >.
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Definition 3. A GM-model M = 〈E , e〉 is called a

(1) GMT-model if E(t, φ) ≤ |φ|M for all t ∈ Jt and all φ ∈ LJ (factivity),
(2) GM4-model if E(t, φ) ≤ E(!t, t : φ) for all t ∈ Jt and all φ ∈ LJ (positive introspectivity),
(3) GMLP-model if (1) and (2) hold,
(4) GM45-model if (2) holds and ∼ E(t, φ) ≤ E(?t,¬t : φ) for all t ∈ Jt and all φ ∈ LJ (negative introspec-

tivity),
(5) GMT45-model if (1) and (4) hold.

Based on Gödel-Mkrtychev models, there are now two different notions of semantic entailment, similarly as
in propositional Gödel logic (see [31] for a survey).

Definition 4. For a class C of GM-models and Γ ∪ {φ} ⊆ LJ , we say:

(1) Γ 1-entails φ in C, written Γ |=C φ, if for any M ∈ C: M |= Γ implies M |= φ;
(2) Γ entails φ in C, written Γ |=C≤ φ, if for any M ∈ C: |Γ|M ≤ |φ|M.

The main theorem about Gödel justification logics and the corresponding Gödel-Mkrtychev models is the
Completeness Theorem with respect to both semantic entailment relations.

Theorem 3 (Completeness Theorem; GJLCS and GMJLCS; [29]). Let

GJL0 ∈ {GJ 0,GJ T 0,GJ 40,GLP0,GJ 450,GJ T 450}
and CS be a constant specification for GJL0. Let

GMJL ∈ {GM,GMT,GM4,GMLP,GM45,GMT45}
be the class of Gödel-Mkrtychev models corresponding to GJL0. Then, for all Γ ∪ {φ} ⊆ LJ , the following are
equivalent:

(1) Γ `GJLCS φ;
(2) Γ |=GMJLCS≤ φ;
(3) Γ |=GMJLCS

φ.

We now turn to the alternative semantics given by Gödel-Fitting models, the [0, 1]-valued analogues of the
classical Fitting models. These classical models were introduced by Fitting in [12, 13] for the logic of proofs.
The restrictions and extensions corresponding to other justification principles can be traced back to e.g. [3, 22]
(although they may have appeared earlier).

Definition 5. A Gödel-Fitting model is a quadruple M = 〈W,R, E , e〉 with

(1) W 6= ∅, the domain of M,
(2) R : W ×W → [0, 1],
(3) E : W × Jt× LJ → [0, 1],
(4) e : W × V ar → [0, 1],

where E satisfies

(i) E(w, t, φ→ ψ)� E(w, s, φ) ≤ E(w, t · s, ψ),
(ii) E(w, t, φ)⊕ E(w, s, φ) ≤ E(w, t+ s, φ),

for all w ∈W , all t, s ∈ Jt and all φ, ψ ∈ LJ .

We denote the class of all Gödel-Fitting models by GF and call a structure M a GF-model if M ∈ GF.
An important notion for Gödel-Fitting models is being accessibility-crisp, that is Gödel-Fitting models where
R(w, v) ∈ {0, 1} for all w, v ∈ W . For a class C of GF-models, we denote the subclass of all accessibility-crisp
models in C by Cc. Given a model M, we also denote its domain by D(M).

For a GF-model M = 〈W,R, E , e〉, we may define a local evaluation | · |wM, relative to a world w ∈ D(M),
recursively on the structure of LJ as follows:

• |⊥|wM := 0; |>|wM := 1;
• |p|wM := e(w, p) for p ∈ V ar;
• |φ→ ψ|wM := |φ|wM ⇒ |ψ|wM;
• |φ ∧ ψ|wM := |φ|wM � |ψ|wM;
• |φ ∨ ψ|wM := |φ|wM ⊕ |ψ|wM;
• |t : φ|wM := E(w, t, φ)� infv∈W (R(w, v)⇒ |φ|vM).

This extends to sets of formulae, locally, in a similar way as with Gödel-Mkrtychev models by |Γ|wM :=
infφ∈Γ |φ|wM. We again write (M, w) |= φ if |φ|wM = 1 and similarly for sets Γ.

Following [29], we may define a range of more restrictive classes of Gödel-Fitting models in analogy to the
classical cases:



6 NICHOLAS PISCHKE

Definition 6. A Gödel-Fitting model M = 〈W,R, E , e〉 is called a

(1) GFT-model if R(w,w) = 1 for all w ∈W (reflexivity),
(2) GF4-model if

(i) E(w, t, φ)�R(w, v) ≤ E(v, t, φ) (monotonicity),
(ii) R(w, v)�R(v, u) ≤ R(w, u) (min-transitivity),
(iii) E(w, t, φ) ≤ E(w, !t, t : φ) (positive introspectivity),
for all w, v, u ∈W , all t ∈ Jt and all φ ∈ LJ ,

(3) GFLP-model if it is a reflexive GF4-model,
(4) GF45-model if it is a GF4-model satisfying

(i) ∼ E(w, t, φ) ≤ E(w, ?t,¬t : φ) (negative introspectivity),
(ii) E(w, t, φ) ≤ |t : φ|wM (factivity),
for all w ∈W , all t ∈ Jt and all φ ∈ LJ ,

(5) GFT45-model if it is a reflexive GF45-model.

In similarity to Gödel-Mkrtychev models, given a constant specification CS, we say that a Gödel-Fitting
model M respects CS if

E(w, c, φ) = 1 for all c : φ ∈ CS and all w ∈W.
For a class C of Gödel-Fitting models, we denote the subclass of all models respecting a constant specification
CS by CCS.

Again in analogy to the case of Gödel-Mkrtychev models, one obtains two natural notions of semantical
entailment for classes of Gödel-Fitting models.

Definition 7. Let C be a class of GF-models and Γ ∪ {φ} ⊆ LJ . Then, we say:

(1) Γ 1-entails φ in C, written Γ |=C φ if for any M ∈ C and any w ∈ D(M): (M, w) |= Γ implies (M, w) |= φ;
(2) Γ entails φ in C, written Γ |=C≤ φ if for any M ∈ C and any w ∈ D(M): |Γ|wM ≤ |φ|wM.

One now obtains a respective Completeness Theorem for the Gödel-Fitting semantics. A surprising addition,
however, is that the models used in the Completeness Theorem can be restricted to be accessibility-crisp. This
is similar to the Completeness Theorem of the �-fragment of the standard Gödel modal logics in [9] with respect
to their possible world models (see section 2.2.2 for more detail).

Theorem 4 (Completeness Theorem; GJLCS and GFJLCS; [29]). Let

GJL0 ∈ {GJ 0,GJ T 0,GJ 40,GLP0,GJ 450,GJ T 450},
CS be a constant specification for GJL0 and let

GFJL ∈ {GF,GFT,GF4,GFLP,GF45,GFT45}
be the class of Gödel-Fitting models corresponding to GJL0. For all Γ∪{φ} ⊆ LJ , the following are equivalent:

(1) Γ `GJLCS φ;
(2) Γ |=GFJLCS≤ φ;
(3) Γ |=GFJLCS

φ;
(4) Γ |=GFJLCSc

φ.

2.2. Standard Gödel modal logics. On the modal side, we fix a necessity-based modal language L� by

L� : φ ::= ⊥ | > | p | (φ→ φ) | (φ ∧ φ) | (φ ∨ φ) | �φ.
We again write sf(φ) for the set of all subformulae of φ (including φ).

In the later sections, in particular in the context of hypersequent calculi, we will need the notion of complexity
c(φ) of a modal formula φ. This is defined, recursively over L�, as follows:

• c(⊥) := c(>) := c(p) := 0;
• c(φ ∝ ψ) := 1 + c(φ) + c(ψ) for ∝∈ {∧,∨,→};
• c(�φ) := 1 + c(φ).

2.2.1. Proof calculi. The standard Gödel modal logics, as defined by Caicedo and Rodriguez in [9], have the
following proof-theoretic descriptions via Hilbert-style calculi over L�.

Definition 8. GK� is given by the following axiom schemes and rules:

(G): the axiom schemes of the calculus G in L�;
(K): �(φ→ ψ)→ (�φ→ �ψ);
(Z): ¬¬�φ→ �¬¬φ;
(MP ): from φ→ ψ and φ, infer ψ;
(N�): from ` φ, infer ` �φ.
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We define the following axiomatic extensions of GK�:

(1) GT � is the extension of GK� by the axiom scheme (T ) : �φ→ φ;
(2) GK4� is the extension of GK� by the axiom scheme (4) : �φ→ ��φ;
(3) GS4� is the extension of GK� by the axiom schemes (T ) and (4).

Again, provability (under assumptions Γ ⊆ L�) of a formula φ ∈ L� in GML� ∈ {GK�,GT �,GK4�,GS4�}
is defined as it is usually done in Hilbert-style calculi and is denoted by Γ `GML�

φ.

As before, the Deduction Theorem transfers from the propositional Gödel logic to the standard Gödel modal
logics:

Lemma 5 (Deduction Theorem; [9]). Let GML� ∈ {GK�,GT �,GK4�,GS4�} and Γ ∪ {φ, ψ} ⊆ L�. Then

Γ ∪ {φ} `GML�
ψ iff Γ `GML�

φ→ ψ.

The following lemma will later be generalized to fragments of the standard Gödel modal logics and is funda-
mental for a rule in the corresponding hypersequent calculi.

Lemma 6 ([9]). Let GML� ∈ {GK�,GT �,GK4�,GS4�} and Γ ∪ {φ} ⊆ L�. Then

Γ `GML�
φ implies �Γ `GML�

�φ

where �Γ := {�γ | γ ∈ Γ}.

Indeed, using the axiom scheme (Z), we find another admissible rule of the standard Gödel modal logics
which is also of importance in the corresponding formulations using hypersequent calculi, later on.

Lemma 7. Let GML� ∈ {GK�,GT �,GK4�,GS4�} and Γ ∪ {φ} ⊆ L�. Then

¬¬Π,Γ `GML�
φ implies ¬¬�Π,�Γ `GML�

�φ.

Proof. Lemma 6 applied to ¬¬Π,Γ `GML�
φ yields

�¬¬Π,�Γ `GML�
�φ

and using the axiom scheme (Z), we obtain

¬¬�Π,�Γ `GML�
�φ

from this. �

Remark 3. Note that

¬¬Π,Γ `GML�
φ iff `GML�

(∧
π∈Π

¬¬π → ⊥

)
∨

∧
γ∈Γ

γ → φ

 .

The proof of this equivalence is similar to the proof given later for Lemma 55 regarding a similar statement for
the Gödel justification logics.

2.2.2. Semantics. In [9], Caicedo and Rodriguez obtained a Completeness Theorem for these logics with respect
to a natural semantics defined over model classes of [0, 1]-valued generalization of the classical modal Kripke
models, called Gödel-Kripke models:

Definition 9. A Gödel-Kripke model is a triple M = 〈W,R, e〉 where

(1) W 6= ∅,
(2) R : W ×W → [0, 1],
(3) e : W × V ar → [0, 1].

We denote the class of all Gödel-Kripke models by GK and say that M is a GK-model if M ∈ GK. GK-models
capture the base logic GK�. Again, given a class C of GK-models, we denote its subclass of all accessibility-crisp
models (defined as with the Gödel-Fitting models) by Cc.

In similarity to Gödel-Fitting models, there is a natural extension of the function e to the set of formulae L�
via the function | · |wM : L� → [0, 1], parameterized by worlds w ∈W , which is (recursively) defined as follows:

• |⊥|wM := 0; |>|wM := 1;
• |p|wM := e(w, p) for p ∈ V ar;
• |φ→ ψ|wM := |φ|wM ⇒ |ψ|wM;
• |φ ∧ ψ|wM := |φ|wM � |ψ|wM;
• |φ ∨ ψ|wM := |φ|wM ⊕ |ψ|wM;
• |�φ|wM := infv∈W (R(w, v)⇒ |φ|vM).
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By |Γ|wM := infγ∈Γ |γ|wM, we again extend the evaluation function to sets of formulae Γ ⊆ L� and write
(M, w) |= φ for |φ|wM = 1 and similarly for sets.

Following [9], we may define natural refinements of the class of Gödel-Kripke models to capture the other
proof-calculi extending GK�.

Definition 10. Let M = 〈W,R, e〉 be a GK-model. We say that M is a

(1) GT-model if R(w,w) = 1 for all w ∈W (reflexivity),
(2) GK4-model if R(w, v)�R(v, u) ≤ R(w, u) for all w, v, u ∈W (min-transitivity),
(3) GS4-model if its both a GT- and GK4-model.

As before with the Gödel justification logics, we have two natural forms of semantic consequence over model
classes.

Definition 11. Let C be a class of GK-models and Γ ∪ {φ} ⊆ L�. We write

(1) Γ |=C φ if ∀M ∈ C : ∀w ∈W : (M, w) |= Γ implies (M, w) |= φ,
(2) Γ |=C≤ φ if ∀M ∈ C : ∀w ∈W : |Γ|wM ≤ |φ|wM.

Caicedo and Rodriguez then obtained the following Completeness Theorem for the various model classes and
proof systems where, as commented on in the context of the Completeness Theorem for Gödel-Fitting models,
accessibility-crisp models suffice.

Theorem 8 (Completeness Theorem; GML� and GML; [9]). Let

GML� ∈ {GK�,GT �,GK4�,GS4�}

and let

GML ∈ {GK,GT,GK4,GS4}

be the corresponding class of GK-models. Then, for any Γ ∪ {φ} ⊆ L�, the following are equivalent:

(1) Γ `GML�
φ;

(2) Γ |=GML≤ φ;
(3) Γ |=GML φ;
(4) Γ |=GMLc φ.

2.3. Forgetful projection. A natural projection from the explicit modal language LJ to the unexplicit lan-
guage L� is the function which replaces every explicit modality “t :” by �. We define this so-called forgetful
projection ν : LJ → L� formally by recursion on the structure of LJ as follows:

• p 7→ p for p ∈ V ar;
• ⊥ 7→ ⊥; > 7→ >;
• φ ∝ ψ 7→ φν ∝ ψν for ∝∈ {∧,∨,→};
• t : φ 7→ �φν .

We may extend ν to sets of formulae Γ ⊆ LJ via Γν := {φν | φ ∈ Γ}.
We use ν in difference to the commonly used ◦ to denote the forgetful projection as we use ◦ for function

composition later on.

Remark 4. For the various axioms of Gödel justification logics, we obtain the following forgetful projections:

(1) (t : (φ→ ψ)→ (s : φ→ [t · s] : ψ))ν = �(φν → ψν)→ (�φν → �ψν);
(2) (t : φ→ [t+ s] : φ)ν = �φν → �φν ; (s : φ→ [t+ s] : φ)ν = �φν → �φν ;
(3) (t : φ→ φ)ν = �φν → φν ;
(4) (t : φ→!t : t : φ)ν = �φν → ��φν .

Note that the cases in (2) are instances of a propositional tautology, while (1), (3) and (4) are instances of
the various axioms of the standard Gödel modal logics, all in the language of L�. This results in the following
theorem.

Theorem 9. Let GJL0 ∈ {GJ 0,GJ T 0,GJ 40,GLP0}, CS be a constant specification for GJL0 and GML� ∈
{GK�,GT �,GK4�,GS4�} be the corresponding standard Gödel modal logic. Then, for all Γ ∪ {φ} ⊆ LJ :
Γ `GJLCS φ implies Γν `GML�

φν .

The proof of the theorem is a straightforward induction on the length of the proof.
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3. Realization fails without factivity

In the following, let TCS be the total constant specification for GJ 450 and x ∈ [0, 1]. We define the structure
Mx := 〈Ex, ex〉 by ex(p) := x for any p ∈ V ar and

Ex(t, φ) :=

{
1 if `GJ 45TCS φ and `GJ 45TCS t : φ,

x else,

for any t ∈ Jt and any φ ∈ LJ . It is easy to see that, given φ ∈ LJ , we have |φ|Mx
∈ {0, x, 1}.

Now, Mx is indeed a well-defined Gödel-Mkrtychev model (for certain x):

Lemma 10. If x ∈ (0, 1], then Mx is a GM45TCS-model.

Proof. We verify the conditions for “being a GM45TCS-model” from Definition 2 and 3 for Mx:

(a) We show that Mx respects TCS. We have `GJ 45TCS c : φ whenever we have c : φ ∈ TCS. By definition,
φ is either an axiom instance or φ = c′ : ψ for some c′ ∈ C and some formula ψ with φ ∈ TCS by
downward closure. Either way `GJ 45TCS φ and thus we have Ex(c, φ) = 1 for any such c : φ.

(b) We show that Mx satisfies condition (ii) from Definition 2. Let φ ∈ LJ and t, s ∈ Jt. If Ex(t, φ) ⊕
Ex(s, φ) = x, then (ii) is immediately satisfied. Thus suppose Ex(t, φ)⊕ Ex(s, φ) = 1, i.e. per definition
Ex(t, φ) = 1 or Ex(s, φ) = 1. In either case `GJ 45TCS φ and additionally `GJ 45TCS t : φ or `GJ 45TCS s : φ.
Either way, by the axiom scheme (+) and the rule (MP ), we have `GJ 45TCS [t + s] : φ, and therefore
Ex(t+ s, φ) = 1.

(c) We show that Mx satisfies condition (i) from Definition 2. Fix φ, ψ ∈ LJ and t, s ∈ Jt. If Ex(t, φ →
ψ)�Ex(s, φ) = x, then the condition is immediately satisfied. Thus, suppose Ex(t, φ→ ψ)�Ex(s, φ) = 1,
i.e. Ex(t, φ → ψ) = Ex(s, φ) = 1 and therefore `GJ 45TCS φ → ψ and `GJ 45TCS t : (φ → ψ) as well as
`GJ 45TCS φ and `GJ 45TCS s : φ. By (MP ) and the axiom scheme (J), we have `GJ 45TCS ψ as well as
`GJ 45TCS [t · s] : ψ, i.e. Ex(t · s, ψ) = 1.

(d) We show that Mx satisfies condition (4) from Definition 3. For this, we first show condition (2) from
Definition 3. Let φ ∈ LJ and t ∈ Jt be arbitrary. If Ex(t, φ) = x, then we immediately obtain
Ex(t, φ) ≤ Ex(!t, t : φ). Thus, suppose Ex(t, φ) = 1, then `GJ 45TCS φ and `GJ 45TCS t : φ. The latter
implies `GJ 45TCS !t : t : φ by the axiom scheme (!) and (MP ), which yields Ex(!t, t : φ) = 1. Thus, Mx

satisfies condition (2) from Definition 3.
For the latter part of condition (4), note that we always have Ex(t, φ) ∈ {x, 1}, i.e. as x > 0 we have

∼ Ex(t, φ) = 0 and thus, for any φ ∈ LJ and any t ∈ Jt, we have ∼ Ex(t, φ) ≤ Ex(?t,¬t : φ). Hence Mx

satisfies condition (4) from Definition 3.

�

Mx now serves as a counter model for realization instances of the modal axiom (Z).

Lemma 11. For any φ ∈ LJ such that 6`GJ 45TCS ¬¬φ and any t, s ∈ Jt:
6`GJ 45TCS ¬¬t : φ→ s : ¬¬φ.

Proof. Suppose 6`GJ 45TCS ¬¬φ for φ ∈ LJ and let t, s ∈ Jt as well as x ∈ (0, 1). As Ex(t, φ) > 0, we have
|¬¬t : φ|Mx = 1 by the semantical evaluation of ¬ by ∼. However, we also have

|s : ¬¬φ|Mx
= Ex(s,¬¬φ) = x < 1

as 6`GJ 45TCS ¬¬φ. Thus, we get

|¬¬t : φ→ s : ¬¬φ|Mx
= x < 1.

By Lemma 10, Mx is a GM45TCS-model. Per definition, this leads to

6|=GM45TCS ¬¬t : φ→ s : ¬¬φ,
from which we obtain

6`GJ 45TCS ¬¬t : φ→ s : ¬¬φ
by Theorem 3. �

By this lemma, there is no valid (realized) formula structured like the (Z)-axiom where the instantiating
formula is such that its double-negation projection is not provable (or valid). As, e.g., the double negation of
any propositional variable p is never provable, there is no realization of ¬¬�p → �¬¬p. This results in the
following two theorems. Here, and in the following, we write ThS := {φ ∈ L | `S φ} for the set of theorems of
a given proof system S over a language L.

