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Abstract. Justification logics are special kinds of modal logics which provide a framework for reasoning about

epistemic justifications. For this, they extend classical boolean propositional logic by a family of necessity-style
modal operators “t :“, indexed over t by a corresponding set of justification terms, which thus explicitly encode

the justification for the necessity assertion in the syntax. With these operators, one can therefore not only
reason about modal effects on propositions but also about dynamics inside the justifications themselves. We

replace this classical boolean base with Gödel logic, one of the three most prominent fuzzy logics, i.e. special

instances of many-valued logics, taking values in the unit interval [0, 1], which are intended to model inference
under vagueness. We extend the canonical possible-world semantics for justification logic to this fuzzy realm

by considering fuzzy accessibility- and evaluation-functions evaluated over the minimum t-norm and establish

strong completeness theorems for various fuzzy analogies of prominent extensions for basic justification logic.

1. Introduction

Epistemology and its core notions like knowledge, belief, truth and justification have, since Hintikka’s sem-
inal work [24], found natural formalizations in the realm of modal logics and in their fundamental semantical
interpretation over Kripke’s possible-world models. The formal development of justification logic began with
the so called logic of proofs which extends basic propositional logic by a family of modal, necessity-style unary
operators, introducing formulas of the form t : φ, where the indexing parameter t ranges over a corresponding
set of proof terms. This logic was devised by Artemov in [1], [2], to provide an arithmetic provability semantics
for intuitionistic logic and bridge intuitionistic logic, the modal logic S4 and formal arithmetic, a possibility
anticipated by Gödel in [21], [22] where he provided an embedding of intuitionistic logic into S4 and conceptu-
alized the provability interpretation of the modality � in S4. However, an explicit embedding of S4 into formal
arithmetic was still left out. The missing link was then provided by the logic of proofs LP, for which Artemov
provided an embedding into formal arithmetic via the Arithmetic Completeness Theorem and an embedding of
S4 into LP via Artemov’s Realization Theorem, assigning explicit proof terms to necessity-statements, which
forms an intricate relation between classical modal logics and justification logics.

From a modern perspective, LP is just one of various logical systems in the framework of justification logic,
similarly to S4’s position inside the common framework of classical modal logics. Kripke-style possible-world
semantics for the logic of proofs was introduced in [16], [17], with the structures prominently called Fitting
models, and later naturally extended to the various other representatives of the class of justification logics. As
later observed, the Realization Theorem also extends to other representatives of the respective frameworks of
classical modal and justification logics. For a comprehensive overview over the framework of justification logics,
see e.g. [3].

Gödel logic on the other hand is a very prominent example of a many-valued logic, with evaluations into the
unit interval [0, 1], dating back to a paper of Gödel [20] where he introduced finite valued versions to provide an
infinite family of logics between intuitionistic and classical logic with respect to expressive strength. The version
taking values in the unit interval [0, 1] was first studied by Dummett in [11] who also provided the first proof
calculus in terms of a simple extension of a common Hilbert calculus for intuitionistic logic. A first-order variant
of this infinitely-valued version was followingly studied by Horn [25](see also [5]). Besides of this intuitionistic
access to Gödel logic, a prominent different approach, and the one followed in this paper, is given via the route
of mathematical fuzzy logic, deriving from the concept of fuzzy sets originating in Zadeh’s landmark work [33],
and originating mainly from the seminal monograph of Hájek [23]. Semantically, fuzzy logics are defined over
the notion of a t-norm (triangular norm, see e.g. [26]) as a truth function for conjunction, where Gödel logic
results in the case of considering the minimum t-norm as a particular choice.

From an application perspective, it seems very natural to combine justification logics with a notion of vague-
ness (to model e.g. uncertain epistemic assertions) and thus in a more explicit manner to combine fuzzy logic
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and particularly Gödel logic with justification logic in the sense of adding justification modalities to the under-
lying propositional language and evaluating them in a many-valued context. Similarly as fuzzy logic has proved
itself to be one of the right tools to express and analyze vague propositional assertions, we believe that fuzzy
justification logic shall be a right tool to model uncertain (explicit) epistemic assertions.

Examples for combinations of justification logic with other systems (or notions) of vagueness (or probability)
include Milnikel’s logic of uncertain justifications [29] where Milnikel introduces a graded justification operator
t :r φ for r ∈ Q∩ [0, 1] with the intended meaning of r being the least degree of confidence in “t being a justifica-
tion for φ“; and recently also the development of probabilistic justification logic, see e.g. [27], and possibilistic
justification logic, see e.g. [13].

At the time, the only literature on fuzzy justification logics is Ghari’s work in [18] and [19] where he in-
troduced the notion of fuzzy Fitting models (with a crisp accessibility function) for respective t-norms, here
later redefined for the case of Gödel logic, and especially investigated the extension of Pavelka-style fuzzy logic.
However, the study of models with graded accessibility functions and the derivation of strong completeness
theorems was still left open in any case.