Theorem 12. For any constant specification CS for GJ 0: (ThGJCS )ν ( ThGK�
.
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Theorem 13. For any constant specification CS for GJ 40: (ThGJ 4CS )ν ( ThGK4�
.

In fact, GJ 4CS does not even realize GK�, as the problem with the axiom scheme (Z) remains.
It is also important to note that, in the proof of Lemma 11, it is crucial that Gödel-Mkrtychev models are

many-valued as x ∈ (0, 1) is necessary. Making Mx crisp by moving x to 1 makes any instance of ¬¬t : φ →
s : ¬¬φ valid in Mx. With moving x to 0, we obtain that M0 is only a GM4-model. But even in this case, at
least some instance of ¬¬t : φ→ s : ¬¬φ is valid in M0 (for any φ): crisp Gödel-Mkrtychev models correspond
to classical Mkrtychev models, and in the classical modal logics we have that

¬¬�φ→ �¬¬φ
is, of course, valid. Thus, ¬¬�φ→ �¬¬φ has a classical realization and this realization is valid in all classical
Mkrtychev models and hence valid in all crisp Gödel-Mkrtychev models, in particular in M0.

In Lemma 11, the condition 6`GJ 45TCS ¬¬φ is necessary, as if `GJ 45TCS ¬¬φ, then by Internalization (Corol-
lary 1, as TCS is axiomatically appropriate), we have `GJ 45TCS s : ¬¬φ for some s ∈ Jt and then by proposi-
tional reasoning in GJ 45TCS , we would obtain

`GJ 45TCS ¬¬t : φ→ s : ¬¬φ
for any t.

4. Realization fails with factivity

Using the same model construction, we can also show that GJ T CS and GLPCS do not realize GT � and
GS4�. However, we need another Completeness Theorem for this. This is because the factivity condition
E(t, φ) ≤ |φ|M from Definition 3 fails for Mx: per definition, Ex(t, φ) > 0 for any t ∈ Jt and any φ ∈ LJ , hence
also Ex(t,⊥) > 0 = |⊥|Mx

.
We thus resort to an alternative definition of semantical evaluations (and, induced from this, to an alternative

definition of (semantic) consequence) in Gödel-Mkrtychev models. Mkrtychev, in his paper [28], called the
corresponding classical concept pre-models and our situation is quite similar to the one in Kuznets’ works
[21, 22] where he also resorts to pre-models to provide counter-model constructions in the presence of the axiom
scheme (F ) (in investigations into computational complexity, however).

4.1. An alternative Completeness Theorem. For a Gödel-Mkrtychev model M = 〈E , e〉, we define the
alternative evaluation function | · |∗M as follows:

• |⊥|∗M := 0; |>|∗M := 1;
• |p|∗M := e(p) for p ∈ V ar;
• |φ→ ψ|∗M := |φ|∗M ⇒ |ψ|∗M;
• |φ ∧ ψ|∗M := |φ|∗M � |ψ|∗M;
• |φ ∨ ψ|∗M := |φ|∗M ⊕ |ψ|∗M;
• |t : φ|∗M := E(t, φ)� |φ|∗M.

We extend this evaluation to sets of formulae Γ in the same way as before by setting |Γ|∗M = infφ∈Γ |φ|∗M. Again,
we write M |=∗ φ if |φ|∗M = 1 and similarly for sets Γ. The corresponding definition of semantical (1-)entailment
then follows naturally:

Definition 12. Let C be a class of GM-models and Γ∪{φ} ⊆ LJ . We write Γ |=∗C φ if for any M ∈ C: M |=∗ Γ
implies M |=∗ φ.

The following two lemmas now establish the equivalence between |=∗C′ and |=C for C being one of the classes
GMT or GMLP and C′ being the class C without requiring the factivity condition (i.e. GM or GM4, respectively).
The lemmas and proofs are fuzzy replicas of analogous classical results found in [21, 28].

Lemma 14. For every M ∈ GMT (or M ∈ GMLP), there is an N ∈ GM (or N ∈ GM4, respectively) such that
|φ|M = |φ|∗N for every φ ∈ LJ .

Proof. Let M = 〈E , e〉 ∈ GMT (or GMLP) and set N := M. Then naturally N ∈ GM (or GM4). We show the
claim by induction on LJ . The propositional cases are clear, so let φ ∈ LJ be such that |φ|M = |φ|∗N and let
t ∈ Jt be arbitrary. We have

|t : φ|∗N = E(t, φ)� |φ|∗N
= E(t, φ)� |φ|M
= E(t, φ)

= |t : φ|M
where the third equality follows from the definition of GMT (or GMLP) which requires E(t, φ) ≤ |φ|M. �
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Lemma 15. For every N ∈ GM (or N ∈ GM4), there is an M ∈ GMT (or M ∈ GMLP, respectively) such that
|φ|∗N = |φ|M for every φ ∈ LJ .

Proof. Suppose N = 〈E , e〉 ∈ GM (or GM4) and define M := 〈E ′, e〉 through E ′(t, φ) := E(t, φ)� |φ|∗N. We first
show |φ|∗N = |φ|M for every φ ∈ LJ by induction on LJ . Again, the propositional cases are clear. So let φ
satisfy the claim and let t ∈ Jt be arbitrary. By definition, we have

|t : φ|M = E ′(t, φ) = E(t, φ)� |φ|∗N = |t : φ|∗N.
It remains to show that M ∈ GMT (or GMLP). For this, we first note that

E ′(t, φ→ ψ)� E ′(s, φ) = (E(t, φ→ ψ)� |φ→ ψ|∗N)� (E(s, φ)� |φ|∗N)

= (E(t, φ→ ψ)� E(s, φ))� (|φ→ ψ|∗N � |φ|∗N)

≤ E(t · s, ψ)� |ψ|∗N
= E ′(t · s, ψ)

as well as

E ′(t, φ)⊕ E ′(s, φ) = (E(t, φ)� |φ|∗N)⊕ (E(s, φ)� |φ|∗N)

= (E(t, φ)⊕ E(s, φ))� |φ|∗N
≤ E(t+ s, φ)� |φ|∗N
= E ′(t+ s, φ).

For the factivity condition, we naturally have

E ′(t, φ) = E(t, φ)� |φ|∗N ≤ |φ|∗N = |φ|M
where the last equality follows from the before proved adequacy of M for N. If N is a GM4-model, then also
E(t, φ) ≤ E(!t, t : φ) and therefore

E ′(t, φ) = E(t, φ)� |φ|∗N
≤ E(!t, t : φ)� |t : φ|∗N
= E ′(!t, t : φ)

where the inequality follows from the fact that E(t, φ)�|φ|∗N ≤ E(!t, t : φ) as well as E(t, φ)�|φ|∗N = |t : φ|∗N. �

Note that the previous definition regarding whether a model M = 〈E , e〉 respects a constant specification CS
(i.e., that E(c, φ) = 1 for c : φ ∈ CS) is still feasible as a definition for respecting a constant specification in this
context of the new consequence relation |=∗. With feasible, we mean that the defining equivalence

M respects CS iff M |= CS

extends to the satisfaction relation |=∗ under certain conditions: let GJL0 ∈ {GJ T 0,GLP0} and GMJL ∈
{GM,GM4} be the corresponding class of non-factive GM-models, respectively. Also, let CS be a constant
specification for GJL0. Then, for a GMJL-model M, it holds that M respects CS iff M |=∗ CS.

The direction from right to left is immediate and for the direction from left to right, note that by definition
every formula in CS is of the form cin : · · · : ci1 : φ where φ is an axiom instance of GJL0. By Lemma 15, φ
is valid in M with respect to |=∗. Thus, by E(ci1 , φ) = 1 (as M respects CS), we have M |=∗ ci1 : φ. Iterating
this argument gives

M |=∗ cin : · · · : ci1 : φ.

We therefore have the following additional information on the two previous lemmas:

• in Lemma 14, if M respects CS, then N respects CS;
• in Lemma 15, if N respects CS, then M respects CS.

Using these observations and the above lemmas, we can derive the following Completeness Theorem.

Theorem 16. Let GJL0 ∈ {GJ T 0,GLP0} and GMJL ∈ {GM,GM4} be the respective class of non-factive
GM-models. For any Γ ∪ {φ} ⊆ LJ : Γ |=∗GMJLCS

φ iff Γ `GJLCS φ.

Proof. By the standard Completeness Theorem, Theorem 3, it suffices to show the equivalence of |=GMJLTCS
and

|=∗GMJLCS
where GMJLT ∈ {GMT,GMLP} is the class of factive GM-models corresponding to GJL0.

Suppose Γ |=∗GMJLCS
φ, i.e. for every M ∈ GMJLCS, if M |=∗ Γ, then M |=∗ φ. By Lemma 14, for every

N ∈ GMJLTCS, we have N |= Γ, then N |= φ. Thus, we get Γ |=GMJLTCS
φ.

For the reverse, suppose Γ |=GMJLTCS
φ, i.e. for every M ∈ GMJLTCS, if M |= Γ, then M |= φ. Again, now by

Lemma 15, for every N ∈ GMJLCS, we have N |=∗ Γ, then N |=∗ φ. Hence, we have Γ |=∗GMJLCS
φ.
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Note, for both directions, the above discussion on whether the models respect the constant specification
CS. �

4.2. GJ T CS and GLPCS do not realize GT � and GS4�. Here, let TCS be the total constant specification
for GLP0. Again, with x ∈ [0, 1], we define the model M′x := 〈E ′x, ex〉 with ex as before and

E ′x(t, φ) :=

{
1 if `GLPTCS φ and `GLPTCS t : φ,

x else,

for any t ∈ Jt and any φ ∈ LJ . Again, we get the following lemma, however now for TCS being the total
constant specification for GLP0.

Lemma 17. If x ∈ (0, 1), then M′x is a GM4TCS-model.

The proof is almost identical to the one of Lemma 10 and thus omitted.
With a slightly changed proof, modified for the alternative semantics, we also obtain the next lemma in

analogy to Lemma 11. Here, however, we have to restrict ourselves to propositional variables in LJ , as it is
relatively hard to control the truth value of compound statements containing justifications in the new semantics.

Lemma 18. For any p ∈ V ar and any t, s ∈ Jt:
6`GLPTCS ¬¬t : p→ s : ¬¬p.

Proof. Let p ∈ V ar and t, s ∈ Jt as well as x ∈ (0, 1). Then, naturally 6`GLPTCS p and 6`GLPTCS ¬¬p. Thus,
|t : p|∗M′x = E ′x(t, p)� |p|∗M′x = E ′x(t, p)� ex(p) = x� x = x ∈ (0, 1).

As x > 0, we have |¬¬t : p|∗M′x = 1 as before. However, we get

|s : ¬¬p|∗M′x = E ′x(s,¬¬p)� |¬¬p|∗M′x = E ′x(s,¬¬p)� ∼2 ex(p) = x� 1 = x < 1

as 6`GLPTCS ¬¬p and ex(p) = x > 0, i.e. ∼2 ex(p) = 1. Thus, we obtain

|¬¬t : p→ s : ¬¬p|∗M′x = x < 1

By Lemma 17, M′x is a GM4TCS-model and thus, we have

6|=∗GM4TCS ¬¬t : p→ s : ¬¬p
by definition. Thus, Theorem 16 implies

6`GLPTCS ¬¬t : p→ s : ¬¬p.
�

As before, we obtain the following two theorems.

Theorem 19. For any constant specification CS of GJ T 0: (ThGJT CS )ν ( ThGT �
.

Theorem 20. For any constant specification CS of GLP0: (ThGLPCS )ν ( ThGS4�
.

As with GJ 40, also GJ T CS and GLPCS do not even realize GK�.
The main focus of the rest of the paper will be to modify the right- and left-hand sides of the strict inclusions

in the Theorems 12, 13, 19 and 20 to induce equalities: on the one hand, we study the fragments of the various
standard Gödel modal logics which are realized by the standard Gödel justification logics; on the other hand, we
study extensions of the standard Gödel justification logics which are strong enough to realize the usual standard
Gödel modal logics.

5. Positive justification logics

To model explicit epistemic inference in the style of the modal axiom scheme (Z), we introduce a new operator
ϑ into the language of justification terms. That is, we define the augmented set of justification terms

Jtϑ : t ::= x | c | [t · t] | [t+ t] | !t | ?t | ϑt
and, correspondingly, the following extended language of propositional justification logics with ϑ, that is

LϑJ : φ ::= ⊥ | > | p | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | t : φ

where now t ∈ Jtϑ and p ∈ V ar as before. The functions var, jvar and sf of course naturally extend to these
languages.

Now, to proof-theoretically model explicit inference in the style of (Z), we extend the previous proof systems
by a new axiom scheme defining the operator ϑ. For this, let GJL0 ∈ {GJ 0,GJ T 0,GJ 40,GLP0,GJ 450,GJ T 450}.
We define PGJL0 as the expansion of GJL0 (in the new language LϑJ) by the axiom scheme

(P ) : ¬¬t : φ→ ϑt : ¬¬φ.
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The concept of a constant specification naturally generalizes to these logics over the language LϑJ and follow-
ingly, for a constant specification CS for PGJL0, we write PGJLCS for the extension of PGJL0 with the
corresponding rule (CS) as before.

Remark 5. Naturally, these positive Gödel justification logics also enjoy corresponding analogues of the classical
Deduction Theorem as well as of the Lifting Lemma (and, consequently, of the Internalization Property) for
axiomatically appropriate constant specifications.

It is clear that the forgetful projection (lifted to LϑJ and which we still denote by ν) of an instance of
the axiom scheme (P ) is an instance of the axiom scheme (Z). We thus have the following theorem by a
straightforward induction on the length of the proof as a generalization of Lemma 33.

Lemma 21. Let PGJL0 ∈ {PGJ 0,PGJ T 0,PGJ 40,PGLP0}, CS be a constant specification for PGJL0 and
GML� ∈ {GK�,GT �,GK4�,GS4�} be the corresponding Gödel modal logic. Then, for all Γ ∪ {φ} ⊆ LϑJ :
Γ `PGJLCS φ implies Γν `GML�

φν .

5.1. Semantics. Next, we introduce specific kinds of Gödel-Mkrtychev and Gödel-Fitting models for which the
above positive variants are strongly complete. For this, note that the original definitions of Gödel-Mkrtychev
or Gödel-Fitting models depend on the set of justification terms Jt and the corresponding language LJ . Their
definition can however be lifted directly to the new set of justification terms Jtϑ and the corresponding language
LϑJ . Thus, if we write Gödel-Mkrtychev or Gödel-Fitting model in the following, we shall understand it as
defined over the extended set of terms and formulae.

Definition 13. We call a GF-model 〈W,R, E , e〉 positive if for all w ∈W , all t ∈ Jtϑ and all φ ∈ LϑJ :

E(w, t, φ) > 0 implies E(w, ϑt,¬¬φ) = 1.

Likewise, we call a Gödel-Mkrtychev model 〈E , e〉 positive if for any t ∈ Jtϑ and all φ ∈ LϑJ :

E(t, φ) > 0 implies E(ϑt,¬¬φ) = 1.

For a class C of Gödel-Mkrtychev or Gödel-Fitting models, we denote the subclass of all positive models by PC.

Remark 6. (1) The other refinements of Gödel-Mkrtychev or Gödel-Fitting models, that is the classes
introduced in Definition 3 or Definition 6, respectively, naturally carry over to the new language and we
use the same jargon and notation for the corresponding model classes in the context of LϑJ whenever
there is no confusion.

(2) Definitions 4 and 7 naturally extend to this setting, now with Γ ∪ {φ} ⊆ LϑJ and where C is a class
of GM- or GF-models over LϑJ , respectively. We continue to write |=C or |=C≤ for the respective
consequence relations in these cases.

5.2. Soundness and Completeness. We now turn to completeness of the positive variants with respect to the
provided model classes. Let PGJL0 be one of the aforementioned logics and CS be a constant specification for
it. Let GMJL and GFJL be the classes of Gödel-Mkrtychev and Gödel-Fitting models corresponding to GJL0,
respectively. The completeness proof is along the lines of [29] which in turn is motivated by the approach to
completeness in [9] for the standard Gödel modal logics.

We begin with (strong) soundness:

Lemma 22. For any Γ ∪ {φ} ⊆ LϑJ :

(1) Γ `PGJLCS φ implies Γ |=PGFJLCS≤ φ;
(2) Γ `PGJLCS φ implies Γ |=PGMJLCS≤ φ.

Proof. At first, note that strong soundness follows directly, using the Deduction Theorem, from weak soundness
(that is, the above claim instantiated with Γ = ∅) which in turn can be established by an induction on the
length of the proof. In that way, the proof is an easy generalization of the soundness result for GJL0 (see [29]).

Therefore, we only show the validity of the scheme (P ) in the class of positive Gödel-Fitting models. From the
conditions on the evidence function, it trivially follows that the scheme is also valid in positive Gödel-Mkrtychev
models.

To show validity of (P ) in PGFJLCS , let M = 〈W,R, E , e〉 be any positive Gödel-Fitting model, w ∈W , φ be
a formula and t a justification term. If E(w, t, φ) = 0, then |¬¬t : φ|wM = 0 and thus naturally

|¬¬t : φ→ ϑt : ¬¬φ|wM = 1.

If on the other hand E(w, t, φ) > 0, then ∼2 E(w, t, φ) = 1 and thus we have

|¬¬t : φ|wM =∼2 E(w, t, φ)� ∼2 inf{R(w, v)⇒ |φ|vM | v ∈W}
=∼2 inf{R(w, v)⇒ |φ|vM | v ∈W}.
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As M is positive, E(w, t, φ) > 0 implies E(w, ϑt,¬¬φ) = 1. Hence,

|ϑt : ¬¬φ|wM = inf{R(w, v)⇒ |¬¬φ|vM | v ∈W}
and therefore to establish validity of (P ) in this case, it suffices to show

∼2 inf{R(w, v)⇒ |φ|vM | v ∈W} ≤ inf{R(w, v)⇒ |¬¬φ|vM | v ∈W}.
This is, essentially, what Caicedo and Rodriguez proved to establish the validity of the scheme (Z) (in the
Gödel-Kripke models from [9], however). Suppose

inf{R(w, v)⇒ |φ|vM | v ∈W} > 0.

Then, for all v ∈ W , we have R(w, v) = 0 or |φ|vM > 0. Therefore, we have R(w, v) = 0 or |¬¬φ|vM = 1 for any
v ∈ W and thus we get R(w, v) ⇒ |¬¬φ|vM = 1 for all v ∈ W . Hence, we have inf{R(w, v) ⇒ |¬¬φ|vM | v ∈
W} = 1. �

For proving the other direction of completeness, we define an auxiliary propositional language into which we
convert statements containing modalities. In that way, one can reduce completeness of the Gödel justification
logics to the propositional completeness results of Gödel logic. This method was employed by Caicedo and
Rodriguez in [9] for approaching the completeness of the standard Gödel modal logics and adapted in [29] to
the Gödel justification logics. For this, we define

L0(X) : φ ::= ⊥ | > | p | (φ→ φ) | (φ ∧ φ) | (φ ∨ φ)

where p ∈ X and X is a countably infinite set of variables (possibly different from V ar). We may see the
calculus G from Section 2 as being defined over L0(X).

This calculus G is then strongly complete with respect to a [0, 1]-valued truth-functional semantics, defined
using evaluations v : X → [0, 1], and which we will detail in the following. At first, any of these evaluations can
get extended, recursively, to a function v : L0(X)→ [0, 1] as follows:

• v(⊥) := 0; v(>) := 1;
• v(φ ∧ ψ) := v(φ)� v(ψ);
• v(φ ∨ ψ) := v(φ)⊕ v(ψ);
• v(φ→ ψ) := v(φ)⇒ v(ψ).

We denote the set of all such (extended) evaluations over the language L0(X) by Ev(L0(X)). Again, these
evaluations extend further to sets of formulae Γ ⊆ L0(X) by setting v(Γ) := infφ∈Γ v(φ). Also, they naturally
induce an associated consequence relation, denoted here by |=, and which is defined by

Γ |= φ if, and only if ∀v ∈ Ev(L0(X)) : v(Γ) = 1 implies v(φ) = 1

for Γ ∪ {φ} ⊆ L0(X). The Completeness Theorem for G with respect to |= was first proven by Dummett in
[11].4 We however refer to Hájek’s proof from [19], as we use his calculus and the related t-norm semantics.

Theorem 23 (Completeness Theorem; G and |=; [19]). For any Γ ∪ {φ} ⊆ L0(X), we have Γ `G φ iff Γ |= φ.

We now set L?0 := L0(V ar?) where

V ar? := V ar ∪ {φt | t ∈ Jtϑ, φ ∈ LϑJ}
and then define the translation ? : LϑJ → L?0, recursively, through the following clauses:

• p 7→ p; ⊥ 7→ ⊥; > 7→ >;
• (φ ∝ ψ) 7→ (φ? ∝ ψ?) for ∝∈ {∧,∨,→};
• t : φ 7→ φt.

? extends naturally to sets of formulae Γ by [Γ]? := {γ? | γ ∈ Γ}. In analogy to the completeness proof of the
standard Gödel justification logics in [29], we get the following lemma which relates the calculi PGJLCS with
G (over L?0) using ?.

Lemma 24. For any Γ ∪ {φ} ⊆ LϑJ :

Γ `PGJLCS φ if, and only if [Γ]? ∪ [ThPGJLCS ]? `G φ?.

The proof is omitted here as it amounts to two straightforward inductions on the length of the proof. See
[29] for a proof of the analogous result for GJLCS .

The completeness proof culminates with the following canonical model constructions for the Gödel-Fitting
and Gödel-Mkrtychev models.

Definition 14 (Canonical GF-model for PGJLCS). We define Mc,F (PGJLCS) := 〈W c, Rc, Ec, ec〉 as follows:

4Actually Dummett considered a different calculus and a slightly different semantics; both are equivalent to the ones presented
here.
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• W c := {v ∈ Ev(L?0) | v([ThPGJLCS ]?) = 1};

• Rc(v, w) :=

{
1 if ∀t ∈ Jtϑ : ∀φ ∈ LϑJ : v(φt) ≤ w(φ?);

0 otherwise;

• Ec(v, t, φ) := v(φt);
• ec(v, p) := v(p).

Definition 15 (Canonical GM-model for PGJLCS). Let v ∈ Ev(L?0) such that we have v([ThPGJLCS ]?) = 1.
We define Mc,M

v (PGJLCS) := 〈Ec, ec〉 as follows:

• Ec(t, φ) := v(φt);
• ec(p) := v(p).

Lemma 25. Let v ∈ Ev(L?0) such that v([ThPGJLCS ]?) = 1. Then the model Mc,M
v (PGJLCS) is a well-defined

PGMJLCS-model.

Proof. We show that Mc,M
v (PGJLCS) is positive. For the other properties of the respective model classes

associated with (F ), (!) or (?), depending on the choice of GJL0, see, e.g., the proof of the analogous result in
the context of the standard Gödel justification logics in [29].

Suppose Ec(t, φ) > 0 for some t ∈ Jtϑ and some φ ∈ LϑJ . Per definition, we have v(φt) > 0, i.e. v(¬¬φt) = 1
and thus by the axiom scheme (P ), and as v([ThPGJLCS ]?) = 1, we have v((¬¬φ)ϑt) = 1, i.e. per definition
this yields Ec(ϑt,¬¬φ) = 1. �

Similarly, one obtains the following result.

Lemma 26. Mc,F (PGJLCS) is a well-defined PGFJLCS-model.

We obtain the following two truth lemmas, for both the canonical Gödel-Fitting and the canonical Gödel-
Mkrtychev model, respectively.

Lemma 27 (Truth Lemma; Mc,F (PGJLCS)). Consider the canonical Gödel-Fitting model Mc,F (PGJLCS) =
〈W c, Rc, Ec, ec〉. For any v ∈W c and any φ ∈ LϑJ :

|φ|vMc,F (PGJLCS) = v(φ?).

Lemma 28 (Truth Lemma; Mc,M
v (PGJLCS)). Consider v ∈ Ev(L?0) such that v([ThPGJLCS ]?) = 1 and

Mc,M
v (PGJLCS) = 〈Ec, ec〉. For any φ ∈ LϑJ :

|φ|Mc,M
v (PGJLCS) = v(φ?).

Both lemmas can be proved with simple inductions over the structure of LϑJ . Alternatively, the proof from
[29] for the analogous results in the context of the standard Gödel justification logics can be carried over.

Using these Truth Lemmas, one obtains the following two Completeness Theorems. We again find that, in
the case of Gödel-Fitting models, only accessibility-crisp models matter for the semantic consequence (since the
canonical Gödel-Fitting model is itself accessibility-crisp).

Theorem 29 (Completeness Theorem; PGJLCS and PGFJLCS). For any set Γ∪ {φ} ⊆ LϑJ , the following are
equivalent:

(1) Γ `PGJLCS φ;
(2) Γ |=PGFJLCS≤ φ;
(3) Γ |=PGFJLCS

φ;
(4) Γ |=PGFJLCSc

φ.

Theorem 30 (Completeness Theorem; PGJLCS and PGMJLCS). For any set Γ∪{φ} ⊆ LϑJ , the following are
equivalent:

(1) Γ `PGJLCS φ;
(2) Γ |=PGMJLCS≤ φ;
(3) Γ |=PGMJLCS

φ.

A proof is omitted but can be obtained by replicating the respective arguments from [29] for the Gödel-
Mkrtychev or Gödel-Fitting models and the standard Gödel justification logics.

6. Weak standard Gödel modal logics

As we will later show, the positive Gödel justification logics are strong enough to realize the standard Gödel
modal logics. In this section, we address the dual question from the beginning and introduce fragments of the
standard Gödel modal logics which are realized by the standard Gödel justification logics.

For GML� ∈ {GK�,GT �,GK4�,GS4�}, we define GML−� as its reduct without the axiom scheme (Z). A

first immediate observation is that, still, all instances of GML−� satisfy the classical Deduction Theorem:
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Lemma 31 (Deduction Theorem). For any Γ ∪ {φ, ψ} ⊆ L�: Γ ∪ {φ} `GML−
�
ψ iff Γ `GML−

�
φ→ ψ.

We also obtain the following lemma akin to the standard Gödel modal logics (see Lemma 6).

Lemma 32. For any Γ ∪ {φ} ⊆ L�: if Γ `GML−
�
φ, then �Γ `GML−

�
�φ.

A proof of this again amounts to a straightforward induction on the length of the proof.
Utilizing that the forgetful projections of the axioms of the non-positive Gödel justification logics are, in

particular, also theorems of the respective weak Gödel modal logics, we obtain the following lemma:

Lemma 33. Let GJL0 ∈ {GJ 0,GJ T 0,GJ 40,GLP0}, CS be a constant specification for GJL0 and GML−� ∈
{GK−�,GT

−
�,GK4−�,GS4−�} be the corresponding weak Gödel modal logic. Then for all Γ∪{φ} ⊆ LJ : Γ `GJLCS φ

implies Γν `GML−
�
φν .

The particular instance of the above lemma associated with setting Γ = ∅ can again be phrased in terms of
sets of theorems as follows:

Corollary 7. For GJLCS and GML−� as before, we have (ThGJLCS )ν ⊆ ThGML−
�

.

One of the main objectives of this paper is now to show that the above inclusions are actually equalities, i.e.
to show that these weak Gödel modal logics GML−� exactly represent the forgetful projection of the standard
Gödel justifications logics GJLCS (for appropriate CS).

6.1. Semantics. Gödel-Kripke models appear in full generality in the semantics of the standard Gödel modal
logics and of course satisfy (Z). So, the question stands as of how the weak Gödel modal logics may be
semantically captured. Any such semantics has to falsify the axiom scheme (Z): ¬¬�θ → �¬¬θ (for non-
provable ¬¬θ).

In the following, we present a semantics for the weak Gödel modal logics GML−� through natural generaliza-
tions of the Gödel-Kripke models and prove a corresponding Completeness Theorem. This semantics is again
based on particular possible world models and is natural in the sense that it properly extends Gödel-Kripke
models and locally respects the usual semantic evaluation of the basic propositional connectives, as Gödel-Kripke
models do as well.

Definition 16. A Quasi-Gödel-Kripke model is a tuple M = 〈W,R,C, e〉 such that

(1) W 6= ∅, the domain of M (written D(M)),
(2) R : W ×W → [0, 1],
(3) C : W × L� → [0, 1],
(4) e : W × V ar → [0, 1],

where we require that the so called application principle holds: for all w ∈W and all φ, ψ ∈ L�, we have

C(w, φ)� C(w, φ→ ψ) ≤ C(w,ψ) (Appl.).

We call C the controller of M. The class of all Quasi-Gödel-Kripke models is denoted by QGK. Given a
QGK-model M = 〈W,R,C, e〉 and a world w ∈ D(M), we define the evaluation function | · |wM : L� → [0, 1]
recursively as follows:

• |p|wM := e(w, p) for p ∈ V ar;
• |⊥|wM := 0; |>|wM := 1;
• |φ ∧ ψ|wM := |φ|wM � |ψ|wM;
• |φ→ ψ|wM := |φ|wM ⇒ |ψ|wM;
• |φ ∨ ψ|wM := |φ|wM ⊕ |ψ|wM;
• |�φ|wM := C(w, φ)� infv∈W (R(w, v)⇒ |φ|vM).

This extends naturally to sets of formulae Γ by setting |Γ|wM := infφ∈Γ |φ|wM as before. We write (M, w) |= φ if
|φ|wM = 1 and similarly for sets. Also, we write M |= φ if (M, w) |= φ for all w ∈ D(M), and similarly for sets.

The application principle imposed on the controller is chosen in such a way, that every QGK-model validates
the axiom scheme (K):

Lemma 34. Let M = 〈W,R,C, e〉 be a QGK-model. For every φ, ψ ∈ L� and any w ∈ W : (M, w) |= �(φ →
ψ)→ (�φ→ �ψ).

Proof. Let φ, ψ ∈ L� and w ∈W for some QGK-model M = 〈W,R,C, e〉. Now, we have for any v ∈W :

inf
u∈W

(R(w, u)⇒ |φ|uM)� inf
u∈W

(R(w, u)⇒ |φ→ ψ|uM)

≤ (R(w, v)⇒ |φ|vM)� (R(w, v)⇒ |φ→ ψ|vM)

= R(w, v)⇒ (|φ|vM � |φ→ ψ|vM)

≤ R(w, v)⇒ |ψ|vM.
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By taking the infimum over v, we thus have

inf
u∈W

(R(w, u)⇒ |φ|uM)� inf
u∈W

(R(w, u)⇒ |φ→ ψ|uM) ≤ inf
u∈W

(R(w, u)⇒ |ψ|uM)

Hence, we have

|�φ|wM � |�(φ→ ψ)|wM

=

(
C(w, φ)� inf

u∈W
(R(w, u)⇒ |φ|uM)

)
�(

C(w, φ→ ψ)� inf
u∈W

(R(w, u)⇒ |φ→ ψ|uM)

)
≤ C(w,ψ)� inf

u∈W
(R(w, u)⇒ |ψ|uM)

= |�ψ|wM
using the Application Principle for the controller which gives the result by laws of the t-norm � and its residuum
⇒. �

Over QGK-models, there are two natural notions of semantical consequence akin to those of the GK-models.

Definition 17. Let Γ ∪ {φ} ⊆ L� and C be a class of QGK-models. We then say:

(1) Γ entails φ in C, written Γ |=C≤ φ, if ∀M ∈ C : ∀w ∈ D(M) : |Γ|wM ≤ |φ|wM;
(2) Γ 1-entails φ, written Γ |=C φ, if ∀M ∈ C : ∀w ∈ D(M) : (M, w) |= Γ implies (M, w) |= φ.

We have to adapt QGK-models further if we want them to actually characterize any of the logics represented
by GML−�. More precisely, we at least have to avoid that the controller falsifies tautologies, as this would
contradict the necessitation rule while aiming for a Completeness Theorem. It will turn out that preserving
global truth in the model is already sufficient. We thus introduce the following notion.

Definition 18. We call a QGK-model M = 〈W,R,C, e〉 regular if for any φ ∈ L�:

If M |= φ, then C(w, φ) = 1 for any w ∈W.
If C is a class of QGK-models, we denote the subclass of regular models in C by RC.

Any GK-model N = 〈W,R, e〉 has a natural, semantically equivalent, RQGK-model M := 〈W,R,C, e〉 by
setting C(w, φ) := 1 for any w ∈W and any φ ∈ L�. We call it the standard conversion of N.

Lemma 35. Let M be a RQGK-model. If M |= φ, then M |= �φ.

Proof. Suppose (M, w) |= φ, i.e. |φ|wM = 1, for any w ∈ D(M). Then, as M is regular, we have C(w, φ) = 1 and
hence

|�φ|wM = C(w, φ)� inf
v∈W

(R(w, v)⇒ |φ|vM) = 1

for any w ∈W . Thus, M |= �φ. �

As a corollary, we have that |=C φ implies |=C �φ for any class C of RQGK-models.

In similarity to the Gödel-Kripke models, we may also introduce a range of other (more restrictive) model
classes, corresponding to the various extensions of GK−� by the axiom schemes (T ) or (4).

Definition 19. Let M = 〈W,R,C, e〉 be a QGK-model. We call M a

(1) QGT-model if R(w,w) = 1 for all w ∈W (reflexivity),
(2) QGK4-model if

(a) R(w, v)�R(v, u) ≤ R(w, u) (min-transitivity),
(b) C(w, φ) ≤ C(w,�φ) (introspectivity),
(c) C(w, φ)�R(w, v) ≤ C(v, φ) (monotonicity),

for all w, v, u ∈W and all φ ∈ L�,
(3) QGS4-model if M is both a QGT- and a QGK4-model.

Lemma 36. For any φ ∈ L� and any QGK-model M:

(1) if M is a QGT-model, then M |= �φ→ φ;
(2) if M is a QGK4-model, then M |= �φ→ ��φ.

As before, we let GML−� ∈ {GK
−
�,GT

−
�,GK4−�,GS4−�} and now assume RQGML to be the corresponding

class of regular Quasi-Gödel-Kripke models.
It is straightforward to obtain the following soundness result.
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Lemma 37. For any Γ ∪ {φ} ⊆ L�: Γ `GML−
�
φ implies Γ |=RQGML≤ φ.

Proof. The proof can be carried over from the soundness proof for the standard Gödel modal logics with respect
to GK-models from [9].

Note that the Necessitation Rule is valid in any class of regular models by Lemma 35 and that the modal
axioms are valid in their respective classes by Lemmas 34 and 36. �

6.2. Completeness. We approach the Completeness Theorem in a similar way as Caicedo and Rodriguez
do in [9] regarding the standard Gödel modal logics and, in particular, as before with the positive Gödel
justification logics: we translate modal statements into an augmented propositional language and then use the
strong completeness of propositional Gödel logic with respect to the corresponding evaluation-based semantics.

For this, let V ar� := V ar ∪ {φ� | φ ∈ L�} and set L�0 := L0(V ar�). We then define the translation
� : L� → L�0 recursively through the following clauses:

• p 7→ p for p ∈ V ar;
• ⊥ 7→ ⊥; > 7→ >;
• (φ ∝ ψ) 7→ (φ� ∝ ψ�) for ∝∈ {∧,∨,→};
• �φ 7→ φ�.

Similarly to ?, also � extends to sets of formulae Γ by [Γ]� := {γ� | γ ∈ Γ}. As in [9] (and in similarity to Lemma
24), one can obtain the following lemma by induction on the length of the proof for each direction, linking G
over L�0 with GML−� via �.

Lemma 38. For any Γ ∪ {φ} ⊆ L�: Γ `GML−
�
φ iff [Γ]� ∪ [ThGML−

�
]� `G φ�.

Again, the rest of the proof relies on a particular canonical model construction:

Definition 20 (Canonical RQGK-model for GML−�). We define the canonical model Mc(GML−�) := 〈W c, Rc, Cc, ec〉
as follows:

(1) W c := {v ∈ Ev(L�0) | v([ThGML−
�

]�) = 1};

(2) Rc(v, w) :=

{
1 if ∀φ ∈ L� : v(φ�) ≤ w(φ�);

0 else;

(3) Cc(v, φ) := v(φ�);
(4) ec(v, p) := v(p).

It should be noted that W c is not empty. Through [9], we have 6`GML�
⊥, i.e. also 6`GML−

�
⊥. Thus by

Lemma 38, we get [ThGML−
�

]� 6`G ⊥, i.e. by strong completeness of G, there exists a v ∈ Ev(L�0) such that

v([ThGML−
�

]�) = 1 (and naturally v(⊥) = 0). Hence, v ∈W c for this v and thus W c 6= ∅.

The following version of the Truth Lemma now holds for this canonical model. We give a proof of this
result here as we want to emphasize that it is considerably easier to prove than the corresponding result for the
canonical model of the standard Gödel modal logics in [9].

Lemma 39. (Truth Lemma; Mc(GML−�)) For any φ ∈ L� and any v ∈W c: |φ|v
Mc(GML−

�
)

= v(φ�).

Proof. The proof is by induction on the structure of L�. The atomic and propositional cases are clear. Thus,
suppose the claim holds for some fixed φ ∈ L� and any w ∈ W c. For an arbitrary v ∈ W c, it then suffices to
show

v(φ�) = Cc(v, φ)� inf
w∈W c

(Rc(v, w)⇒ w(φ�))

as |φ|w
Mc(GML−

�
)

= w(φ�) by the induction hypothesis. As Rc is crisp and as Cc(v, φ) = v(φ�), the above is

equivalent to

v(φ�) = v(φ�)� inf{w(φ�) | w ∈W c, Rc(v, w) = 1}.
By the laws of � = min, it therefore suffices to show that

v(φ�) ≤ inf{w(φ�) | w ∈W c, Rc(v, w) = 1}.

This, however, follows immediately from the definition of Rc: if w ∈ W c such that Rc(v, w) = 1, then per
definition v(φ�) ≤ w(φ�). �

Lemma 40. Mc(GML−�) is a well-defined RQGML-model.
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Proof. First, we note that Cc fulfills the application condition: for any φ, ψ ∈ L�, we have `GML−
�
�(φ →

ψ)→ (�φ→ �ψ) by axiom (K) and hence

(φ→ ψ)� → (φ� → ψ�) ∈ [ThGML−
�

]�.

So, for any v ∈W c, as v([ThGML−
�

]�) = 1, we obtain

v((φ→ ψ)�)� v(φ�) ≤ v(ψ�)

by the laws of t-norms and their residua. This immediately gives the result as Cc(v, φ) = v(φ�).

Further, we note that Mc(GML−�) is regular. Suppose |φ|v
Mc(GML−

�
)

= 1 for all v ∈ W c. By the Truth

Lemma, we have
∀v ∈W c : v(φ�) = 1.

By definition of W c together with the Completeness Theorem of G, this yields [ThGML−
�

]� `G φ�. By Lemma

38, we have `GML−
�
φ and hence `GML−

�
�φ by necessitation. It follows that φ� ∈ [ThGML−

�
]� and so, for all

v ∈W c, we get v(φ�) = 1. By definition, Cc(v, φ) = 1 for all v ∈W c.

Now, if GML−� contains the axiom scheme (T ), then φ� → φ� ∈ [ThGML−
�

]� for any φ ∈ L�, i.e. we have

v(φ�) ≤ v(φ�) for any v ∈W c. By definition, this means Rc(v, v) = 1 for all v ∈W c.