In this note, we concretize and expand the work of Ghari in [18] and thus continue to expand the realm
of fuzzy justification logics. We focus on Gödel logics as an underlying base logic and introduce respective
fuzzy Fitting models with fuzzy accessibility functions. The main part is occupied with the study of fuzzy
analogies of the most prominent justification logics and their semantics as well as their axiomatizations where
we establish strong completeness results in every case. To approach this, we translate formulas containing
modalities into an augmented basic propositional language and use the strong standard completeness of the
underlying propositional systems. In general, we rely on various concepts of standard Gödel modal logic, i.e.
propositional Gödel logic expanded by a classical necessity and possibility modality � and ♦, originating in
[8],[9] and [10], (studying the necessity and possibility fragments as well as the Bi-modal variant respectively),
where especially the structure of our approach to proving strong standard completeness is derived from. For
a comprehensive overview over modal fuzzy logic and related advancements to completeness results for various
modal fuzzy logics over models with a crisp accessibility function, see also e.g. [31]. However, we do not recap
the main notions from these works as they will be introduced in their adapted form for the case of fuzzy (Gödel)
justification logic during the note as appropriate. In the end, we give some starting points for directions of
future work.

2. Preliminaries

The basis for our further investigations is propositional [0, 1]-valued Gödel logic. Formally, for this we fix a
standard propositional language

L0(X) : φ ::= ⊥ | p | (φ ∧ φ) | (φ→ φ)

with p ∈ X for a countably infinite set of variables X. We may fix a standard set of propositional variables with
V ar := {pi | i ∈ N}. As an abbreviation, we then also write L0 := L0(V ar). As usual in propositional logics,
we omit the outermost brackets if convenient. Other common connectives are introduced as abbreviations, i.e.
we set

(1) ¬φ := (φ→ ⊥),
(2) φ↔ ψ := (φ→ ψ) ∧ (ψ → φ),
(3) φ ∨ ψ := ((φ→ ψ)→ ψ) ∧ ((ψ → φ)→ φ),
(4) > := (⊥ → ⊥).

Semantics for propositional Gödel logics is defined via truth value assignments in the unit interval [0, 1], where
conjunction is evaluated over the minimum t-norm min{x, y} for x, y ∈ [0, 1], in the following denoted with
x� y, and implication over its residuum ⇒, that is the unique function ⇒: [0, 1]× [0, 1]→ [0, 1] satisfying

x� y ≤ z iff x ≤ y ⇒ z.

In the case of the minimum t-norm, the residuum has the following description:

x⇒ y =

{
y, if x > y

1, otherwise
.

Definition 2.1. A propositional assignment is a function e : X → [0, 1]. This function can be naturally
extended to a propositional Gödel evaluation over L0(X) by the following recursive definitions:

• e(⊥) = 0,
• e(φ ∧ ψ) = e(φ)� e(ψ),
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• e(φ→ ψ) = e(φ)⇒ e(ψ).

An evaluation e may also be extended to sets of formulas Γ via

e(Γ) := inf{e(φ) | φ ∈ Γ},
where the infimum of the empty set is defined to be 1. For the derived connectives, simplifying the corresponding
evaluations yield the following expressions:

(1) e(¬φ) =

{
1, if e(φ) = 0

0, otherwise
,

(2) e(φ↔ ψ) =

{
1, if e(φ) = e(ψ)

e(φ)� e(ψ), otherwise
,

(3) e(φ ∨ ψ) = max{e(φ), e(ψ)},
(4) e(>) = 1.

The resulting truth functions corresponding to ¬,↔ and ∨ are respectively denoted by ∼,⇔ and ⊕. With
Ev(L0(X)), we denote the set of all evaluations of L0(X) into [0, 1], that is the set of all maps e : X → [0, 1],
extended to L0(X) by the above definition.

Before proceeding with other semantic notions, we want to note some properties of the minimum t-norm �
and its derived functions.

Lemma 2.2. Let x, y, z, x′, y′ ∈ [0, 1]:

(1) If x ≤ x′, y ≤ y′, then x� y ≤ x′ � y′.
(2) If y ≤ y′, then x⇒ y ≤ x⇒ y′.
(3) If x ≥ x′, then x⇒ y ≤ x′ ⇒ y.
(4) If x ≥ x′, then ∼ x ≤∼ x′.

The proof is very elementary and thus omitted here.

From these definitions regarding semantic evaluations, analogues for the case of Gödel logic of other common
semantical notions can now be derived.

Definition 2.3. Let Γ ∪ {φ} ⊆ L0(X). Then we say that

(1) Γ entails φ, Γ |=≤ φ, iff ∀e ∈ Ev(L0(X)) : e(Γ) ≤ e(φ),
(2) Γ 1-entails φ, Γ |= φ, iff ∀e ∈ Ev(L0(X)) : e(ψ) = 1 for all ψ ∈ Γ implies e(φ) = 1.

However, as observed by Baaz and Zach, these two notions of semantic inference coincide (for countable sets
of premises).

Lemma 2.4 (Baaz, Zach [6]). For any Γ ∪ {φ} ⊆ L0(X): Γ |=≤ φ iff Γ |= φ.

Through the approach to Gödel logics via the framework of fuzzy logics, we consider an extension of Hájek’s
proof calculus for basic fuzzy logic BL [23] by the idempotency axiom for conjunction as the corresponding
proof calculus for axiomatizing the above defined semantic consequence relation of basic propositional Gödel
logic.

Definition 2.5. Let G be the Hilbert-style calculus given by the following axiom schemes1 and rules:

(A1): (φ→ ψ)→ ((ψ → χ)→ (φ→ χ))
(A2): (φ ∧ ψ)→ φ
(A3): (φ ∧ ψ)→ (ψ ∧ φ)
(A5a): (φ→ (ψ → χ))→ ((φ ∧ ψ)→ χ)
(A5b): ((φ ∧ ψ)→ χ)→ (φ→ (ψ → χ))
(A6): ((φ→ ψ)→ χ)→ (((ψ → φ)→ χ)→ χ)
(A7): ⊥ → φ
(G4): φ→ (φ ∧ φ)
(MP ): From φ and φ→ ψ, infer ψ.

We denote a deduction of φ ∈ L0(X) in G, or from a set of premises Γ ⊆ L0(X), by `G φ and Γ `G φ respectively.

Lemma 2.6 (Hájek [23]). G proves the following formulas:

(1) φ→ (ψ → φ),
(2) φ→ φ,

1The numbering follows Hájek’s original presentation in [23].
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(3) φ→ (ψ → χ)→ ((φ→ ψ)→ (φ→ χ)).

While item (1) and (2) are even theorems for Hájek’s basic logic BL, item (3) is a particular feature of Gödel
logic, distinguishing it from the other prominent t-norm based logics. This lemma is also the reason why the
usual proof of the classical deduction theorem works in Gödel logic.

Theorem 2.7 (Strong Standard Completeness, Hájek [23]). For any
Γ ∪ {φ} ⊆ L0(X):

Γ `G φ iff Γ |= φ.

3. Gödel-Fitting models

Definition 3.1. The language of Gödel justification logic LJ is defined by the BNF

LJ : φ ::= ⊥ | p | (φ ∧ φ) | (φ→ φ) | t : φ

with p ∈ V ar := {pi | i ∈ N} as before and t ∈ Jt where

Jt : t ::= x | c | [t · t] | [t+ t] | !t | ?t
with x ∈ V := {xi | i ∈ N} variable symbols and c ∈ C := {ci | i ∈ N} constant symbols.

The same rules for simplification of bracketing formulas as well as definitions for derived connectives as
presented in the preliminaries apply here.

In practice, there are many variants for possible sets of justification terms, with some extensions and reduc-
tions of the set Jt as defined above present. In general, a set of justification terms is expected to at least contain
a countable set of variables and constants as well as to be closed under the · and + operations. The !-operator,
originating from the initial justification logic LP, and the ?-operator, relating to positive and negative intro-
spection in explicit modal logics respectively, are of greater importance for extensions investigated later. There
is, however, no disadvantage in allowing them right away.

Definition 3.2. A Gödel justification (or Gödel-Fitting) model (over the language LJ) is a structure M =
〈W,R, E , e〉 with

(1) W being a non-empty set, the domain D(M) (of M),
(2) R : W ×W → [0, 1],
(3) E : W × Jt× LJ → [0, 1],
(4) e : W × V ar → [0, 1],

where E satisfies the closure conditions2

(i) E(w, t, φ→ ψ)� E(w, s, φ) ≤ E(w, t · s, ψ),
(ii) E(w, t, φ)⊕ E(w, s, φ) ≤ E(w, t+ s, φ),

for all t, s ∈ Jt, φ, ψ ∈ LJ and w ∈W .

Note that, to simplify notation, we omitted the outer square brackets of justification terms inside of the
evidence function E in the previous definition of a Gödel justification model and continue to do so if the context
is clear. The class of all Gödel justification models is denoted by GJ. We say that a Gödel justification model
is (simply) finite if its domain is finite.

These models are inspired by Gödel-Kripke models, originally introduced in [8], [9], which form a similar
fuzzy possible-world semantics for standard Gödel modal logics.3

We extend the evaluation function e of a GJ-model from V ar to the whole language LJ via the following
inductive rules, for each world w ∈W :

• e(w,⊥) = 0,
• e(w, φ ∧ ψ) = e(w, φ)� e(w,ψ),
• e(w, φ→ ψ) = e(w, φ)⇒ e(w,ψ),
• e(w, t : φ) = E(w, t, φ)� infv∈W {R(w, v)⇒ e(v, φ)}.

Remark 3.3. As an abuse of notation, we write

e(w,�φ) := inf
v∈W
{R(w, v)⇒ e(v, φ)}

in connection to standard Gödel modal logic [9] although of course �φ, that is the classical necessity-style
operator �, in general, is not part of the underlying language. Following to this, we may rephrase the definition
of the semantic evaluation of t : φ with e(w, t : φ) = E(w, t, φ)� e(w,�φ).

2These conditions represent natural generalizations of the classical conditions on boolean Fitting models, i.e. restricting E to
{0, 1} returns them in a translated form.