Suppose on the other hand that GML−� contains the axiom scheme (4). Then, by similar reasoning as before,
we have v(φ�) ≤ v((�φ)�) for any v ∈W c and any formula φ. Thus Cc(v, φ) = v(φ�) ≤ v((�φ)�) = Cc(v,�φ).
Further, for any w, v, u ∈W c, we get that either

(1) Rc(v, w)�Rc(w, u) = 0 ≤ Rc(w, u), or
(2) Rc(v, w)�Rc(w, u) = 1,

by crispness of Rc. For the latter, we then derive Rc(v, w) = Rc(w, u) = 1, i.e. we have v(φ�) ≤ w(φ�) and
w(φ�) ≤ u(φ�) for all φ. Thus, for any φ ∈ L�, we have

v(φ�) ≤ v((�φ)�) ≤ w(φ�) ≤ u(φ�)

for all φ and therefore Rc(v, u) = 1. Lastly, for monotonicity, suppose that we have Rc(v, w) = 1. Then we in
particular have

Cc(v, φ) = v(φ�) ≤ v((�φ)�) ≤ w(φ�) = Cc(w, φ)

as above. �

Theorem 41 (Completeness Theorem; GML−� and RQGML). Let Γ ∪ {φ} ⊆ L�. Then, the following are
equivalent:

(1) Γ `GML−
�
φ;

(2) Γ |=RQGML≤ φ;
(3) Γ |=RQGML φ;
(4) Γ |=RQGMLc φ.

Proof. “(1) implies (2)” follows from soundness (Lemma 37) and “(2) implies (3)” as well as “(3) implies (4)”
are immediate by definition. We show “(4) implies (1)” by contraposition. Suppose Γ 6`GML−

�
φ. By Lemma

38, we have [Γ]� ∪ [ThGML−
�

]� 6`G φ�. Thus, by strong completeness of Gödel logic, there is a v ∈ Ev(L�0) such

that v([Γ]�) = 1, v ∈ W c and v(φ�) < 1. By the Truth Lemma, |Γ|v
Mc(GML−

�
)

= 1 as well as |φ|v
Mc(GML−

�
)
< 1

and thus Γ 6|=RQGMLc φ as Mc is accessibility-crisp.. �

6.3. (Z) and the weak Gödel Modal Logics. Using this semantics and the corresponding Completeness
Theorem, we can give a model-theoretical proof of the non-derivability for certain instances of the axiom
scheme (Z) in the systems GML−�. For this, consider the Quasi-Gödel-Kripke model M = 〈{a, b}, R, C, e〉 with
R(x, y) = 1 iff x = y for x, y ∈ {a, b} as well as e(a, p) := 1 and e(b, p) := 0 for all p ∈ V ar. We set C(b, φ) = 1
for all φ ∈ L� and construct C(a, ·) by recursion on L� through:

• C(a,⊥) := 1/2 =: C(a, p) for all p ∈ V ar;
• C(a,>) := 1;
• C(a, φ ∧ ψ) := C(a, φ)� C(a, ψ);
• C(a, φ ∨ ψ) := C(a, φ)⊕ C(a, ψ);
• C(a, φ→ ψ) := C(a, φ)⇒ C(a, ψ);
• C(a,�φ) := C(a, φ).
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Then, we have that M is a well-defined RQGS4-model. For this, it suffices to consider the following propositions:

(1) C(a, φ)� C(a, φ→ ψ) ≤ C(a, ψ) for all φ, ψ ∈ L�;
(2) M |= φ implies C(a, φ) = 1 for all φ ∈ L�.

This is because naturally R(a, a) = R(b, b) = 1 by definition and R is trivially min-transitive. Also, C(b, ·)
naturally satisfies the application principle by definition. Further, both C(a, ·) and C(b, ·) are introspective, that
is we have C(a, φ) ≤ C(a,�φ) and C(b, φ) ≤ C(b,�φ) by definition. We also immediately obtain monotonicity
since R(x, y) = 1 iff x = y.

For item (1), we have

C(a, φ)� C(a, φ→ ψ) = C(a, φ)� (C(a, φ)⇒ C(a, ψ))

≤ C(a, ψ)

where the equality follows from the definition of C(a, ·) and the inequality follows from the residuation property
of ⇒ with respect to �.

Item (2) is enough to show regularity as C(b, φ) = 1 holds for all φ by definition. To show item (2), we first
prove the following intermediate claim. Here, let +̄ be bounded addition in [0, 1], that is for x, y ∈ [0, 1]:

x +̄ y :=

{
x+ y if x+ y ≤ 1;

1 else.

Then, we have:
Claim: For any φ ∈ L�: C(a, φ) = |φ|bM +̄ 1/2.
Proof: We prove the claim by syntactic induction on L�. The claim is obvious for ⊥,> and p ∈ V ar. For the
induction step, let φ, ψ be such that

C(a, φ) = |φ|bM +̄ 1/2 and C(a, ψ) = |ψ|bM +̄ 1/2.

The only interesting cases which we consider are those of φ→ ψ and �φ. For the former, we have

C(a, φ→ ψ) = C(a, φ)⇒ C(a, ψ)

=
(
|φ|bM +̄ 1/2

)
⇒
(
|ψ|bM +̄ 1/2

)
(by (IH))

=
(
|φ|bM ⇒ |ψ|bM

)
+̄ 1/2

where we use that (x +̄ a⇒ y +̄ a) = (x ⇒ y) +̄ a for any x, y, a ∈ [0, 1]. To see this, suppose first that x ≤ y.
Then, clearly also x +̄ a ≤ y +̄ a and the equality is satisfied. Now, suppose x > y. Then, (x ⇒ y) +̄ a = y +̄ a
and x +̄ a ≥ y +̄ a where equality occurs only if y +̄ a = 1. This gives the equality as well.

For the case of �φ, we in particular have

|�φ|bM = C(b, φ)� |φ|bM
as R(b, a) = 0 and R(b, b) = 1, and hence

C(a,�φ) = C(a, φ) (by definition)

= |φ|bM +̄ 1/2 (by (IH))

=
(
C(b, φ)� |φ|bM

)
+̄ 1/2 (as C(b, φ) = 1)

= |�φ|bM +̄ 1/2.

�
Note that we thus have that |φ|bM = 1 implies C(a, φ) = |φ|bM +̄ 1/2 = 1. As M |= φ especially implies |φ|bM = 1,
we obtain that M is regular.

Now, we have by definition that |�p|aM = C(a, p) � e(a, p) = 1/2 as R(a, a) = 1 and R(a, b) = 0, and thus
|¬¬�p|aM = 1. However, through ¬¬p = (p→ ⊥)→ ⊥, we get that

C(a,¬¬p) = (C(a, p)⇒ C(a,⊥))⇒ C(a,⊥)

= ((1/2⇒ 1/2)⇒ 1/2)

= (1⇒ 1/2)

= 1/2

and hence

|�¬¬p|aM = C(a,¬¬p)� |¬¬p|aM
= 1/2� 1 = 1/2.
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Thus, we have |¬¬�p→ �¬¬p|aM = 1⇒ 1/2 = 1/2 < 1 and therefore

6`GML−
�
¬¬�p→ �¬¬p

for all p ∈ V ar through Theorem 41.

6.4. Positive Quasi-Gödel-Kripke models. In similarity to the positive Gödel-Fitting models, we can iden-
tify positive Quasi-Gödel-Kripke models M = 〈W,R,C, e〉 as those satisfying

C(w, φ) > 0 implies C(w,¬¬φ) = 1

for all w ∈W and φ ∈ L�. For a class of QGK-models C, we denote the subclass of all positive models in C by
PC.

Lemma 42. Let M ∈ PQGK and let w ∈ D(M). Then, for all φ ∈ L�, we have (M, w) |= ¬¬�φ→ �¬¬φ.

Proof. The proof of

∼2 inf{R(w, v)⇒ |φ|vM | v ∈W} ≤ inf{R(w, v)⇒ |¬¬φ|vM | v ∈W}

is similar to the one presented in the proof of Lemma 22 for an analogous statement regarding the axiom scheme
(P ) in the context of the positive Gödel justification logics together with (positive) Gödel-Fitting models which
in turn is a replication of the proof of validity for the axiom scheme (Z) over Gödel-Kripke models in Caicedo’s
and Rodriguez’ paper [9]. Further, we immediately have

∼2 C(w, φ) ≤ C(w,¬¬φ)

in positive models as if C(w, φ) > 0, then C(w,¬¬φ) = 1 by definition of positivity. Thus, using the equality
∼2 (x� y) = ∼2 x � ∼2 y, we obtain the result by monotonicity of �. �

Indeed, we find that the positive regular Quasi-Gödel-Kripke models, semantically, exactly classify the stan-
dard Gödel modal logics. More precisely, we obtain the following theorem:

Theorem 43 (Completeness Theorem; GML� and PRQGML). Let

GML� ∈ {GK�,GT �,GK4�,GS4�}

and let PRQGML be the corresponding class of positive regular Quasi-Gödel-Kripke models. Then, for any
Γ ∪ {φ} ⊆ L�, the following are equivalent:

(1) Γ `GML�
φ;

(2) Γ |=PRQGML≤ φ;
(3) Γ |=PRQGML φ;
(4) Γ |=PRQGMLc φ.

Proof. “(1) implies (2)” follows from Lemma 42 in the same vein as the other soundness results (see e.g. Lemma
37). “(2) implies (3)” and “(3) implies (4)” are natural consequences of the definition of the consequence relation
and the various classes.

For “(4) implies (1)”, suppose Γ 6`GML�
φ. By Theorem 8 there is an accessibility-crisp GML-model M

and a world w ∈ D(M) such that (M, w) |= Γ but (M, w) 6|= φ. Taking this M = 〈W,R, e〉, construct its
standard conversion N = 〈W,R,C, e〉 with C(w, φ) = 1 for all w, φ. Then, it is straightforward to verify that
N ∈ PRQGMLc and that |φ|wM = |φ|wN for all w ∈ W and all φ ∈ L�. The latter follows from a straightforward
induction on the structure of L�. Thus, we have (N, w) |= Γ but (N, w) 6|= φ and so Γ 6|=PRQGMLc φ. �

7. Hypersequent calculi

Most constructive proofs of realization results in the context of classical justification logics (and beyond)
rely on appropriate cut-free structural calculi for the modal logic in question, like cut-free sequent calculi or
analytic tableau calculi and their siblings (see [4, 25] for comprehensive treatments of constructive realization
in the classical case).

For propositional Gödel logics, there is no sequent calculi formulation available. The most common structural
proof-theory approach (see [6]) uses so-called hypersequent calculi which generalize sequent calculi by allowing
to work on multiple sequents in parallel and have these sequents “exchange information”. These hypersequent
calculi were introduced in [5, 30], noting especially Avron’s [5] where these calculi were applied, in particular,
to propositional Gödel logic.

In [27], Metcalfe and Olivetti provided a hypersequent calculus for the standard Gödel modal logic GK� from
[9] together with a corresponding Cut-Elimination Theorem and which extends Avron’s hypersequent calculus
for [0, 1]-valued propositional Gödel logic from [5]. In the following, we now introduce fragments of the calculus



22 NICHOLAS PISCHKE

of Metcalfe and Olivetti and some extensions, show cut-elimination, and that these calculi characterize the
previously introduced Hilbert-style proof systems represented by GML−� and GML�.

We refer to an ordered pair (Γ,∆) of finite multisets of formulae, where ∆ contains at most one formula,
as a sequent and write Γ B∆. We use B instead of the common ⇒ as a sequent delimiter to avoid confusion
with the semantical Gödel implication which is denoted by ⇒ in this paper. We also write [φ1, . . . , φn] (or even
“φ1, . . . , φn” in the context of B) for denoting the multiset containing (the not necessarily distinct) formulae
φ1, . . . , φn and write [φ]n for the multiset containing φ exactly n times. For Γ or ∆ being empty, we also write

B∆ or ΓB,

respectively, and ΓB φ for ΓB [φ]. With “Γ,∆”, we denote the multiset-union of Γ and ∆.
We call a multiset of finitely many sequents Γi B∆i (for i = 1, . . . , n) a hypersequent and write

Γ1 B∆1 | · · · | Γn B∆n or [Γi B∆i]
n
i=1

as representations for that multiset.
For a multiset of formulae Γ, we write

∧
Γ or

∨
Γ for the conjunction or disjunction of all members of Γ,

respectively, including repetitions. We set
∧
∅ := > and

∨
∅ := ⊥.

With every hypersequent G, we then associate its canonical interpretation I(G) into the language of its
formulae which we define for a single sequent ΓB∆ as

I(ΓB∆) :=
∧

Γ→
∨

∆

and for a hypersequent Γ1 B∆1 | · · · | Γn B∆n by

I(Γ1 B∆1 | · · · | Γn B∆n) :=
n∨
i=1

I(Γi B∆i).

The range of constituting rules of the various hypersequent calculi can be seen in Fig. 7. We refer with

(1) HGK� to all initial, structural and logical rules with the modal rule (�),
(2) HGT � to HGK� extended with the rule (�B),
(3) HGK4� to all initial, structural and logical rules with the modal rule (B�)1,
(4) HGS4� to all initial, structural and logical rules with the modal rules (�B) and (B�)2.

For HGML� being one of the above systems, we refer with HGML−� to the version where the rule (�) is
replaced by (�−), the rule (B�)1 by (B�−)1 and the rule (B�)2 by (B�−)2, respectively, if any of them are
contained in HGML�. Given a hypersequent G, a hypersequent calculus S� and a tree of hypersequents γ, we
write γ `S� G if γ is a proof of G in S� (as usually defined for (hyper-)sequent calculi) and `S� G if there is
such a proof.

As said before, the particular system HGK� was (in some way) already considered by Metcalfe and Olivetti
in [27]. Originally however, Metcalfe and Olivetti considered a hypersequent calculus where the rules (IDw),
(⊥Bw) and (B>w) were replaced by the following strong versions:

G | φB φ
(ID);

G | Γ,⊥B∆
(⊥B);

G | ΓB>
(B>).

However, these rules are derivable using the weak versions in the calculi presented here. Some useful derived rules
(following [27]) are the following regarding the introduction and removal of negation (as a derived connective):

G | ΓB φ
G | Γ,¬φB

(¬B);
G | Γ, φB
G | ΓB ¬φ

(B¬).

It is quite obvious that the rule (�B) suffices (in the context of the initial, structural and logical rules) to prove
the hypersequent variant of the axiom scheme (T ) by

(ID)
φB φ

(�B)
�φB φ

(B→)
B�φ→ φ.

A similar argument shows this for the axiom scheme (4) and the rule (B�−)1 as follows:

(ID)
�φB�φ

(WL)
�φ, φB�φ

(B�−)1�φB��φ
(B→)

B�φ→ ��φ.

Note that in general the rule (�−) is derivable in HGK� (and its extensions) by



GÖDEL JUSTIFICATION LOGICS AND REALIZATION 23

Initial Hypersequents

pB p
(IDw), p ∈ V ar

⊥B
(⊥Bw)

B>
(B>w)

Structural Rules

G

G | H
(EW)

G | H | H
G | H

(EC)
G | Γ1,Π1 B∆1 G | Γ2,Π2 B∆2

G | Γ1,Γ2 B∆1 | Π1,Π2 B∆2
(COM)

G | ΓB∆

G | Γ, φB∆
(WL)

G | ΓB
G | ΓB φ

(WR)
G | Γ, φ, φB∆

G | Γ, φB∆
(CL)

Logical Rules

G | Γ1 B φ G | Γ2, ψ B∆

G | Γ1,Γ2, φ→ ψ B∆
(→ B)

G | Γ, φB ψ
G | ΓB φ→ ψ

(B→)

G | Γ, φB∆

G | Γ, φ ∧ ψ B∆
(∧B)1

G | Γ, ψ B∆

G | Γ, φ ∧ ψ B∆
(∧B)2

G | ΓB φ G | ΓB ψ
G | ΓB φ ∧ ψ

(B∧)
G | Γ, φB∆ G | Γ, ψ B∆

G | Γ, φ ∨ ψ B∆
(∨B)

G | ΓB φ
G | ΓB φ ∨ ψ

(B∨)1
G | ΓB ψ

G | ΓB φ ∨ ψ
(B∨)2

Modal rules

ΓB φ
�ΓB�φ

(�−)
ΠB | ΓB φ

�ΠB | �ΓB�φ
(�)

G | φ,ΓB∆

G | �φ,ΓB∆
(�B)

Γ,�ΓB φ
�ΓB�φ

(B�−)1
�ΓB φ
�ΓB�φ

(B�−)2

Π,�ΠB | Γ,�ΓB φ
�ΠB | �ΓB�φ

(B�)1
�ΠB | �ΓB φ
�ΠB | �ΓB�φ

(B�)2

Cut rule

G | Γ1, φB∆ G | Γ2 B φ
G | Γ1,Γ2 B∆

(CUT)

Figure 1. The various hypersequent rules.

ΓB φ
(EW)

ΓB | ΓB φ
(�)

�ΓB | �ΓB�φ
(WR)

�ΓB�φ | �ΓB�φ
(EC).

�ΓB�φ.

Also note that (B�)1, (B�−)1 suffice to derive (�), (�−), respectively, and that (B�)2, (B�−)2, in the pres-
ence of (�B), suffice to derive (B�)1, (B�−)1, respectively. Given a multiset of formulae Γ and some proof

calculus S over the same language, we write Γ `S φ if Γ̂ `S φ where Γ̂ is the set corresponding to Γ.

Theorem 44 (Weak Completeness Theorem; GML±� and HGML±� + (CUT)). Let

GML±� ∈ {GK
−
�,GT

−
�,GK4−�,GS4−�,GK�,GT �,GK4�,GS4�}.

Then, for every φ ∈ L�:

`GML±
�
φ iff `HGML±

�
+(CUT) Bφ.

Proof. For the direction from left to right, we show the claim by induction on the length of the proof. Naturally,
for every axiom instance φ of GML±�, Bφ is derivable in HGML±� + (CUT). This is clear for the propositional
axioms. For the modal axioms (T ), (4), this was indicated above and, naturally, (K) can be derived using (�−)
and consequently also using (�). The axiom scheme (Z) can be derived using (�) as shown in [27].

Now, suppose the formula φ was obtained by modus ponens with `GML±
�
ψ and `GML±

�
ψ → φ. By induction

hypothesis, we get `HGML±
�

+(CUT) Bψ as well as `HGML±
�

+(CUT) Bψ → φ and therefore we obtain
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(ID)
ψ B ψ

(ID)
φB φ

(→ B)
ψ,ψ → φB φ

(Assm.)
Bψ → φ

(CUT)
ψ B φ

(Assm.)
Bψ

(CUT)
Bφ

as a proof of Bφ in HGML±� + (CUT).

For the direction from right to left, we actually show that `HGML±
�

+(CUT) G implies `GML±
�
I(G) for any

hypersequent G. This is again proved by induction on the length of the proof. Note that the translations of
the initial hypersequents are naturally theorems of GML±�. See [27] for the validity (or admissibility) of the
structural and logical rules.

The admissibility of (�) with respect to the corresponding calculi is shown in Lemma 7 (see also Remark 3),
the admissibility of (�−) in Lemma 32 and Lemma 6. The admissibility of the rules (B�)1, (B�)2, (B�−)1

and (B�−)2 follows from a straightforward use of the axiom schemes (T ) and (4) together with Lemma 7 and
Lemma 32 �

We now present a Cut-Elimination Theorem for the various hypersequent calculi introduced before. The
method of the proof is due to Avron [5] and is used in [27] to prove cut-elimination of HGK�. A survey about
this (in the non-modal propositional case) can be found in [6]. We don’t get into the issues of dealing with
(internal or external) contraction and the consequent introduction of a hypersequent version of the multicut (or
mix) rule of Gentzen. Instead, we focus on the modal rules.

For this, note that the following multi-rules of (�), (B�)1 and (B�)2 are derivable in the respective systems
(where m ∈ N \ {0}):

Π1B | · · · | ΠmB | ΓB φ
�Π1B | · · · | �ΠmB | �ΓB�φ

m(�)

Π1,�Π1B | · · · | Πm,�ΠmB | Γ,�ΓB φ
�Π1B | · · · | �ΠmB | �ΓB�φ

m(B�)1

�Π1B | · · · | �ΠmB | �ΓB φ
�Π1B | · · · | �ΠmB | �ΓB�φ

m(B�)2

An example derivation of 2(B�)1 goes as follows: we obtain

Π1,�Π1B | Π2,�Π2B | Γ,�ΓB φ
(WL)∗

Π1,Π2,�Π1,�Π2B | Π1,Π2,�Π1,�Π2B | Γ,�ΓB φ
(EC)

Π1,Π2,�Π1,�Π2B | Γ,�ΓB φ
(B�)1

�Π1,�Π2B | �ΓB�φ

from the assumption.5 Using this twice, for both arguments of (COM), we get:

�Π1,�Π2B | �ΓB�φ �Π1,�Π2B | �ΓB�φ
(COM)

�Π1,�Π1B | �Π2,�Π2B | �ΓB�φ
(CL)∗

�Π1B | �Π2B | �ΓB�φ.