3The concept of many-valued Kripke models in the context of modal logics, especially with many-valued accessibility functions,
was initiated by the work of Fitting in [14], [15] where he studied a variant taking values in a finite lattice.



A NOTE ON STRONG AXIOMATIZATION OF GÖDEL JUSTIFICATION LOGIC 5

At a world w in a GJ-model M = 〈W,R, E , e〉, we may also extend e(w, ·) to sets of formulas Γ ⊆ LJ with
setting

e(w,Γ) := inf
ψ∈Γ
{e(w,ψ)}.

A GJ-model M = 〈W,R, E , e〉 is called accessibility crisp if R is crisp, i.e. if R(w, v) ∈ {0, 1} for all w, v ∈ W .
For a class of GJ-models C, we denote the subclass of all accessibility crisp models in C by Cc. Similarly, as in
standard Gödel modal logics, we may now define the usual semantical notion of (local) satisfiability in a model.

Definition 3.4. Let M = 〈W,R, E , e〉 be a GJ-model, Γ ∪ {φ} ⊆ LJ and w ∈W . We say

(i) M satisfies φ in w, written (M, w) |= φ, iff e(w, φ) = 1,
(ii) φ is valid in M, written M |= φ, iff ∀v ∈W : e(v, φ) = 1,

and similarly for sets Γ

(iii) M satisfies Γ in w, written (M, w) |= Γ, iff ∀ψ ∈ Γ : (M, w) |= ψ,
(iv) Γ is valid in M, written M |= Γ, iff ∀ψ ∈ Γ : M |= ψ.

This yields, similarly to the non-modal propositional case, two analogues for local semantic inference in fuzzy
Fitting models.

Definition 3.5. Let Γ ∪ {φ} ⊆ LJ and C a class of GJ-models. We say that

(1) Γ entails φ in C, written Γ |=C≤ φ, if ∀M = 〈W,R, E , e〉 ∈ C : ∀w ∈W : e(w,Γ) ≤ e(w, φ),
(2) Γ 1-entails φ in C, written Γ |=C φ, if ∀M = 〈W,R, E , e〉 ∈ C : ∀w ∈ W : (M, w) |= Γ implies

(M, w) |= φ.

A formula φ is called C-valid, for a class of GJ-models C, if ∅ |=C φ. In this case, we also just write |=C φ.

Lemma 3.6. For any class of GJ-models C and any Γ ∪ {φ} ⊆ LJ : Γ |=C≤ φ implies Γ |=C φ.

Proof. Let C be a class of GJ-models and assume Γ |=C≤ φ. Thus,

∀M ∈ C : ∀w ∈ D(M) : inf
ψ∈Γ
{e(w,ψ)} ≤ e(w, φ).

Now, let w ∈ D(M) for some M ∈ C and suppose (M, w) |= Γ, i.e. ∀ψ ∈ Γ : e(w,ψ) = 1. Thus infψ∈Γ{e(w,ψ)} =
1. By the above, we have 1 = infψ∈Γ{e(w,ψ)} ≤ e(w, φ) ≤ 1, i.e. e(w, φ) = 1 and thus (M, w) |= φ. Thus
Γ |=C φ. �

Similarly, as in standard Gödel modal logics, the converse of this statement will later follow from a strong
completeness theorem for various model classes C.

The following lemma and its proof are analogies to a similar statement in standard Gödel modal logic [9],
where the authors proved it for the before mentioned Gödel-Kripke models over a different language. For the
notation here, however, we remind on Rem. 3.3.

Lemma 3.7. For any GJ-model M, any w ∈ D(M) and any φ, ψ ∈ LJ : e(w,�(φ→ ψ))�e(w,�φ) ≤ e(w,�ψ).

Proof. Let M = 〈W,R, E , e〉. We have for any u ∈W that

inf
v∈W
{R(w, v)⇒ e(v, φ→ ψ)} � inf

v∈W
{R(w, v)⇒ e(v, φ)}

≤ (R(w, u)⇒ e(u, φ→ ψ))� (R(w, u)⇒ e(u, φ))

≤ R(w, u)⇒ (e(u, φ→ ψ)� e(u, φ))

≤ R(w, u)⇒ e(u, ψ).

Thus, by taking the infimum over u, we obtain

e(w,�(φ→ ψ))� e(w,�φ) ≤ inf
u∈W
{R(w, u)⇒ e(u, ψ)} = e(w,�ψ).

�

By properties of � and the residuum ⇒, the result may also be rephrased as e(w,�(φ→ ψ)) ≤ e(w,�φ)⇒
e(w,�ψ) for any GJ-model M and w ∈ D(M).

Definition 3.8. Let GJ 0 be the following axiomatic extension, in the language LJ , of the proof calculus for
standard propositional Gödel logic G:

(P ): The axiom schemes of the calculus G,
(J): t : (φ→ ψ)→ (s : φ→ [t · s] : ψ),
(+): t : φ→ [t+ s] : φ, s : φ→ [t+ s] : φ,
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(MP ): From φ and φ→ ψ, infer ψ.

We denote inference of a formula φ ∈ LJ from a set of formulas Γ ⊆ LJ in this calculus by Γ `GJ 0
φ (or Γ ` φ

if the context is clear).

Proposition 3.9. The schemes (J) and (+) are GJ-valid.

Proof. Let M = 〈W,R, E , e〉 be a GJ-model and w ∈W .

(J): We have

e(w, t : (φ→ ψ))� e(w, s : φ)

= (E(w, t, φ→ ψ)� e(w,�(φ→ ψ)))� (E(w, s, φ)� e(w,�φ))

= (E(w, t, φ→ ψ)� E(w, s, φ))� (e(w,�(φ→ ψ))� e(w,�φ))

by commutativity and associativity of �. As

E(w, t, φ→ ψ)� E(w, s, φ) ≤ E(w, t · s, ψ)

by property (i) on E of a GJ-model and

e(w,�(φ→ ψ))� e(w,�φ) ≤ e(w,�ψ)

by Lem. 3.7, we have through monotonicity of �:

(E(w, t, φ→ ψ)� E(w, s, φ))� (e(w,�(φ→ ψ))� e(w,�φ))

≤ E(w, t · s, ψ)� e(w,�ψ) = e(w, [t · s] : ψ).

Thus, e(w, t : (φ→ ψ))� e(w, s : φ) ≤ e(w, [t · s] : ψ), i.e. by properties of the residuum

e(w, t : (φ→ ψ)) ≤ e(w, s : φ)⇒ e(w, [t · s] : ψ) = e(w, s : φ→ [t · s] : ψ).

(+): We just show the first case, as the second case follows similarly. We have e(w, t : φ) = E(w, t, φ)�e(w,�φ).
By

E(w, t, φ)⊕ E(w, s, φ) ≤ E(w, t+ s, φ),

as of property (ii) on E of a GJ-model, we have E(w, t, φ) ≤ E(w, t+ s, φ). Thus again by monotonicity
of �, we have

E(w, t, φ)� e(w,�φ) ≤ E(w, t+ s, φ)� e(w,�φ) = e(w, [t+ s] : φ).

�

3.1. Constant specifications and internalization. Constant specifications are a weakened implementation
of the principle of logical awareness, i.e. regarding axioms to be self-evidently justified, with weakened in the
sense that we may restrict this view to a corresponding subset of the axioms in question. From a basic practical
point, a constant specification helps an agent to make more justified inference.

Definition 3.10. For a given proof calculus S, defined over the corresponding language LJ , a constant speci-
fication for S is a set CS of formulas of the form

cin : cin−1
: · · · : ci1 : φ

where n ≥ 1, φ is an axiom instance of S and the cik ’s are constants. Additionally, a constant specification is
expected to be downward closed, i.e.

if cin : cin−1
: · · · : ci1 : φ ∈ CS, then cik : · · · : ci1 : φ ∈ CS

for all k = 1, . . . , n.
We call CS axiomatically appropriate for S, if for each axiom instance φ of S, there is a constant c ∈ C such

that c : φ ∈ CS, and if cin : cin−1
: · · · : ci1 : φ ∈ CS, then cin+1

: cin : cin−1
: · · · : ci1 : φ ∈ CS for some constant

cin+1
.

Definition 3.11. We say that a Gödel justification model M = 〈W,R, E , e〉 respects a constant specification
CS, if

∀c : φ ∈ CS : ∀w ∈W : E(w, c, φ) = 1.

For a class C of GJ-models, we denote the subclass of all GJ-models in C respecting a constant specification CS
by CCS.

Definition 3.12. Let CS be a constant specification (for GJ 0). We define GJ CS as GJ 0 extended by the rule

(CS) : From c : φ ∈ CS, infer c : φ.
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Clearly, GJ 0 relates to GJ∅. Similarly, as propositional Gödel logic, Gödel justification logic enjoys the
classical deduction theorem, which is a notable exception in comparison to other representatives in the framework
of fuzzy (justification) logics.

Lemma 3.13 (Deduction theorem). Let Γ ∪ {α, φ} ⊆ LJ : Γ ∪ {α} `GJCS
φ iff Γ `GJCS

α→ φ.

The proof is essentially the same as in the case of classical (justification) logic, proceeding via the usual
induction which employs Lem. 2.6, and is thus omitted.

Lemma 3.14. Every formula that is deduced by the rule (CS) is valid in the model class GJCS.

Proof. Let cin : · · · : ci1 : φ ∈ CS and let M = 〈W,R, E , e〉 be a GJ-model respecting CS. Now, as CS is
downward closed, we have cik : · · · : ci1 : φ ∈ CS for every k ∈ {1, . . . , n}. Thus, for every k ∈ {1, . . . , n}, we
have

E(w, cik , cik−1
: · · · : ci1 : φ) = 1

for all w ∈W . As φ is an axiom of GJ CS , we have, as all axioms are GJ-valid, that e(w, φ) = 1 for all w ∈W .
Thus, e(w,�φ) = 1 for all w ∈W and thus e(w, ci1 : φ) = E(w, ci1 , φ)� e(w,�φ) = 1 for all w ∈W . From this,
we have that e(w, ci2 : ci1 : φ) = E(w, ci2 , ci1 : φ)� e(w,�ci1 : φ) = 1. Continuing this up to n gives

E(w, cin , cin−1 : · · · : ci1 : φ)� e(w,�cin−1 : · · · : ci1 : φ) = 1

for all w ∈W . �

Definition 3.15. We say that GJ CS enjoys internalization, if `GJCS
φ implies that there exists a justification

term t ∈ Jt such that `GJCS
t : φ.