For a similar derivation of 2(�) see [27]; a derivation of 2(B�)2 may be obtained in the same way. The general
instances m(�),m(B�)1 and m(B�)2 can be derived by natural generalizations.

Theorem 45 (Cut Elimination). Let

HGML±� ∈ {HGK
−
�,HGT

−
�,HGK4−�,HGS4−�,HGK�,HGT �,HGK4�,HGS4�}.

Then, for every hypersequent G:

`HGML±
�

+(CUT) G iff `HGML±
�
G.

Proof. We sketch the proof. The general structure is similar to those of the proofs of cut-elimination from
[6, 27]. Similarly, it suffices to prove the following claim where we write Γ = Γ1, . . . ,Γn:

(∗)


If `HGML±

�
G := G1 | Γ1 B φ | · · · | Γn B φ and

`HGML±
�
H := H1 | Σ1, [φ]n1 B ψ1 | · · · | Σk, [φ]nk B ψk,

then `HGML±
�
G1 | H1 | Γ,Σ1 B ψ1 | · · · | Γ,Σk B ψk.

5Here, and in the following, we write (R)∗ for multiple applications of a rule (R) in the proof tree.
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It suffices to establish (∗) for the cut-elimination theorem: if we have `HGML±
�

+(CUT) I for some hypersequent

I with exactly one application of (CUT), then the premises of the cut are provable in HGML±�. Therefore, (∗)
applies and the (CUT)-application can be replaced by the (CUT)-free proof from the conclusion of (∗). The full
statement now follows by induction over the number of cuts.6

Let γ, η be proofs for G and H respectively. The claim (∗) is proven by induction on the lexicographically
ordered pair (c(φ), |γ| + |η|) where c(φ) is the complexity of φ (see Section 2.2) and |γ| is the height of the
derivation γ as a tree (similarly for |η|). We refer to φ as the cut-formula.

There, it is sufficient to consider the following cases:

(1) G or H are initial hypersequents;
(2) γ or η end by an application of a structural rule;
(3) γ and η end in a logical (or modal) rule.

This division is sufficient as all combinations of initial, structural and logical (or modal) rules in which γ and η
can end are covered.

Case (1) is almost trivial as the cut formula is either p ∈ V ar or ⊥ or > as one (or both) of G,H have
been obtain by an initial rule. For case (2) see e.g. [27] or [6] for relevant instances where the corresponding
arguments translate directly to the systems considered here. See especially [6] regarding arguments for (COM)
or (EC) and [27] for arguments regarding (COM) in combination with (�).

We thus only consider interesting instances of item (3) involving the rules (�), (�B), (B�)1 and (B�)2.
Cases involving the weak versions (�−), (B�−)1 and (B�−)2 can be seen as special cases of those.

Of course there are a multitude of cases to consider, but the harder (or more interesting) cases which we
want to focus on, involving these modal rules, are:7

(i) γ and η end with (B�)1;
(ii) γ and η end with (B�)2;
(iii) γ ends with (B�)2 and η ends with (�B);
(iv) γ ends with (�) and η ends with (�B);
(v) γ and η end with (�).

Case (v) was discussed in [27] and the same argument applies here. Case (ii) is very similar to case (i) and in
the same way, case (iv) is very similar to case (iii). Thus, we only discuss case (i) and case (iii) explicitly as a
straightforward adaption of the arguments for (i),(iii) also solves (ii),(iv), respectively.

(i) γ and η end with (B�)1. By assumption, we have that γ ends in

...
Π1,�Π1B | Γ,�ΓB φ

(B�)1
�Π1B | �ΓB�φ

and that η ends in

...
Π2,�Π2, [φ]n, [�φ]nB | Σ,�Σ, [φ]m, [�φ]m B ψ

(B�)1
�Π2, [�φ]nB | �Σ, [�φ]m B�ψ.

Applying the induction hypothesis to �φ and the last line of γ together with the second-to-last line of
η (as the sum of the heights of those proof-trees is smaller than |γ|+ |η|), we obtain

... cut free
�Π1B | �Γ,Π2,�Π2, [φ]nB | �Γ,Σ,�Σ, [φ]m B ψ.

Using this and the second-to-last line of γ in the induction hypothesis (as |φ| < |�φ|), we then have:

... cut free
Π1,�Π1B | �Π1B | �Γ,Π2,�Π2,Γ,�ΓB | �Γ,Σ,�Σ,Γ,�ΓB ψ

(CL)∗
Π1,�Π1B | �Π1B | �Γ,Π2,�Π2,ΓB | �Γ,Σ,�Σ,ΓB ψ

(WL)∗
Π1,�Π1B | Π1,�Π1B | �Γ,Π2,�Π2,ΓB | �Γ,Σ,�Σ,ΓB ψ

(EC)
Π1,�Π1B | �Γ,Π2,�Π2,ΓB | �Γ,Σ,�Σ,ΓB ψ

2(B�)1
�Π1B | �Γ,�Π2B | �Γ,�ΣB�ψ.

6Of course, the statement (∗) contains multiple cut-sequents with multiple cuts inside them which are eliminated at the same
time. For the simple statement of cut-elimination in the theorem we prove, this is of course oversaturated but needed in order to

deal with contraction. Note our comment after the previous weak Completeness Theorem on that we don’t get into the surrounding
details.

7In all cases, �φ is the cut-formula.
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(iii) γ ends with (B�)2 and η ends with (�B). By assumption, γ ends in

...
�ΠB | �ΓB φ

(B�)2
�ΠB | �ΓB�φ

and η ends in

...
G | Σ, [�φ]n, φB ψ

(�B)
G | Σ, [�φ]n+1 B ψ.

By the induction hypothesis applied to �φ and the last line of γ together with the second to last line
of η, we obtain:

... cut free
G | �ΠB | �Γ,Σ, φB ψ.

Applying the induction hypothesis again to φ from the above and the second-to-last line of γ, we derive:

... cut free
G | �ΠB | �ΠB | �Γ,�Γ,ΣB ψ

(EC)
G | �ΠB | �Γ,�Γ,ΣB ψ

(CL)∗
G | �ΠB | �Γ,ΣB ψ.

�

8. Annotations and realizations

To provide a formal footing for the Realization Theorem and its proof, we introduce annotated modal formulae,
following e.g. [7, 8, 14].

Definition 21. We define the language L′� by

L′� : φ′ ::= ⊥ | > | p | (φ′ → φ′) | (φ′ ∧ φ′) | (φ′ ∨ φ′) | �iφ′

where p ∈ V ar and i ∈ N.

The function sf naturally extends to L′�. There is a natural projection from L′� to L� by just mapping
every �i to �, preserving the propositional part of the formula as it is. We call this projection •. An annotated
formula φ′ ∈ L′� is called an annotation of a formula ψ ∈ L� if (φ′)• = ψ.

A central notion in the context of realizations, in particular for constructing realizations later on, is the sign
of a modal operator. In the following, let P(X) be the power set of a set X. We define L : L′� → P(N) to
be the function which collects all labels occurring at �-symbols inside an annotated formula. Precisely, we set
recursively:

• L(p) := L(⊥) := L(>) := ∅ where p ∈ V ar;
• L(φ′ ∧ ψ′) := L(φ′ → ψ′) := L(φ′ ∨ ψ′) := L(φ′) ∪ L(ψ′);
• L(�kφ′) := L(φ′) ∪ {k}.

For all annotated formulae φ′, we now define, recursively, the family of functions sgnφ′ : N → P({±1}). The
function sgnφ′(k) collects the polarities of �k in φ′, for every index k. For this, we set for every k ∈ N:

• sgnp(k) := sgn⊥(k) := sgn>(k) := ∅;
• sgnφ′∧ψ′(k) := sgnφ′∨ψ′(k) := sgnφ′(k) ∪ sgnψ′(k);
• sgnφ′→ψ′(k) := sgnψ′(k) ∪ (−1) · sgnφ′(k);

• sgn�lφ′(k) :=

{
sgnφ′(k) if k 6= l ;

sgnφ′(k) ∪ {+1} else ;

where for X ∈ P({±1}), we set (−1) · X := {(−1) · x | x ∈ X}. For negation ¬ as a derived connective, this
yields:

sgn¬φ′(k) = sgnφ′→⊥(k) = sgn⊥(k) ∪ (−1) · sgnφ′(k) = (−1) · sgnφ′(k)

for every k ∈ N as sgn⊥(k) = ∅.
We call an annotated formula φ′ properly annotated (p.a., for short) if every �-index occurs at most once in

it and if k ∈ L(φ′) is even iff sgnφ′(k) = {−1}. Note that in this case, sgnφ′(k) is indeed a singleton for every
k ∈ L(φ′). Note also that being properly annotated is a property inherited by subformulae.
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For some formula φ and two properly annotated versions φ′, φ′′ (that is (φ′)• = (φ′′)• = φ), there is a
canonical bijection between L(φ′) and L(φ′′) by mapping every index in φ′ to the corresponding index of the
same �-occurrence in φ′′:

Definition 22. We define the functions Lφ′,φ′′ : L(φ′)→ L(φ′′) recursively on φ as follows:

• for φ = ⊥, φ = > or φ ∈ V ar: Lφ′,φ′′ = ∅;
• for φ = ψ ∝ χ with ∝∈ {∧,∨,→}: Lφ′,φ′′ = Lψ′,ψ′′ ∪ Lχ′,χ′′ where φ′ = ψ′ ∝ χ′ and φ′′ = ψ′′ ∝ χ′′;
• for φ = �ψ: Lφ′,φ′′ = Lψ′,ψ′′ ∪ (k 7→ j) where φ′ = �kψ′ and φ′′ = �jψ′′.

Here we write (k 7→ j) for the partial function with domain {k} and codomain {j} which maps k to j.

As φ′ and φ′′ are properly annotated, all these functions are well-defined and total on L(φ′) as well as bijective
to L(φ′′).

We now formally introduce the concept of a realization of an annotated modal formula.

Definition 23. A realization is a partial mapping r : N → Jtϑ (or r : N → Jt). A realization r is called
a realization for an annotated formula φ′ ∈ L′� if all indices of �’s from φ′ are assigned under r, that is if
L(φ′) ⊆ dom(r).

A realization r is called normal if for every i ∈ N:

if 2i ∈ dom(r), then r(2i) = xi.

An annotated formula φ′ ∈ L′� has a natural image in LϑJ (or LJ) under some realization r for φ′, written
(φ′)r, which we define recursively by the following clauses:

• if φ′ = p or φ′ = ⊥ or φ′ = >, then (φ′)r := φ;
• if φ′ = ψ′ ∝ χ′, then (φ′)r := (ψ′)r ∝ (χ′)r for ∝∈ {∧,∨,→};
• if φ′ = �kψ′, then (φ′)r := r(k) : (ψ′)r.

All these previous concepts naturally generalize to hypersequents in the language L′�, that is annotated hy-
persequents. The maps I, • naturally carry over by similar definitions in the annotated language. We define
L(G′) := L(I(G′)), sgnG′ := sgnI(G′) as well as (G′)r := (I(G′))r and call an annotated hypersequent properly

annotated if I(G′) is properly annotated. For two proper annotations G′, G′′ of some hypersequent G, we also
introduce the label-bijections LG′,G′′ := LI(G′),I(G′′) following Definition 22.

8.1. Substitutions. In the next subsection, we introduce the previous hypersequent calculi in annotated ver-
sions which are then used to constructively provide a realization for a given theorem by induction on the proof.
To handle branching rules later on, we use the so-called merging of realizations, a technique introduced by
Fitting in [14] and applied e.g. by Brünnler, Goetschi and Kuznets in [8] to prove a Realization Theorem for
the classical justification logics using a nested sequent calculus.

For this technique, the notion of a substitution of justification variables is necessary. We introduce this notion
and present some immediate observations about these substitutions in this subsection.

Definition 24. We call any map σ : V → Jtϑ a (justification) substitution. σ naturally extends to two functions
mapping terms to terms or formulae to formulae by simultaneously replacing all occurring justification variables
by their respective images under σ. We identify these extensions with σ and thus write σ for any such extension
as well.

We also write tσ or φσ for the images of terms t or formulae φ under σ (or more precisely, under the extensions
identified with σ), respectively.

Given a substitution σ, we write dom(σ) := {x ∈ V | σ(x) 6= x}. Given two substitutions σ, σ′, we write σσ′

for the map

x 7→ σ(x)σ′ = σ′(σ(x)).

Given a proof calculus for a justification logic, it is natural to require that being a theorem is invariant under
substitutions, especially in the context of the Realization Theorem. For this, let

GJL0 ∈ {GJ 0,GJ T 0,GJ 40,GLP0}

and S0 be either GJL0 or PGJL0. Now, if SCS ` φ for some axiomatically appropriate constant specification
CS for S0, then for some substitution σ we in general only have SCSσ ` φσ where CSσ := {c : φσ | c : φ ∈ CS}
(see [25] regarding this statement in the classical case). So, for closure under substitutions, we need the constant
specification to be closed under substitutions itself. One way to enforce this is by requiring that the constant
specification in question is schematic (see Section 2):
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Lemma 46 (Substitution Lemma). Let CS be a schematic constant specification for S0. Let φ ∈ LϑJ (φ ∈ LJ)
such that `SCS φ. Then, for any substitution σ: `SCS φσ.

The proof is a straightforward induction on the length of the proof and can be obtained through an easy
generalization of the proof for the classical case (see [14]).

The following remark collects some important facts on substitutions and realizations which we will need for
handling annotated rules later on.

Remark 8. Let σ, σ′ be substitutions, r be a realization and φ′ ∈ L′� be p.a. such that r is a realization for φ′.

(1) σ ◦ r is a realization (for φ′)8;
(2) σ ◦ r is normal iff ∀k ∈ N : xk ∈ dom(σ) implies 2k 6∈ dom(r);
(3) (φ′)rσ = (φ′)σ◦r;
(4) if

(i) σ|D = σ′|D for D := dom(σ) ∩ dom(σ′), and
(ii) jvar(σ(x)) ∪ jvar(σ′(x)) ⊆ {x} for all x ∈ V ,
then σσ′ = σ′σ.

To see item (4), note that σ(σ′(x)) = σ′(σ(x)) is trivial for x 6∈ dom(σ) ∪ dom(σ′).
If x ∈ dom(σ) \ dom(σ′), then we have

σ′(σ(x)) = σ(x) = σ(σ′(x))

by (ii), as jvar(σ(x)) ⊆ {x} and as σ′(x) = x by assumption. A similar argument can be used to show
σ(σ′(x)) = σ′(σ(x)) for x ∈ dom(σ) \ dom(σ′).

Lastly, if x ∈ D, then σ(x) = σ′(x) by (i). Thus

σ′(σ(x)) = σ′(σ′(x)) = σ(σ′(x))

where the second equality follows again through σ(x) = σ′(x) from (i) and through jvar(σ(x)) ⊆ {x} from (ii).

We can now state and prove the theorem on merging of realizations. This result gives us the possibility to
combine two realizations into one in various ways, depending on the sign of subformulae in some underlying
context formula. For this, we restrict ourselves to schematic and axiomatically appropriate constant specification
to be able to use substitutions and the Internalization Property. The requirement of being axiomatically
appropriate is no real drawback while aiming for a Realization Theorem either, as by the modal inference rule
(N�), in all of the weak or standard Gödel modal logics, �θ is a theorem for every theorem θ. Thus, any
candidate Gödel justification logic for realizing a corresponding (weak or standard) Gödel modal logic has to
have the Internalization Property.

Theorem 47 (Realization Merging Theorem). Let CS be a schematic and axiomatically appropriate constant
specification for S0. Let φ′ ∈ L′� be p.a. and r1, r2 be normal realizations for φ′. Then, there is a normal
realization r for φ′ and a substitution σ such that:

(1) ∀x ∈ V : jvar(σ(x)) ⊆ {x};
(2) dom(σ) ⊆ {xn | 2n ∈ L(φ′)};
(3) for each subformula ψ′ of φ′:

(a) if ψ′ is a positive subformula of φ′, then `SCS (ψ′)riσ → (ψ′)r,
(b) if ψ′ is a negative subformula of φ′, then `SCS (ψ′)r → (ψ′)riσ,

where i = 1, 2.

Proof. At first, we assume that r1 and r2 are (using Fitting’s terminology from [14]) non-self-referential on
variables over φ′, that is we require that

�2nψ
′ ∈ sf(φ′) implies xn 6∈ jvar((ψ′)rj )

for j = 1, 2. Assuming this, we construct realization/substitution pairs (rψ′ , σψ′) for the subformulae ψ′ ∈ sf(φ′)
by recursion on the structure of ψ′ such that rψ′ is normal and:

(1) ∀x ∈ V : jvar(σψ′(x)) ⊆ {x};
(2) dom(σψ′) ⊆ {xn | 2n ∈ L(ψ′)};
(3) for all χ′ ∈ sf(ψ′):

(a) if χ′ is a positive subformula of φ′, then `SCS (χ′)riσψ′ → (χ′)rψ′ for i = 1, 2;
(b) if χ′ is a negative subformula of φ′, then `SCS (χ′)rψ′ → (χ′)riσψ′ for i = 1, 2.

8Here, and in the following, we write ◦ for the composition of functions. Note that as before, σ is representative for its extension
to a function from terms to terms.
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For the recursion base, we may set rψ′ := ∅ and σψ′ := idV for ψ′ being an atomic subformula of φ′. Clearly
these (rψ′ , σψ′) satisfy the conditions (1)-(3) and rψ′ is normal.

Now, suppose that α′, β′ are subformulae of φ′ and that together with realization/substitution pairs (rα′ , σα′), (rβ′ , σβ′)
they satisfy (1)-(3) and that rα′ , rβ′ are normal. Then, we have the following case-distinctions:

• If ψ′ = α′ ∧ β′ is a subformula of φ′, we define

rψ′(n) :=

{
rα′(n)σβ′ if n ∈ L(α′),

rβ′(n)σα′ if n ∈ L(β′),

and σψ′ := σα′σβ′ . Note first, that as φ′ is properly annotated and as ψ′ = α′ ∧ β′ is a subformula of
φ′, we have L(α′) ∩ L(β′) = ∅. Thus, as we have

dom(σα′) ⊆ {xn | 2n ∈ L(α′)} and dom(σβ′) ⊆ {xn | 2n ∈ L(β′)}
by induction hypothesis, we obtain dom(σα′) ∩ dom(σβ′) = ∅ and by item (4) of Remark 8, we get
σψ′ = σα′σβ′ = σβ′σα′ . Naturally, the conditions (1) and (2) are satisfied for σψ′ . Also, by the
above, it is straightforward to see that rψ′ is normal: rα′ , rβ′ are normal by induction hypothesis. Let
2n ∈ dom(rψ′), i.e. 2n ∈ L(α′) ∪ L(β′). If 2n ∈ L(α′), then rα′(2n) = xn as rα′ is normal. As
L(α′) ∩ L(β′) = ∅, we have 2n 6∈ L(β′). By condition (2) applied to σβ′ , we have σβ′(xn) = xn.
Therefore, we have rψ′(2n) = rα′(2n)σβ′ = xn. We similarly get this for 2n ∈ L(β′). Therefore, rψ′ is
normal.

For (3), let χ′ ∈ sf(ψ′), i.e. χ′ ∈ sf(α′) ∪ sf(β′) or χ′ = ψ′. Suppose the former and that χ′ ∈ sf(α′).
The case of χ′ ∈ sf(β′) follows analogously. We divide again between the following two cases:

– If χ′ is negative in φ′, then

`SCS (χ′)
rα′ → (χ′)

rjσα′ , j = 1, 2.

By the Substitution Lemma, we have

`SCS (χ′)
rα′σβ′ → (χ′)

rjσα′σβ′ , j = 1, 2.

Per definition of rψ′ and σψ′ , this amounts exactly to

`SCS (χ′)
rψ′ → (χ′)

rjσψ′ , j = 1, 2.