Lemma 3.16 (Lifting lemma). Let CS be an axiomatically appropriate constant specification for GJ 0. If
{ψ1, . . . , ψn} `GJCS

φ, then for any justification terms t1, . . . , tn ∈ Jt there is a justification term t ∈ Jt such
that

{t1 : ψ1, . . . , tn : ψn} `GJCS
t : φ.

The proof of this lemma is strictly similar to the proof in the classical case (see e.g. [2], [28]) and thus omitted
here. The following is a direct consequence of the Lifting lemma.

Lemma 3.17. If CS is an axiomatically appropriate constant specification for GJ 0, then GJ CS enjoys inter-
nalization.

Using the deduction theorem, we may now obtain the soundness of the system GJ CS for any constant
specification CS for GJ 0.

Lemma 3.18 (Soundness of GJ CS). For any Γ ∪ {φ} ⊆ LJ : Γ `GJCS
φ implies Γ |=GJCS≤ φ.

Proof. We have that Γ `GJCS
φ implies {ψ1, . . . , ψn} `GJCS

φ for some {ψ1, . . . , ψn} ⊆ Γ. By repeated
application of the deduction theorem and using axiom (A5a), we have `GJCS

∧n
i=1 ψi → φ. As of Prop. 3.9

and Thm. 2.7, all axioms of GJ CS are GJCS-valid. Of course (MP ), and as of Lem. 3.14, also (CS) preserve
validity (in GJCS). Thus |=GJCS

∧n
i=1 ψi → φ and therefore, for any GJCS-model M and any w ∈ D(M), we have

(M, w) |=
∧n
i=1 ψi → φ, i.e. e(w,Γ) ≤ e(w,

∧n
i=1 ψi) ≤ e(w, φ), as {ψ1, . . . , ψn} ⊆ Γ, and thus Γ |=GJCS≤ φ. �

4. Modal-type extensions

Similar to the realm of classical modal logic, the framework of classical justification logic spreads out over
numerous extensions of the basic axiomatic system for justifications (similar to GJ 0 here). Of mainline im-
portance are here explicit justification formulas standing in analogy to classical unexplicit epistemic (modal)
principles like truth and positive introspection, etc. In this section, we present analogue extensions in the con-
text of fuzzy justification logic, both model-theoretically, by characterizing the fuzzy versions of the associated
Fitting models, and axiomatically. We do not go into surrounding (philosophical) detail about the here studied
principles, however, for an exposition in the classical case, refer to [3].

4.1. Factivity.

Definition 4.1. We define GJ T 0 as the axiomatic extension of GJ 0 by the axiom scheme (F ) : t : φ→ φ.

For a constant specification CS for GJ T 0, we write GJ T CS for the calculus GJ T 0 together with the constant
specification rule (CS).

Definition 4.2. A Gödel justification model M = 〈W,R, E , e〉 is called reflexive, if ∀w ∈W : R(w,w) = 1. The
class of all reflexive GJ-models is denoted by GJT.

Proposition 4.3. The scheme t : φ→ φ is valid in the class GJT.
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Proof. Let M = 〈W,R, E , e〉 ∈ GJT and let w ∈W . Then

e(w, t : φ) = E(w, t, φ)� inf
v∈W
{R(w, v)⇒ e(v, φ)}

≤ R(w,w)⇒ e(w, φ) = e(w, φ)

where the last equality follows from R(w,w) = 1 for all w ∈W , as M is reflexive. �

Similarly, as before, we obtain the soundness of GJ T CS (for some CS for GJ T 0) w.r.t. its intended model
class and the proof is thus omitted here.

Lemma 4.4 (Soundness of GJ T CS). For any Γ ∪ {φ} ⊆ LJ : Γ `GJT CS
φ implies Γ |=GJTCS≤ φ.

4.2. Positive introspection.

Definition 4.5. We define the following extensions of GJ 0:

(1) GJ 40 := GJ 0 + (PI) : t : φ→!t : t : φ,
(2) GLP0 := GJ T 0 + (PI) : t : φ→!t : t : φ.

For a constant specification CS for GJ 40 or GLP0, we again write GJ 4CS or GLPCS for the respective
extensions by the rule (CS). We can now find similar fuzzy analogues to the classical additional properties of
Fitting models regarding positive introspection.

Definition 4.6. With GJ4, we denote that class of Gödel justification models M = 〈W,R, E , e〉 satisfying

(i) E(w, t, φ)�R(w, v) ≤ E(v, t, φ) for all t ∈ Jt, φ ∈ LJ , w, v ∈W
(monotonicity of E w.r.t. R),

(ii) R(w, v)�R(v, u) ≤ R(w, u) for all w, v, u ∈W
((min-)transitivity of R),

(iii) E(w, t, φ) ≤ E(w, !t, t : φ) for all t ∈ Jt, φ ∈ LJ , w ∈W
(positive introspectivity of E).