– If χ′ is positive in φ′, then similarly as before

`SCS (χ′)
rjσα′ → (χ′)

rα′ , j = 1, 2,

and therefore by using the substitution σβ′ again, we also obtain

`SCS (χ′)
rjσψ′ → (χ′)

rψ′

for j = 1, 2.
Now suppose χ′ = ψ′. Then, we again divide between ψ′ being positive or negative in φ′.

– Suppose ψ′ is negative in φ′. Then, α′ and β′ are negative in φ′ and thus we have, as above, that

`SCS (α′)
rψ′ → (α′)

rjσψ′ and `SCS (β′)
rψ′ → (β′)

rjσψ′

for j = 1, 2. Therefore, we get

`SCS
(
(α′)

rψ′ ∧ (β′)
rψ′
)
→
(
(α′)

rjσψ′ ∧ (β′)
rjσψ′

)
(j = 1, 2)

and hence
`SCS (α′ ∧ β′)rψ′ → (α′ ∧ β′)rjσψ′

for j = 1, 2, which is the claim.
– If ψ′ is positive in φ′. We similarly have

`SCS (α′)
rjσψ′ → (α′)

rψ′ and `SCS (β′)
rjσψ′ → (β′)

rψ′

for j = 1, 2 and therefore

`SCS
(
(α′)

rjσψ′ ∧ (β′)
rjσψ′

)
→
(
(α′)

rψ′ ∧ (β′)
rψ′
)

for j = 1, 2.
• If ψ′ = α′ ∨ β′ is a subformula of φ′ we again define

rψ′(n) :=

{
rα′(n)σβ′ if n ∈ L(α′),

rβ′(n)σα′ if n ∈ L(β′),

and σψ′ := σα′σβ′ as in the case of α′ ∧ β′. Note that again σα′σβ′ = σβ′σα′ . Then, the properties
(1)-(3) and normality of rψ′ follow as in the previous case for α′ ∧ β′. In particular, the case of χ′ = ψ′
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for item (3) can be obtained by following the same line of reasoning from the ∧-case, while using the
following theorem of G (and thus of SCS):

`SCS ((θ1 → θ2) ∧ (θ3 → θ4))→ ((θ1 ∨ θ3)→ (θ2 ∨ θ4)) .

• If ψ′ = α′ → β′ is a subformula of φ′, then we again set σψ′ := σα′σβ′ (also here commutativity applies)
as well as

rψ′(n) :=

{
rα′(n)σβ′ if n ∈ L(α′),

rβ′(n)σα′ if n ∈ L(β′).

The properties (1) and (2) for σψ′ follow as in the two previous cases. This rψ′ can be shown to be
normal by similar reasoning as in the ψ′ = α′ ∧ β′-case. So we only focus on the instance χ′ = ψ′ of
item (3). This case differs (a little) from the ∧(or ∨)-case and we thus give some details.

If ψ′ is negative in φ′, then α′ is positive and β′ is negative in φ′. Thus, we have by construction of
(rψ′ , σψ′) that

`SCS (α′)
rjσψ′ → (α′)

rψ′ and `SCS (β′)
rψ′ → (β′)

rjσψ′

for j = 1, 2 by similar reasoning as in the ∧(or ∨)-case. By propositional reasoning this yields

`SCS
(
(α′)

rψ′ → (β′)
rψ′
)
→
(
(α′)

rjσψ′ → (β′)
rjσψ′

)
(j = 1, 2)

which is exactly `SCS (ψ′)
rψ′ → (ψ′)

rjσψ′ for j = 1, 2.
If otherwise ψ′ is positive in φ′, then α′ is negative and β′ is positive in φ′ and the argument is similar

to the above with the roles of α′ and β′ reversed.
• If ψ′ = �iα′, we now already divide in the construction over whether ψ′ is a positive or a negative

subformula of φ′:
– if ψ′ is a positive subformula, then α′ is also a positive subformula and thus by assumption

`SCS (α′)
rjσα′ → (α′)

rα′

for j = 1, 2 where then, by Internalization in SCS , there are closed justification terms t1, t2 such
that

(†) `SCS tj :
(
(α′)

rjσα′ → (α′)
rα′
)

for j = 1, 2. We remind on Remark 2 (which also applies to the positive versions) that the terms
t1, t2 indeed can be chosen to be closed. We set σψ′ := σα′ and

rψ′(n) :=

{
[[t1 · r1(i)σα′ ] + [t2 · r2(i)σα′ ]] if n = i,

rα′(n) if n ∈ L(α′).

This rψ′ is normal: rα′ is normal by induction hypothesis and i is odd since ψ′ is positive in φ′

and φ′ is properly annotated, i.e. in particular sgnφ′(i) = {+1}. Items (1) and (2) follow directly
from the definition of σψ′ by the induction hypothesis applied to α′ and σα′ . We again focus on
(3) where we only consider the case of χ′ = ψ′ as before. The other cases are immediate as rψ′

respects rα′ on L(α′). Using (†), we obtain

`SCS rj(i)σα′ : (α′)
rjσα′ → [tj · rj(i)σα′ ] : (α′)

rα′

for j = 1, 2 and thus

`SCS rj(i)σα′ : (α′)
rjσα′ → [[t1 · r1(i)σα′ ] + [t2 · r2(i)σα′ ]] : (α′)

rα′

by the axiom schemes (J) and (+) in SCS where the latter is exactly `SCS (�iα′)rjσα′ → (�iα′)rψ′

for j = 1, 2.
– if ψ′ is a negative subformula, then α′ is also a negative subformula of φ′ and thus by assumption

`SCS (α′)
rα′ → (α′)

rjσα′

for j = 1, 2 where again, by the Internalization Property, we deduce that there are closed terms
s1, s2 such that

(‡) `SCS sj :
(
(α′)

rα′ → (α′)
rjσα′

)
for j = 1, 2. We take

rψ′(n) :=

{
xk if n = i,

rα′(n) if n ∈ L(α′),

and

σψ′(xn) :=

{
[[s1 + s2] · xk] if n = k,

σα′(xn) otherwise,
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where k := i/2. Note that i has to be even as sgnφ′(i) = {−1}, following the assumption that ψ′

is negative in φ′. Naturally, rψ′ is normal as rα′ is by induction hypothesis and as rψ′(2k) = xk.
For item (1), note that the terms s1, s2 are assumed to be closed.
This σψ′ also naturally satisfies item (2): if x ∈ dom(σψ′), then either x ∈ dom(σα′) or x = xk.
For the former, (2) follows from the induction hypothesis applied to α′. For the latter, clearly
2k = i ∈ L(ψ′) and thus xk ∈ {xn | 2n ∈ L(ψ′)}.
We verify item (3) for χ′ = ψ′. Again, as i is even, we have rj(i) = xk. By (‡), we then derive the
following for j = 1, 2 using the axiom scheme (+):

`SCS [s1 + s2] :
(
(α′)

rα′ → (α′)
rjσα′

)
.

Using this and the axiom scheme (J), we then obtain

`SCS xk : (α′)
rα′ → [[s1 + s2] · xk] : (α′)

rjσα′

for j = 1, 2. Note that it holds that [[s1 + s2] · xk] : (α′)
rjσα′ =

(
xk : (α′)

rj
)
σψ′ as we have

(α′)rjσα′ = (α′)rjσψ′ . To see the latter, suppose (α′)rjσα′ 6= (α′)rjσψ′ . Then, as σψ′ and σα′ are
equal on everything but xk, we have to have xk ∈ jvar((α′)rj ). But as �2kα

′ = �iα′ = ψ′ ∈ sf(φ′),
this is impossible as r1, r2 are assumed to be non-self-referential on variables over φ′. Therefore
the last derivation translates to

`SCS (�iα
′)rψ′ → (�iα

′)rjσψ′

for j = 1, 2.

If r1 and r2 were non-self-referential on variables over φ′, then the desired realization/substitution pair is
given by (rφ′ , σφ′) = (r, σ).

If r1 and r2 failed to be non-self-referential on variables over φ′, then we construct two new realizations r̂1,
r̂2 as follows: let j = 1, 2 and define

Pj := {n ∈ N | ∃k ∈ N : �2kψ
′ ∈ sf(φ′), n ∈ L(ψ′), xk ∈ jvar(rj(n))}.

These n ∈ Pj are the indices where non-self-referentiality fails in rj . We will temporarily replace those by new
justification variables and for this, we define

VPj :=

{
x
p
(j)
1
, . . . , x

p
(j)

|Pj |

}
⊆ V

with p
(j)
i < p

(j)
i+1 and where

(VP1
∪ VP2

) ∩ (jvar((φ′)r1) ∪ jvar((φ′)r2)) = ∅ and VP1
∩ VP2

= ∅.
Essentially, this last line just says that all these variables contained in VP1

∪ VP2
are distinct and not occurring

in (φ′)rj for j = 1, 2 (which is what we meant with new in the above). But this precise notation makes the
following definitions more succinct.

Now, for Pj =
{
n

(j)
1 , . . . , n

(j)
|Pj |

}
with n

(j)
i < n

(j)
i+1, we define

r̂j

(
n

(j)
i

)
= x

p
(j)
i

for i ∈ {1, . . . , |Pj |} and r̂j(n) = rj(n) for n 6∈ Pj . Note that these r̂j are both normal as rj is normal and every
n ∈ Pj has to be odd: if n is even, say n = 2m, then rj(n) = xm and if �2kψ

′ ∈ sf(φ′) with n ∈ L(ψ′), then
k 6= m as φ′ is properly annotated. Therefore xk 6∈ jvar(rj(n)).

These r̂j are now non-self-referential on variables over φ′ by construction. Using these temporarily modified
versions of the original rj , we construct a realization/substitution pair (r̂φ′ , σ̂φ′) for φ′ with respect to r̂1, r̂2 by
the recursive process from the first part of the proof.

Using this resulting (r̂φ′ , σ̂φ′), we then define two substitutions σ′, σ′′ via

σ′
(
x
p
(j)
i

)
= rj

(
n

(j)
i

)
σ̂φ′ and σ′′

(
x
p
(j)
i

)
= rj

(
n

(j)
i

)
for x

p
(j)
i
∈ VP1 ∪ VP2 and via σ′(x) = σ′′(x) = x for x 6∈ VP1 ∪ VP2 . Both of these substitutions are well-defined

as VP1
∩ VP2

= ∅. We define r := σ′ ◦ r̂φ′ as well as σ := σ̂φ′ and the desired realization substitution pair is now
given by (r, σ). σ′ serves to undo the previous introduction of new variables. To see that (r, σ) is the desired
realization/substitution pair corresponding to the original r1, r2, we verify the respective properties (1) - (3) for
(r, σ) over φ′ with respect to r1, r2.

By construction of (r̂φ′ , σ̂φ′), σ = σ̂φ′ satisfies (1) and (2). For (3), we first show two properties of σ′ and σ′′:

(i) σ′′σ̂φ′ = σ̂φ′σ
′;
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(ii) σ′′ ◦ r̂j = rj .

Item (ii) is quite immediate: as all variables from VP1
∪ VP2

are new, we obtain, since dom(σ′′) ⊆ VP1
∪ VP2

,
that r̂j(n)σ′′ = rj(n)σ′′ = rj(n) for any n 6∈ P1 ∪ P2 by definition of r̂j . For n ∈ Pj for j = 1 or j = 2, say

n = n
(j)
i , we have

r̂j

(
n

(j)
i

)
σ′′ = σ′′

(
x
p
(j)
i

)
= rj

(
n

(j)
i

)
by definition.

For item (i), note that, by definition, we have

(
x
p
(j)
i

)
σ′′σ̂φ′ = rj

(
n

(j)
i

)
σ̂φ′ =

(
x
p
(j)
i

)
σ′ =

(
x
p
(j)
i

)
σ̂φ′σ

′.

Here, everything but the last equality follows directly from the definitions. For this last equality, note that σ̂φ′

fulfills item (2) of the Realization Merging Theorem by construction, that is we have

dom(σ̂φ′) ⊆ {xn | 2n ∈ L(φ′)}.

So, as x
p
(j)
i

is a new variable, we in particular have σ̂φ′
(
x
p
(j)
i

)
= x

p
(j)
i

which gives the last equality.

Now, we want to establish item (3) for the pair (r, σ) with respect to the original r1, r2. We at first have

`SCS (ψ′)r̂jσ → (ψ′)r̂φ′

from (3) applied to (r̂φ′ , σ̂φ′) and r̂1, r̂2 (as σ = σ̂φ′) for ψ′ being a positive subformula of φ′. We apply the
substitution σ′ to obtain

`SCS (ψ′)r̂jσσ′ → (ψ′)r̂φ′σ′

By item (i) and (ii), we have (ψ′)r̂jσσ′ = (ψ′)r̂jσ′′σ = (ψ′)rjσ and therefore, as (ψ′)r̂φ′σ′ = (ψ′)rφ′ by definition,
we obtain

`SCS (ψ′)rjσ → (ψ′)rφ′ .

The argument is similar if ψ′ is a negative subformula of φ′. �

The above theorem was obtained, for the classical justification logic LP, by Fitting in [14]. Brünnler, Goetschi
and Kuznets state it without proof in [8] for the other common classical justification logics. The proof presented
here is a simplified version of that of Fitting from [14], adapted to the case of the Gödel justification logics.
However, one may note that the pre-linearity scheme is not needed in the proof and it thus stays valid in the
context of the intuitionistic justification logics as defined in [26].

We decided to follow this approach of Fitting towards realization as for one, the Realization Merging Theorem
can be used to provide further constructive insights into the justification logics in questions (see [14]) and, for
another, the proof of the Realization Theorem via the Realization Merging Theorem is modular in a way which
nicely accommodates the multitude of systems considered by us.

In the setting of the Realization Merging Theorem, we also say that the realization/substitution pair (r, σ)
hereditarily merges r1 and r2 on φ′.

8.2. Annotated calculi. In the following, let

HGML±� ∈ {HGK�,HGT �,HGK4�,HGS4�,HGK−�,HGT
−
�,HGK4−�,HGS4−�}.

We may define HGML±� in an annotated version over the language L′�, denoted by HGML±�
′
, which results

from the same rules as HGML±� (in the language L′�), but with the rules (�), (�−), (�B), (B�−)1, (B�−)2,
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(B�)1 and (B�)2 respectively replaced by corresponding annotated versions:

π′1, . . . , π
′
mB | γ′1, . . . , γ′n B φ′

�j1π
′
1, . . . ,�jmπ

′
mB | �i1γ′1, . . . ,�inγ′n B�kφ′

(�)′;

γ′1, . . . , γ
′
n B φ

′

�i1γ
′
1, . . . ,�inγ

′
n B�kφ′

(�−)′;

G′ | φ′,Γ′ B∆′

G′ | �kφ′,Γ′ B∆′
(�B)′;

γ′1, . . . , γ
′
n,�i1γ

′
1, . . . ,�inγ

′
n B φ

′

�i1γ
′
1, . . . ,�inγ

′
n B�kφ′

(B�−)′1;

�i1γ
′
1, . . . ,�inγ

′
n B φ

′

�i1γ
′
1, . . . ,�inγ

′
n B�kφ′

(B�−)′2;

π′1, . . . , π
′
m,�j1π

′
1, . . . ,�jmπ

′
mB | γ′1, . . . , γ′n,�i1γ′1, . . . ,�inγ′n B φ′

�j1π
′
1, . . . ,�jmπ

′
mB | �i1γ′1, . . . ,�inγ′n B�kφ′

(B�)′1;

�j1π
′
1, . . . ,�jmπ

′
mB | �i1γ′1, . . . ,�inγ′n B φ′

�j1π
′
1, . . . ,�jmπ

′
mB | �i1γ′1, . . . ,�inγ′n B�kφ′

(B�)′2.

We present these annotated modal rules by expanding the internal multisets into their constituting formulae.
We do this, as we want (and need) the freedom to index every formula in a multiset, counting multiplicities, by
a different annotated instance of � (as in Fitting’s [14]).

There is a natural notion of proof over these annotated calculi, this time defined via annotated trees of
annotated hypersequents. We use the same notation as in the context of the unannotated calculi.

We obtain the following lemma via an induction over the length of the proof:

Lemma 48. Let G′ be an annotated hypersequent. If γ′ `HGML±
�

′ G′, then γ′
• `HGML±

�
G′•.

Of particular interest however is the reversal of the above statement.

Lemma 49. If γ `HGML±
�
G, then for any annotation G′ of G, there is an annotated proof γ′ such that

γ′ `HGML±
�

′ G′ and γ′• = γ.

Proof. We fix an annotation G′ of G and propagate upwards through the proof tree, annotating the intermediate
sequents in the proof. The annotation of the premise hypersequents are always uniquely determined by the
annotation of the conclusion, as we do not consider the cut-rule. �

Note that the condition γ′• = γ especially implies that the proofs have the same length. This will be of
importance in the proof of the Realization Theorem later on.

9. The realization results

In this section, we prove the Realization Theorem by recursively constructing realizations over proofs in the
annotated calculi. For this, the following lemmas first provide results on how the Gödel justification logics
realize inference in the style of the various hypersequent rules.

Thus, in this section (if not stated otherwise) let

S0 ∈ {GJ 0,GJ T 0,GJ 40,GLP0,PGJ 0,PGJ T 0,PGJ 40,PGLP0}
and CS be a schematic and axiomatically appropriate and constant specification for S0. We only consider the
more complicated rules, i.e. those where either merging or modal reasoning is required in constructing the
realization.

9.1. Structural rules. Regarding the structural rules, we only consider the (COM)-rule. Not only does it
require the Realization Merging Theorem but the rule is actually a hypersequent counterpart to the pre-linearity
scheme (φ→ ψ) ∨ (ψ → φ) in propositional Gödel logic. This scheme is of greater importance as it actually is
the only axiom needed in addition to some formulation of the intuitionistic propositional calculus to axiomatize
[0, 1]-valued propositional Gödel logics.

Besides the approach over t-norm based semantics and Hájek’s basic logic BL, this is the other main seman-
tical access point to Gödel many-valued logics.

Lemma 50 ((COM)-case). Let H ′ := G′ | Γ′1,Γ′2 B∆′1 | Π′1,Π′2 B∆′2 be a p.a. hypersequent and suppose there
are normal realizations r and s for G′ | Γ′1,Π′1 B∆′1 and G′ | Γ′2,Π′2 B∆′2, respectively, such that

`SCS (G′ | Γ′1,Π′1 B∆′1)r and `SCS (G′ | Γ′2,Π′2 B∆′2)s.

Then, there is a normal realization t for H ′ such that `SCS (H ′)t.
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Proof. By the Realization Merging Theorem, there exists a normal realization u for G′ together with a substi-
tution σ such that u and σ hereditarily merge r and s on G′. In particular, we have

`SCS (G′)rσ → (G′)u and `SCS (G′)sσ → (G′)u.

We set

t(k) :=


r(k)σ if k ∈ L(Γ′1,Π

′
1 B∆′1),

s(k)σ if k ∈ L(Γ′2,Π
′
2 B∆′2),

u(k) if k ∈ L(G′),

and then obtain
`SCS (G′ | Γ′1,Π′1 B∆′1)r ∧ (G′ | Γ′2,Π′2 B∆′2)s,

that is
`SCS (G′)r ∨ (G′)s ∨ ((Γ′1,Π

′
1 B∆′1)r ∧ (Γ′2,Π

′
2 B∆′2)s).

By Lemma 46, we derive

`SCS (G′)rσ ∨ (G′)sσ ∨ ((Γ′1,Π
′
1 B∆′1)σ◦r ∧ (Γ′2,Π

′
2 B∆′2)σ◦s).