The subclass of all reflexive GJ4-models is denoted respectively with GLP.

Lemma 4.7. In a (min-)transitive GJ-model M = 〈W,R, E , e〉, it holds for any w, v ∈W and any φ ∈ LJ that
e(w,�φ) ≤ R(w, v)⇒ e(v,�φ).

Proof. We have that for any model M = 〈W,R, E , e〉 and any w, v, u ∈ W that R(w, v) � R(w, u) ≤ R(w, u)
and thus

(e(w,�φ)�R(w, v))�R(v, u) = e(w,�φ)� (R(w, v)�R(v, u))

≤ (R(w, u)⇒ e(u, φ))�R(w, u)

≤ e(u, φ)

and thus e(w,�φ) � R(w, v) ≤ R(v, u) ⇒ e(u, φ) by properties of the residuum. As u was arbitrary, we may
take the infimum over u, obtaining e(w,�φ)�R(w, v) ≤ e(v,�φ). �

Proposition 4.8. The scheme t : φ→!t : t : φ is valid in the class GJ4.

Proof. Let M = 〈W,R, E , e〉 be a GJ4-model and w ∈W . Now, we have

E(w, t, φ) ≤ R(w, v)⇒ E(v, t, φ)

by monotonicity of E over R and properties of the residuum for every v ∈ W . By Lem. 4.7 and monotonicity
of �, we have thus

e(w, t : φ) = E(w, t, φ)� e(w,�φ)

≤ (R(w, v)⇒ E(v, t, φ))� (R(w, v)⇒ e(v,�φ))

for all v ∈W , i.e. we have

e(w, t : φ) ≤ inf
v∈W
{(R(w, v)⇒ E(v, t, φ))� (R(w, v)⇒ e(v,�φ))}

= inf
v∈W
{R(w, v)⇒ (E(v, t, φ)� e(v,�φ))}

and thus, we have e(w, t : φ) ≤ infv∈W {R(w, v)⇒ e(v, t : φ)}. Similarly, we have

e(w, t : φ) = E(w, t, φ)� e(w,�φ) ≤ E(w, !t, t : φ)

by positive introspectivity and properties of �. Thus, finally

e(w, t : φ) ≤ E(w, !t, t : φ)� inf
v∈W
{R(w, v)⇒ e(v, t : φ)} = e(w, !t : t : φ)

and therefore e(w, t : φ→!t : t : φ) = 1. �
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We again obtain a soundness result for those proof systems in the same way as before, for any well-defined
constant specification CS.

Lemma 4.9 (Soundness of GJ 4CS ,GLPCS). For any Γ ∪ {φ} ⊆ LJ , we have

(1) Γ `GJ 4CS
φ implies Γ |=GJ4CS≤ φ,

(2) Γ `GLPCS
φ implies Γ |=GLPCS≤ φ.

4.3. Negative introspection.

Definition 4.10. We define the following extensions of GJ 40:

(1) GJ 450 := GJ 40 + (NI) : ¬t : φ→?t : ¬t : φ,
(2) GJ T 450 := GJ 450 + (F ) : t : φ→ φ.

For CS being a constant specification for GJ 450 or GJ T 450, we again write GJ 45CS or GJ T 45CS for the
respective extensions by the rule (CS).

Definition 4.11. The class of GJ4-models satisfying

(i) ∼ E(w, t, φ) ≤ E(w, ?t,¬t : φ) for all t ∈ Jt, φ ∈ LJ , w ∈W
(negative introspectivity of E),

(ii) E(w, t, φ) ≤ e(w, t : φ) for all t ∈ Jt, φ ∈ LJ , w ∈W
(strong evidence),

is denoted by GJ45. The class of all GJ45-model with reflexive accessibility function is in the following denoted
by GJT45.

Proposition 4.12. The scheme ¬t : φ→?t : ¬t : φ is valid in the model class GJ45.

Proof. Let M = 〈W,R, E , e〉 be a GJ45-model. We have that

e(w,¬t : φ) =∼ e(w, t : φ) ≤ ∼ E(w, t, φ) (by strong evid., Lem. 2.2)

≤ E(w, ?t,¬t : φ) (by neg. intro.)

≤ e(w, ?t : ¬t : φ) (by strong evid.)

for any t ∈ Jt, φ ∈ LJ , w ∈W . �

Lemma 4.13 (Soundness of GJ 45CS ,GJ T 45CS). For any Γ ∪ {φ} ⊆ LJ , we have

(1) Γ `GJ 45CS
φ implies Γ |=GJ45CS≤ φ,

(2) Γ `GJT 45CS
φ implies Γ |=GJT45CS≤ φ.

5. Completeness

In the following, let GJL0 be one of the previously introduced systems of Gödel justification logic, i.e.

GJL0 ∈ {GJ 0,GJ T 0,GJ 40,GLP0,GJ 450,GJ T 450}
and let CS be a constant specification for GJL0. With GJLCS, we denote the corresponding class of Gödel
justification models (respecting the given constant specification) for which we have established soundness.