Thus, we get (by definition of t) that

`SCS (G′)t ∨ ((Γ′1,Π
′
1 B∆′1)t ∧ (Γ′2,Π

′
2 B∆′2)t),

and hence, by propositional reasoning in G, we derive

`SCS (G′)t ∨ (Γ′1,Γ
′
2 B∆′1)t ∨ (Π′1,Π

′
2 B∆′2)t

as, again by propositional reasoning in G, we have

`SCS ((φ1 ∧ ψ1 → χ1) ∧ (φ2 ∧ ψ2 → χ2))

→ ((φ1 ∧ φ2 → χ1) ∨ (ψ1 ∧ ψ2 → χ2))

as a theorem (even of G) using the axiom scheme (φ→ ψ) ∨ (ψ → φ).
The reasoning for normality of t is similar to the normality proofs occurring in the proof of the Realization

Merging Theorem: let 2k ∈ L(H ′) = dom(t). Then naturally t(2k) = u(2k) = xk if 2k ∈ L(G′) as u is
normal. Suppose 2k ∈ L(Γ′1,Π

′
1 B∆′1). Then r(2k) = xk as r is normal. Further, we have 2k 6∈ L(G′) as H ′ is

properly annotated and by item (2) of the Realization Merging Theorem for (u, σ) we have σ(xk) = xk. Thus
t(2k) = r(2k)σ = xk. If we assume 2k ∈ L(Γ′2,Π

′
2 B∆′2), we get this result using similar reasoning. �

9.2. Logical rules. The only logical rules which we consider explicitly are the branching rules, i.e. those rules
which have multiple assumptions, as the handling of them makes essential use of the merging of realizations (as
before with (COM)).

Lemma 51 ((→ B)-case). Let H ′ := G′ | Γ′1,Γ
′
2, φ
′ → ψ′ B ∆′ be a p.a. hypersequent and suppose there are

normal realizations r and s for G′ | Γ′1 B φ′ and G′ | Γ′2, ψ′ B∆′, respectively, such that

`SCS (G′ | Γ′1 B φ′)r and `SCS (G′ | Γ′2, ψ′ B∆′)s.

Then, there is a normal realization t for H ′ such that `SCS (H ′)t.

Proof. Suppose that `SCS (G′ | Γ′1 B φ′)r and `SCS (G′ | Γ′2, ψ′ B∆′)s. By the Realization Merging Theorem,
we obtain that there exists a normal realization u for G′ and a substitution σ such that u and σ hereditarily
merge r and s on G′. In particular, we again have

(†) `SCS (G′)rσ → (G′)u and `SCS (G′)sσ → (G′)u.

By propositional reasoning, we thus derive

`SCS (G′)r ∨ (G′)s ∨ ((Γ′1 B φ
′)r ∧ (Γ′2, ψ

′ B∆′)s)

and by the Substitution Lemma, we get

`SCS (G′)rσ ∨ (G′)sσ ∨ ((Γ′1 B φ
′)σ◦r ∧ (Γ′2, ψ

′ B∆′)σ◦s).

Propositionally, with (†), this implies

`SCS (G′)u ∨
((∧

Γ′1

)σ◦r
∧
(∧

Γ′2

)σ◦s
∧ ((φ′)σ◦r → (ψ′)σ◦s)→

(∨
∆′
)σ◦s)

.

Defining t by

t(k) :=


r(k)σ if k ∈ L(Γ′1 B φ

′),

s(k)σ if k ∈ L(Γ′2, ψ
′ B∆′),

u(k) if k ∈ L(G′).

then results in `SCS (H ′)t. Now, t can be shown to be normal by similar reasoning as with the rule (COM). �
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Lemma 52 ((B∧)-case). Let H ′ := G′ | Γ′ B φ′ ∧ ψ′ be a p.a. hypersequent and suppose there are normal
realizations r and s for G′ | Γ′ B φ′ and G′ | Γ′ B ψ′, respectively, such that

`SCS (G′ | Γ′ B φ′)r and `SCS (G′ | Γ′ B ψ′)s.

Then, there is a normal realization t for H ′ such that `SCS (H ′)t.

Proof. Suppose `SCS (G′ | Γ′Bφ′)r and `SCS (G′ | Γ′Bψ′)s. Then, by the Realization Merging Theorem, there
exists a normal realization u for G′ | Γ′ B and a substitution σ which hereditarily merge r, s on G′ | Γ′ B. That
is, we in particular have:

(∗)

{
`SCS (G′)rσ → (G′)u;

`SCS (G′)sσ → (G′)u;

(∗∗)

{
`SCS (

∧
Γ′)

u → (
∧

Γ′)
r
σ;

`SCS (
∧

Γ′)
u → (

∧
Γ′)

s
σ.

Therefore, by propositional reasoning, we obtain the following implications:

`SCS (G′)r ∨ (G′)s ∨ ((Γ′ B φ′)r ∧ (Γ′ B ψ′)s)

implies `SCS (G′)u ∨
((∧

Γ′
)r
σ → (φ′)σ◦r ∧

(∧
Γ′
)s
σ → (ψ′)σ◦s

)
by (∗)

implies `SCS (G′)u ∨
((∧

Γ′
)u
→ (φ′)σ◦r ∧

(∧
Γ′
)u
→ (ψ′)σ◦s

)
by (∗∗)

implies `SCS (G′)u ∨
((∧

Γ′
)u
→ (φ′)σ◦r ∧ (ψ′)σ◦s

)
.

Again, we define t by

t(k) :=


r(k)σ if k ∈ L(φ′),

r(k)σ if k ∈ L(ψ′),

u(k) if k ∈ L(G′ | Γ′B),

and then derive `SCS (H ′)t. As before, normality of t follows as with the (COM)-rule. �

Lemma 53 ((∨B)-case). Let H ′ := G′ | Γ′, φ′ ∨ ψ′ B∆′ be a p.a. hypersequent and suppose there are normal
realizations r and s for G′ | Γ′, φ′ B∆′ and G′ | Γ′, ψ′ B∆′, respectively, such that

`SCS (G′ | Γ′, φ′ B∆′)r and `SCS (G′ | Γ′, ψ′ B∆′)s.

Then, there is a normal realization t for H ′ such that `SCS (H ′)t.

Proof. Suppose `SCS (G′ | Γ′, φ′ B ∆′)r and `SCS (G′ | Γ′, ψ′ B ∆′)s. By the Realization Merging Theorem,
there is a normal realization u for G′ | Γ′ B∆′ together with a substitution σ which hereditarily merge r, s on
G′ | Γ′ B∆′. That is, we again in particular have

`SCS (G′)rσ → (G′)u, `SCS (G′)sσ → (G′)u,

`SCS
(∧

Γ′
)u
→
(∧

Γ′
)r
σ, `SCS

(∧
Γ′
)u
→
(∧

Γ′
)s
σ,

`SCS
(∨

∆′
)r
σ →

(∨
∆′
)u
, `SCS

(∨
∆′
)s
σ →

(∨
∆′
)u
.

As before, using propositional reasoning over G, we get

`SCS (G′)r ∨ (G′)s ∨ ((Γ′, φ′ B∆′)r ∧ (Γ′, ψ′ B∆′)s)

by the assumptions and therefore, using the Substitution Lemma, this yields

`SCS (G′)u ∨
((∧

Γ′
)u
∧ ((φ′)σ◦r ∨ (ψ′)σ◦s)→

(∨
∆′
)u)

.

with additional propositional reasoning and together with the above implications from the Realization Merging
Theorem.

We define t by

t(k) :=


r(k)σ if k ∈ L(φ′),

s(k)σ if k ∈ L(ψ′),

u(k) if k ∈ L(G′ | Γ′ B∆′),

and obtain `SCS (H ′)t from the last line. Normality of t can again be established by similar reasoning as with
the rule (COM). �
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9.3. Modal rules. At last, we consider the various modal rules. As they require reasoning using actual
principles of justifications in the Gödel justification calculi, we give full proofs in each case.

Lemma 54 ((�−)-case). Let G′ := γ′1, . . . , γ
′
nBφ

′, H ′ := �i1γ
′
1, . . . ,�inγ

′
nB�kφ

′ be p.a. and let r be a normal
realization for G′ such that `SCS (G′)r. Then, there is a normal realization s for H ′ such that `SCS (H ′)s.

Proof. Let G′ and H ′ be given as required where `SCS (G′)r for a normal realization r for G′. We thus have

(†) `SCS
n∧
j=1

(γ′)rj → (φ′)r.

We set s(m) := r(m) for all m ∈ L(G′). As H ′ is properly annotated, we get ij 6∈ L(G′) for all 1 ≤ j ≤ n. We
hence set s(ij) := x(ij)/2 for all j ∈ {1, . . . , n} which results in a well-defined and normal realization (so far) as
H ′ is properly annotated and (thus) all ij are even.

Now, by the Lifting Lemma (see also Remark 5), we have by (†) that there is a term t ∈ Jt such that

`SCS
n∧
j=1

s(ij) : (γ′j)
r → t : (φ′)r.

Thus, by setting s(k) := t, we then immediately obtain that s is a normal realization for H ′ with `SCS (H ′)s

as s �L(G′)= r �L(G′).
9 �

Before moving on to the rule (�), we give the following preliminary lemma.
For this, let S be the class of Gödel-Mkrtychev models with respect to which completeness was proved for

S0.

Lemma 55. Let Γ,∆ be finite sets of justification formulae (in the appropriate language for S0) and φ be a
formula. Let CS be any constant specification for S0. We have

`SCS

(∧
δ∈∆

δ → ⊥

)
∨

∧
γ∈Γ

γ → φ


if, and only if

¬¬∆,Γ `SCS φ

where ¬¬∆ := {¬¬δ | δ ∈ ∆}.

Proof. By the Completeness Theorem for SCS-models, Theorem 3, we have

`SCS

(∧
δ∈∆

δ → ⊥

)
∨

∧
γ∈Γ

γ → φ

 iff |=SCS

(∧
δ∈∆

δ → ⊥

)
∨

∧
γ∈Γ

γ → φ


and, by additionally using the Deduction Theorem, we obtain

¬¬∆,Γ `SCS φ iff ¬¬∆ `SCS
∧
γ∈Γ

γ → φ iff ¬¬∆ |=SCS

∧
γ∈Γ

γ → φ.

9We write f �Y for the restriction of a function f : X → Z to a subdomain Y ⊆ X.
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We get the following equivalences:

|=SCS

(∧
δ∈∆

δ → ⊥

)
∨

∧
γ∈Γ

γ → φ


iff ∀M ∈ SCS : max

| ∧
δ∈∆

δ → ⊥|M, |
∧
γ∈Γ

γ → φ|M

 = 1

iff ∀M ∈ SCS : |
∧
δ∈∆

δ|M = 0 or |
∧
γ∈Γ

γ|M ≤ |φ|M

iff ∀M ∈ SCS : |
∧
δ∈∆

δ|M > 0 implies |
∧
γ∈Γ

γ|M ≤ |φ|M

iff ∀M ∈ SCS : |
∧
δ∈∆

¬¬δ|M = 1 implies |
∧
γ∈Γ

γ|M ≤ |φ|M

iff ∀M ∈ SCS : |¬¬∆|M = 1 implies |
∧
γ∈Γ

γ|M ≤ |φ|M

iff ¬¬∆ |=SCS

∧
γ∈Γ

γ → φ.

�

Lemma 56 ((�)-case). Assume S0 ∈ {PGJ 0,PGJ T 0,PGJ 40,PGLP0} and let CS be a schematic and ax-
iomatically appropriate constant specification for S0. Let

H ′ := �j1π
′
1, . . . ,�jmπ

′
mB | �i1γ′1, . . . ,�inγ′n B�kφ′

be a p.a. hypersequent and let r be a normal realization for

G′ := π′1, . . . , π
′
mB | γ′1, . . . , γ′n B φ′

such that `SCS (G′)r. Then, there is a normal realization s for H ′ such that `SCS (H ′)s.

Proof. By hypothesis, we have `SCS (G′)r, i.e. spelled out we have

`SCS

(
m∧
l=1

(π′l)
r → ⊥

)
∨

(
n∧
l=1

(γ′l)
r → (φ′)r

)
.

By Lemma 55, this implies

(†) ¬¬(π′1)r, . . . ,¬¬(π′m)r, (γ′1)r, . . . , (γ′n)r `SCS (φ′)r.

We set s(h) := r(h) for h ∈ L(G′) and s(il) := x(il)/2 as well as s(jl) := x(jl)/2 which is again (so far) well-
defined and normal as H ′ is properly annotated and (therefore) the il, jl are even. Now we have, by the Lifting
Lemma (Remark 5) and by (†), that

ϑs(j1) : ¬¬(π′1)r, . . . , ϑs(jm) : ¬¬(π′m)r, s(i1) : (γ′1)r, . . . , s(in) : (γ′n)r `SCS t : (φ′)r

for some t ∈ Jtϑ. We then set s(k) := t and by the axiom scheme (P ), we derive

`SCS ¬¬s(jl) : (π′l)
r → ϑs(jl) : ¬¬(π′l)

r

for all l = 1, . . . ,m which implies

¬¬s(j1) : (π′1)r, . . . ,¬¬s(jm) : (π′m)r, s(i1) : (γ′1)r, . . . , s(in) : (γ′n)r `SCS t : (φ′)r

using propositional reasoning. Again by Lemma 55, this yields

(‡) `SCS

(
m∧
l=1

s(jl) : (π′l)
r → ⊥

)
∨

(
n∧
l=1

s(il) : (γ′l)
r → t : (φ′)r

)
It is straightforward to see that (‡) is equivalent with `SCS (H ′)s and as r is normal, s is normal by construction.

�
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Lemma 57 ((�B)-case). Assume S0 ∈ {GJ T 0,GLP0,PGJ T 0,PGLP0} and let CS be a schematic and
axiomatically appropriate constant specification for S0. Let G′ | �kφ′,Γ′ B ∆′ be a p.a. hypersequent and
suppose there is a normal realization r for G′ | φ′,Γ′ B∆′ such that

`SCS (G′ | φ′,Γ′ B∆′)r.

Then, there is a normal realization s for G′ | �kφ′,Γ′ B∆′ such that

`SCS (G′ | �kφ′,Γ′ B∆′)s.

Proof. Set H ′ := G′ | φ′,Γ′ B∆′ and I ′ := G′ | �kφ′,Γ′ B∆′. Then, by assumption, we have `SCS (H ′)r for a
normal realization r. This translates to

`SCS (G′)r ∨
((

(φ′)r ∧
(∧

Γ′
)r)
→
(∨

∆′
)r)

.

We set s(i) := r(i) for i ∈ L(H ′) and s(k) := xk/2 (note that k is even as it is a negative index in I ′ and I ′ is
p.a.).

As `SCS t : (φ′)r → (φ′)r, by axiom (F ), for all t, we have by propositional reasoning in SCS that

`SCS (G′)r ∨
((
s(k) : (φ′)r ∧

(∧
Γ′
)r)
→
(∨

∆′
)r)

.

Clearly s is normal by construction as r is normal and also `SCS (H ′)s. �

Lemma 58 ((B�−)1-case). Assume S0 ∈ {GJ 40,GLP0,PGJ 40,PGLP0} and let CS be a schematic and
axiomatically appropriate constant specification for S0. Let

H ′ := �i1γ
′
1, . . . ,�inγ

′
n B�kφ

′

be a p.a. hypersequent. Let r be a normal realization for

G′ := γ′1, . . . , γ
′
n,�i1γ

′
1, . . . ,�inγ

′
n B φ

′

such that `SCS (G′)r. Then, there is a normal realization s for H ′ such that `SCS (H ′)s.

Proof. `SCS (G′)r translates to

(†) `SCS
n∧
l=1

(γ′l)
r ∧

n∧
l=1

xjl : (γ′l)
r → (φ′)r

as r is normal and where r(il) = xjl . By the Lifting Lemma, there is a term t such that

`SCS
n∧
l=1

xjl : (γ′l)
r ∧

n∧
l=1

!xjl : xjl : (γ′l)
r → t : (φ′)r

and using the axiom scheme (!), we derive

`SCS xjk : (γ′k)r →!xjk : xjk : (γ′k)r.

Thus, the above implies

`SCS
n∧
l=1

xjl : (γ′l)
r → t : (φ′)r

which gives the claim if we set

s(m) :=

{
r(m) if m ∈ L(G′),

t if m = k,

for m ∈ L(H ′) using the respective t, as then `SCS (H ′)s and s is clearly normal. �

Lemma 59 ((B�−)2-case). Assume S0 ∈ {GJ 40,GLP0,PGJ 40,PGLP0} and let CS be a schematic and
axiomatically appropriate constant specification for S0. Let

H ′ := �i1γ
′
1, . . . ,�inγ

′
n B�kφ

′

be a p.a. hypersequent. Let r be a normal realization for

G′ := �i1γ
′
1, . . . ,�inγ

′
n B φ

′

such that `SCS (G′)r. Then, there is a normal realization s for H ′ such that `SCS (H ′)s.
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Proof. Spelled out, `SCS (G′)r is exactly

`SCS
n∧
l=1

xjl : (γ′l)
r → (φ′)r

with r(il) = xjl . By propositional reasoning, we obtain

`SCS

(
n∧
l=1

(γ′l)
r ∧

n∧
l=1

xjl : (γ′l)
r

)
→ (φ′)r.

For I ′ := γ′1, . . . , γ
′
n,�i1γ

′
1, . . . ,�inγ

′
n B φ

′, that is exactly `SCS (I ′)r and Lemma 58 gives the result. �

Lemma 60 ((B�)1-case). Assume S0 ∈ {PGJ 40,PGLP0} and let CS be a schematic and axiomatically
appropriate constant specification for S0. Let

H ′ := �j1π
′
1, . . . ,�jmπ

′
mB | �i1γ′1, . . . ,�inγ′n B�kφ′

be a p.a. hypersequent. Let r be a normal realization for

G′ := π′1, . . . , π
′
m,�j1π

′
1, . . . ,�jmπ

′
mB | γ′1, . . . , γ′n,�i1γ′1, . . . ,�inγ′n B φ′

such that `SCS (G′)r. Then, there is a normal realization s for H ′ such that `SCS (H ′)s.

Proof. Suppose that there is an r such that `SCS (G′)r. Then, by unwinding the realization and applying
Lemma 55, we obtain

m∧
l=1

¬¬(π′l)
r,

m∧
l=1

¬¬r(jl) : (π′l)
r,

n∧
l=1

(γ′l)
r,

n∧
l=1

r(il) : (γ′l)
r `SCS (φ′)r.

By the Lifting Lemma, there is a term t ∈ Jt such that
m∧
l=1

ϑr(jl) : ¬¬(π′l)
r,

m∧
l=1

ϑ!r(jl) : ¬¬r(jl) : (π′l)
r,

n∧
l=1

r(il) : (γ′l)
r,

n∧
l=1

!r(il) : r(il) : (γ′l)
r `SCS t : (φ′)r.(†)

By the axiom scheme (!), we obtain

`SCS
n∧
l=1

r(il) : (γ′l)
r →

n∧
l=1

!r(il) : r(il) : (γ′l)
r.

Further, by axiom scheme (P ), we have

`SCS
m∧
l=1

¬¬r(jl) : (π′l)
r →

m∧
l=1

ϑr(jl) : ¬¬(π′l)
r

as well as

`SCS
m∧
l=1

¬¬!r(jl) : r(jl) : (π′l)
r →

m∧
l=1

ϑ!r(jl) : ¬¬r(jl) : (π′l)
r.

Using the axiom scheme (!) as well as the propositional theorem

`SCS (φ→ ψ)→ (¬¬φ→ ¬¬ψ),

we get

`SCS
m∧
l=1

¬¬r(jl) : (π′l)
r →

m∧
l=1

¬¬!r(jl) : r(jl) : (π′l)
r.

Hence, (†) reduces to

(‡)
m∧
l=1

¬¬r(jl) : (π′l)
r,

n∧
l=1

r(il) : (γ′l)
r `SCS t : (φ′)r.

The desired realization s can be given through

s(h) :=

{
r(h) if h ∈ L(G′),

t if h = k,

where h ∈ L(H ′). Then, (‡) is exactly `SCS (H ′)s. This s can also easily be seen to be normal. �
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Lemma 61 ((B�)2-case). Assume S0 ∈ {PGJ 40,PGLP0} and let CS be a schematic and axiomatically
appropriate constant specification for S0. Let

H ′ := �j1π
′
1, . . . ,�jmπ

′
mB | �i1γ′1, . . . ,�inγ′n B�kφ′

be a p.a. hypersequent. Let r be a normal realization for

G′ := �j1π
′
1, . . . ,�jmπ

′
mB | �i1γ′1, . . . ,�inγ′n B φ′

such that `SCS (G′)r. Then, there is a normal realization s for H ′ such that `SCS (H ′)s.

Proof. As in the proof of Lemma 59, we have

`SCS

(
m∧
l=1

r(jl) : (π′l)
r → ⊥

)
∨

(
n∧
l=1

r(il) : (γ′l)
r → (φ′)r

)
from `SCS (G′)r and, by propositional reasoning, we derive

`SCS

(
m∧
l=1

(π′l)
r ∧

m∧
l=1

r(jl) : (π′l)
r → ⊥

)
∨

(
m∧
l=1

(γ′l)
r ∧

n∧
l=1

r(il) : (γ′l)
r → (φ′)r

)
After setting I ′ := π′1, . . . , π

′
m,�j1π

′
1, . . . ,�jmπ

′
mB | γ′1, . . . , γ′n,�i1γ′1, . . . ,�inγ′n B φ′, that amounts to `SCS

(I ′)r and thus the result follows by Lemma 60. �

We now turn to the main result.

Theorem 62 (Realization Theorem). Let

GJL0 ∈ {GJ 0,GJ T 0,GJ 40,GLP0}
and

GML� ∈ {GK�,GT �,GK4�,GS4�}.
be the respective corresponding modal logic. Let CS,CS′ be schematic and axiomatically appropriate constant
specifications for GJL0,PGJL0, respectively. Then

ThGML−
�

= (ThGJLCS )ν and ThGML�
= (ThPGJLCS′ )

ν .

Proof. The inclusions from right to left come from Lemma 21 and Lemma 33. Let GML±� be the modal calculus
and S0 be the (maybe positive) justification calculus. Further, let CS be a schematic and axiomatically appro-
priate constant specification for S0. Corresponding to GML±�, let HGML±� be the corresponding hypersequent

calculus and HGML±�
′

be its annotated version as before.
To establish the theorem, we first show the following claim:

Claim: If `HGML±
�

′ G′ where G′ is properly annotated, then there is a normal realization r for G′ such that

`SCS (G′)r.

Proof: By induction on the length of the proof in HGML±�
′
. For the initial hypersequents (IDw), (B>w), (⊥Bw),

the empty realization suffices which is also, naturally, normal.
For the induction step, suppose the claim holds for all properly annotated hypersequents H ′ with a proof of

length ≤ k and let G′ have a proof of length k + 1.
Now, if G′ is an initial hypersequent, then the empty realization suffices again. If G′ is obtained by any of the

rules but (EC), (CL), (B�−)′1 and (B�)′1, the premise(s) are properly annotated. By the induction hypothesis,
as the proof(s) are shorter, there are normal realizations for them. For most of the rules, it simply suffices to
carry over these previous realizations to the conclusion G′. We thus only mention the following interesting cases
(where more is needed).

For the branching rules (COM), (→ B), (B∧) and (∨B), the required realization for G′ can be obtained
through the Lemmas 50, 51, 52 and 53, respectively.

For the modal rules (�−)′, (�)′, (�B)′, (B�−)′2 and (B�)′2, the required realization for G′ can be obtained
through the Lemmas 54, 56, 57, 59 and 61, respectively.

Now, if G′ is obtained by either (1) (EC), (2) (CL), (3) (B�)′1 or (4) (B�−)′1, then the premise is not properly
annotated so we handle these cases explicitly.

(1) We haveG′ = H ′1 | H ′2 with properly annotated hypersequentsH ′1, H
′
2. We writeHj = (H ′j)

• for j = 1, 2.
As G′ was obtained by (EC), the annotated hypersequent H ′1 | H ′2 | H ′2, although not properly annotated
anymore, is provable with a shorter proof. However, we may consider a different properly annotated
hypersequent H ′′2 with (H ′′2 )• = H2 such that, additionally, H ′1 | H ′2 | H ′′2 is properly annotated. By
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Lemma 49, this reannotation of H ′1 | H ′2 | H ′2 has a proof of the same length. By the induction
hypothesis, there is a normal realization function s for H ′1 | H ′2 | H ′′2 such that `SCS (H ′1 | H ′2 | H ′′2 )s.

We set s1 := s �L(H′2) and s2 :=
(
s �L(H′′2 )

)
◦ LH′2,H′′2 . Note, that also s2 is a realization with domain

L(H ′2) (see Definition 22). However, due to the change of labels in s2, it may not be normal anymore.
To reobtain normality, we introduce the following substitution σ′:

σ′(xm) =

{
xn if LH′2,H′′2 (2n) = 2m where 2m ∈ L(H ′′2 ),

xm otherwise.

Note that σ′ is well-defined as LH′2,H′′2 is a bijection and that dom(σ′) = {xm | 2m ∈ L(H ′′2 )}. Now,
σ′ ◦ s1 and σ′ ◦ s2 are both normal. For the former, as dom(σ′) = {xm | 2m ∈ L(H ′′2 )}, we have that
xm ∈ dom(σ)′ implies 2m 6∈ L(H ′2) = dom(s1) as H ′1 | H ′2 | H ′′2 is properly annotated. Thus σ′ ◦ s1

is normal. For the latter, let 2n ∈ L(H ′2) and let m be such that LH′2,H′′2 (2n) = 2m. Then we have
s2(2n) = s(2m) = xm by normality of s and thus (σ′ ◦s2)(2n) = xmσ

′ = xn. Therefore σ′ ◦s2 is normal.
By the Realization Merging Theorem, we obtain that there is a normal realization q for H ′2 together

with a substitution σ which hereditarily merge σ′ ◦ s1 and σ′ ◦ s2 on H ′2. In particular, this implies

`SCS (H ′2)σ
′◦siσ → (H ′2)q

for i = 1, 2. We therefore have

`SCS (H ′1)s ∨ (H ′2)s ∨ (H ′′2 )s implies `SCS (H ′1)s ∨ (H ′2)s1 ∨ (H ′2)s2

implies `SCS ((H ′1)s ∨ (H ′2)s1 ∨ (H ′2)s2)σ′σ

implies `SCS (H ′1)sσ′σ ∨ (H ′2)σ
′◦s1σ ∨ (H ′2)σ

′◦s2σ

implies `SCS (H ′1)σ
′σ◦s ∨ (H ′2)q

We take the desired realization to be

r(n) :=

{
(σ′σ ◦ s)(n) if n ∈ L(H ′1),

q(n) if n ∈ L(H ′2).

This r is normal: if 2n ∈ dom(r), then either 2n ∈ L(H ′2) and thus r(2n) = q(2n) = xn as q is normal or
we have 2n ∈ L(H ′1). Then, as s is normal we have s(2n) = xn. As H ′1 | H ′2 | H ′′2 is properly annotated,
we have 2n 6∈ L(H ′′2 ) and thus σ′(xn) = xn. Further, we also have 2n 6∈ L(H ′2). Now, by property (2)
of the Realization Merging Theorem and as σ and q hereditarily merge σ′ ◦ s1 and σ′ ◦ s2 on H ′2, we
have xn 6∈ dom(σ) and thus r(2n) = s(2n)σ′σ = xn.

(2) If G′ was obtained by (CL), then G′ = H ′ | Γ′, φ′B∆′. As before, we properly annotate H | Γ, φ, φB∆
by H ′ | Γ′, φ′, φ′′B∆′ (a reannotation of H ′ | Γ′, φ′, φ′B∆′ in the sense of before) and by the induction
hypothesis there is now a normal realization s for it such that

`SCS (H ′ | Γ′, φ′, φ′′ B∆′)s.

Now, we define s1 := s �L(φ′B) and s2 =
(
s �L(φ′′B)

)
◦ L(φ′B),(φ′′B). Again, s2 fails to be normal due to

the change of labels. Thus, we again introduce a substitution σ′ defined by

σ′(xm) :=

{
xn if L(φ′B),(φ′′B)(2n) = 2m where 2m ∈ L(φ′′B),

xm otherwise.

Again, we have that σ′ is well-defined as L(φ′B),(φ′′B) is a bijection and we obtain that dom(σ′) = {xm |
2m ∈ L(φ′′B)}. Similarly as with the rule (EC), one can show that both σ′ ◦ s1 and σ′ ◦ s2 are normal.

Using the Realization Merging Theorem again, there is a realization q for “φ′B” together with a
substitution σ which hereditarily merge σ′ ◦ s1 and σ′ ◦ s2 on “φ′B”. Thus, as the (φ′)σ

′◦si are negative

subformulae of (φ′B)σ
′◦si for i = 1, 2, respectively, this yields

`SCS (φ′)q → (φ′)σ
′◦siσ



42 NICHOLAS PISCHKE

for i = 1, 2. Hence, we have

`SCS (H ′ | Γ′, φ′, φ′′ B∆′)s

implies `SCS
(

(H ′)s ∨
((∧

Γ′
)s
∧ (φ′)s1 ∧ (φ′)s2 →

(∨
∆′
)s))

σ′σ

implies `SCS (H ′)sσ′σ ∨
((∧

Γ′
)s
σ′σ ∧ (φ′)σ

′◦s1σ ∧ (φ′)σ
′◦s2σ →

(∨
∆′
)s
σ′σ
)

implies `SCS (H ′)σ
′σ◦s ∨

((∧
Γ′
)σ′σ◦s

∧ (φ′)q →
(∨

∆′
)σ′σ◦s)

and get the desired realization from the last line by

r(n) :=

{
q(n) if n ∈ L(φ′),

(σ′σ ◦ s)(n) if n ∈ L(G′) \ L(φ′).

By similar reasoning as with the rule (EC), this r can be shown to be normal.
(3) If G′ was obtained by (B�)′1, then

G′ = �j1π
′
1, . . . ,�jmπ

′
mB | �i1γ′1, . . . ,�inγ′n B�kφ′

and H ′ defined by

H ′ := π′1, . . . , π
′
m,�j1π

′
1, . . . ,�jmπ

′
mB | γ′1, . . . , γ′n,�i1γ′1, . . . ,�inγ′n B φ′

is provable with a shorter proof. We properly reannotate H ′ as H ′′ with

H ′′ = π′′1 , . . . , π
′′
m,�j1π

′
1, . . . ,�jmπ

′
mB | γ′′1 , . . . , γ′′n,�i1γ′1, . . . ,�inγ′n B φ′

and by Lemma 49, H ′′ is provable with a shorter proof than G′. Therefore, by the induction hypothesis,
there is a normal realization s for H ′′ such that

(†) `SCS (H ′′)s.

Define

H ′1 := �j1π
′
1, . . . ,�jmπ

′
m B and H ′′1 := �j1π

′′
1 , . . . ,�jmπ

′′
m B .

and construct s1, s2 by s1 := s �L(H′1) and s2 =
(
s �L(H′′1 )

)
◦LH′1,H′′1 . Similarly as with the two previous

rules, we introduce a substitution σ′1 given via

σ′1(xm) =

{
xn if LH′1,H′′1 (2n) = 2m where 2m ∈ L(H ′′1 ),

xm otherwise,

to make s2 normal again after the change of labels. It can again be easily seen that σ′1 is well-defined
and that dom(σ′1) = {xm | 2m ∈ L(H ′′1 )}. From this, normality of σ′1 ◦ s1 and σ′1 ◦ s2 follows as before.

From the Realization Merging Theorem, we obtain that there is a normal realization q1 for H ′1 and
a substitution σ1 such that they hereditarily merge σ′1 ◦ s1 and σ′1 ◦ s2 on H ′1. This in particular (by
considering the definitions of s1, s2) implies

`SCS (π′l)
q1 → (π′′l )σ

′
1◦sσ1,

`SCS (�jlπ
′
l)
q1 → (�jlπ

′
l)
σ′1◦sσ1,

as (π′l)
s2 = (π′′l )s. Similarly, we may define

H ′2 := �i1γ
′
1, . . . ,�inγ

′
n B and H ′′2 := �i1γ

′′
1 , . . . ,�inγ

′′
nB

as well as t1 := s �L(H′2) and t2 :=
(
s �L(H′′2 )

)
◦ LH′2,H′′2 . For t2, we introduce a substitution σ′2 similar

to σ′1 via

σ′2(xm) =

{
xn if LH′2,H′′2 (2n) = 2m where 2m ∈ L(H ′′2 ),

xm otherwise.

One can again show that σ′2 is well-defined and that dom(σ′2) = {xm | 2m ∈ L(H ′′2 )}. Normality of
σ′2 ◦ t1 and σ′2 ◦ t2 follows as before. So, again using the Realization Merging Theorem, one obtains a
normal realization q2 for H ′2 and a substitution σ2 such that they hereditarily merge σ′2 ◦ t1 and σ′2 ◦ t2
on H ′2. In particular, considering the definition of t1, t2, we have

`SCS (γ′l)
q2 → (γ′′l )σ

′
2◦sσ2,

`SCS (�ilγ
′
l)
q2 → (�ilγ

′
l)
σ′2◦sσ2.
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Note that σ′1σ1 and σ′2σ2 commute in the sense of Remark 8 by properties (1) and (2) of the Realization
Merging Theorem. Using `SCS (H ′′)s, we obtain `SCS (H ′′)sσ′1σ1σ

′
2σ2 by the Substitution Lemma and

therefore

`SCS

((
m∧
l=1

(π′′l )σ
′
1σ1◦sσ′2σ2 ∧

m∧
l=1

(�jlπ
′
l)
σ′1σ1◦sσ′2σ2

)
→ ⊥

)

∨

((
n∧
l=1

(γ′′l )σ
′
2σ2◦sσ′1σ1 ∧

n∧
l=1

(�i1γ
′
l)
σ′2σ2◦sσ′1σ1

)
→ (φ′)σ

′
1σ1σ

′
2σ2◦s

)
Therefore, by the properties of q1 and q2 from above, we obtain

`SCS

((
m∧
l=1

(π′l)
σ′2σ2◦q1 ∧

m∧
l=1

(�jlπ
′
l)
σ′2σ2◦q1

)
→ ⊥

)

∨

((
n∧
l=1

(γ′l)
σ′1σ1◦q2 ∧

n∧
l=1

(�i1γ
′
l)
σ′1σ1◦q2

)
→ (φ′)σ

′
1σ1σ

′
2σ2◦s

)
If we define

r′(n) :=


(σ′2σ2 ◦ q1)(n) if n ∈ L(�j1π

′
1, . . . ,�jmπ

′
mB),

(σ′1σ1 ◦ q2)(n) if n ∈ L(�i1γ
′
1, . . . ,�inγ

′
n),

(σ′1σ1σ
′
2σ2 ◦ s)(n) if n ∈ L(φ′).

then we obtain that `SCS (H ′)r
′
. Again, by similar reasoning as before, this r′ is normal. The desired

realization r for G′ is then given by Lemma 60.
(4) If G′ was obtained by (B�−)′1, then this case can be handled in a similar way as the (B�)′1-case, using

Lemma 58.

�
We then obtain the Realization Theorem as follows: if `GML±

�
φ, then by Theorem 44 and Theorem 45 we have

`HGML±
�
Bφ. Now, for some proper annotation φ′ of φ, we have that `HGML±

�

′ Bφ′ with an annotated proof

by Lemma 49. By the above claim, there is a realization r for φ′ such that `SCS (φ′)r. �

10. Discussion

We have shown that the four Gödel justification logics GJ CS , GJ T CS , GJ 4CS , GLPCS from [29] do not
realize the standard Gödel modal logics GK�, GT �, GK4� and GS4� from [9] and by this answered one of the
open problems from [29] (and, implicitly, from [15]) negatively. In fact, all of them as well as GJ 45CS do not
even realize GK� since the problem lies with the axiom scheme (Z).

We didn’t consider the Gödel justification logic GJ T 45CS (for some constant specification CS) as the methods
which were employed to show non-realization for the other logics do not extend to this case. In particular, the
model Mx is not a GMT45-model, as the factivity condition

E(t, φ) ≤ |φ|M
is not satisfied in Mx (which actually prompted the alternative semantics from Subsection 4.1). However, the
alternative consequence relation for Gödel-Mkrtychev models is sound but not complete with respect to the
proof calculus GJ T 45CS , a phenomenon already occurring in the classical case (see [32]). One might wonder
if a suitable Gödel-Fitting model can be found to witness non-realization. However, the idea behind the model
Mx also does not straightforwardly translate to Gödel-Fitting models, as the GJT45-models have to validate
the condition

E(w, t, φ) ≤ |t : φ|wM
in similarity to the above factivity condition which is not straightforward to satisfy in combination with the
conditions for the operators ? and !. It shall be interesting to consider GJ T 45CS in future work and we con-
jecture that these non-realizability phenomenons also occur there.

Realization is the core connection between justification logics and modal logics. It is thus feasible to ask,
as the Gödel justification logics do not realize the standard Gödel modal logics, as of how the standard Gödel
justification logics and not their positive variants are of primary interest. There are, however, reasons for interest
in the non-positive versions: the standard Gödel justifications logics can be seen as natural generalizations of
the classical justification logics in many ways. Firstly, they arise from natural many-valued generalizations of
the classical Fitting or Mkrtychev models over the same language. Secondly, they arise by replacing the boolean
base of the usual Hilbert-style calculi for the classical justification logics by a calculus for propositional Gödel
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logic. Further, as we have shown in this paper, they do realize certain Gödel modal logics, the weak Gödel modal
logics introduced in this paper. These weak Gödel modal logics, as will be argued in the following subsection,
also have a certain natural appeal which makes them an interesting fragment of the standard Gödel modal
logics from [9] in their own right. Lastly, the positivity operator introduced into the language of justification
terms, to realize the standard Gödel modal logics, does not have such a natural appeal as it is not needed in
the classical case.

These considerations are arguments for the point that they are not “the wrong” Gödel justification logics
but that there is an effective gap between the standard Gödel justification logics, as natural generalizations of
the classical case, and the standard Gödel modal logics, as natural semantical generalizations of the classical
case. And further, this gap seems to be inherent to the many-valuedness of the base logic, as the semantical
approaches to non-realizability in the first part and the origins of the problematic (Z) axiom scheme show.
The latter will be discussed in more detail, in combination with the above emphasis on the word semantical,
later on. Before moving on, we want to note that it will be interesting to see if generalizations of classical
justification logics using other t-norm based many-valued logics as base logics share the same results with their
corresponding many-valued modal counterparts.

10.1. Weak Gödel modal logics. Regarding the weak Gödel modal logics, we first want to acknowledge the
similarity of the given semantics over Quasi-Gödel-Kripke models and the definition of Gödel-Fitting models
for the Gödel justification logics. Indeed, the controller may be seen as a many-valued evidence function E
restricted to one “justification term” which is represented by �.

Further, we want to mention the merit of the weak Gödel modal logics from a proof-theoretic perspective.
The weak Gödel modal logics arise in their Hilbert-style formulation by taking classical Hilbert-style calculi of
modal logics and replacing their boolean base by a calculus for Gödel logic. So, in some way, they are faithful
proof-theoretical generalizations of the classical cases and not semantical ones like the standard Gödel modal
logics which arise by axiomatizing the theory of the Gödel-Kripke models which are [0, 1]-valued generalizations
of the classical Kripke structures. As these weak Gödel modal logics diverge from the standard Gödel modal
logics from [9], this is also a prime example of how proof-theoretical and semantical generalizations of classical
systems may diverge in the context of t-norm based many-valued logics (or intermediate logics) with modal
operators.

So, in a way, the (Z) axiom scheme is a product of the chosen approach to many-valued modal logics using
[0, 1]-valued Kripke models and is debatable from other semantical and proof-theoretical perspectives on modal
logics and their generalizations.

10.2. Positive Gödel justification logics. The approach to handle the axiom scheme (Z) by the specifically
designated new operator ϑ on terms and a corresponding axiom scheme is debatable. There may be other
ways of giving an explicit account of (Z), but the motivation for the ϑ-operator comes from the following
considerations: the scheme φ→ ¬¬φ is a tautology in the systems based on Gödel logic and thus, for any term
t, there is a term s such that t : φ → s : ¬¬φ is a tautology (utilizing a strong enough constant specification).
Now, the version ¬¬t : φ→ s : ¬¬φ with a doubly negated premise is valid in the context of the law of excluded
middle but in general fails to be a tautology as the term s is, by the validity of t : φ→ s : ¬¬φ, only guaranteed
to be a justification of ¬¬φ to the degree of t being a justification for φ, not more. But if t : φ is evaluated to
be positive, then ¬¬t : φ is evaluated to be 1.

So the intuition for ϑt is to represent such a full justification s for ¬¬φ if t is, at any positive degree, a
justification for φ. The semantics of ϑt reflects this intuition and it shall be interesting to see as to how one can
give a different meaning to the positivity operator.
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