Definition 5.1. We define the language L?0 := L0(V ar?) where

V ar? := V ar ∪ {φt | φ ∈ LJ , t ∈ Jt}.
The translation function ? : LJ → L?0 is defined inductively as follows:

(i) ⊥ 7→ ⊥,
(ii) p 7→ p, p ∈ V ar,
(iii) (φ ∧ ψ) 7→ φ? ∧ ψ?,
(iv) (φ→ ψ) 7→ φ? → ψ?,
(v) t : φ 7→ φt.

Lemma 5.2. ? is a bijection.

The concrete proof is omitted here, however surjectivity follows almost directly by considering a formula in
L?0 and replacing every φt by t : φ. The resulting formula lies in LJ and has the expected translation as ?
distributes over all propositional connectives. Injectivity follows from a simple induction on the structure of the
formulas.
? is naturally extended to sets of formulas via Γ? := {φ? | φ ∈ Γ}.4 We denote by ThGJLCS

the set of
theorems of the calculus GJLCS for some constant specification CS, i.e. ThGJLCS

:= {φ ∈ LJ | `GJLCS
φ}.

4Note, that L?
0 and similarly V ar? from Def. 5.1 are an abuse of notation and do not denote the ?-translation of L0 and V ar

respectively. For this, one may write (L0)? or (V ar)?.
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Lemma 5.3. Let Γ ∪ {φ} ⊆ LJ . Then Γ `GJLCS
φ iff Γ? ∪ (ThGJLCS

)? `G φ?.

Proof. Let Γ ⊆ LJ be arbitrary.

⇒: We prove by strong induction on k that, for any φ ∈ LJ , if Γ `GJLCS
φ with a proof of length k, then

Γ? ∪ (ThGJLCS
)? `G φ?.

(IB): Let φ ∈ LJ be arbitrary. Suppose Γ `GJLCS
φ with a proof of length 1, then either

(i) φ ∈ Γ,
(ii) φ is an axiom instance of GJLCS , or

(iii) φ was obtained by (CS).
For (i), we have φ? ∈ Γ?, from which the claim follows. For (ii) and (iii), we have that φ ∈ ThGJLCS

,
i.e. φ? ∈ (ThGJLCS

)?, which gives the claim.
(IS): Let k ≥ 1. Suppose that for all χ ∈ LJ , if Γ `GJLCS

χ with a proof of length l ≤ k, then
Γ? ∪ (ThGJLCS

)? `G χ?. Let φ ∈ LJ be arbitrary and suppose that Γ `GJLCS
φ with a proof

of length k + 1. Then either φ was obtained as in (IB), in which case we can proceed similarly,
or φ was obtained by (MP ), i.e. we have Γ `GJLCS

ψ and Γ `GJLCS
ψ → φ for some ψ ∈ LJ .

By the induction hypothesis, as they have shorter proofs, we have Γ? ∪ (ThGJLCS
)? `G ψ? and

Γ? ∪ (ThGJLCS
)? `G ψ? → φ?. Thus, by (MP ) in G, we deduce Γ? ∪ (ThGJLCS

)? `G φ?.
⇐: We again show by a strong induction on k that, for any k ≥ 1 and for any φ ∈ LJ , if Γ?∪(ThGJLCS

)? `G φ?
with a proof of length k, then Γ `GJLCS

φ.
(IB): Let φ ∈ LJ be arbitrary such that Γ? ∪ (ThGJLCS

)? `G φ? has a proof of length 1. Then either
(i) φ? ∈ Γ?,
(ii) φ? ∈ (ThGJLCS

)?, or
(iii) φ? is an axiom instance in G.

For (i), we have that φ ∈ Γ, i.e. Γ `GJLCS
φ, while for (ii), we have that φ ∈ ThGJLCS

and thus
`GJLCS

φ. Finally, if φ? is an axiom instance in G, then φ, resulting by replacing every occurrence
of some ψt by t : ψ, is an instance of the same axiom in GJLCS .

(IS): For k ≥ 1, suppose that for all χ ∈ LJ , if Γ? ∪ (ThGJLCS
)? `G χ? with a proof of length

l ≤ k, then Γ `GJLCS
χ. Suppose that Γ? ∪ (ThGJLCS

)? `G φ? has a proof of length k + 1
for an arbitrary φ ∈ LJ . Again φ? may have been obtained as in (IB), where we proceed as
shown. Otherwise, φ? was again obtained by (MP ), i.e. Γ? ∪ (ThGJLCS

)? `G ψ? → φ? and
Γ? ∪ (ThGJLCS

)? `G ψ? for some ψ ∈ LJ as ? is bijective between LJ and L?0. By the definition
of ?, we have Γ? ∪ (ThGJLCS

)? `G (ψ → φ)?. By the induction hypothesis, as the corresponding
proofs are shorter, we have Γ `GJLCS

ψ and Γ `GJLCS
ψ → φ, i.e. by (MP ) in GJLCS we deduce

Γ `GJLCS
φ.

�

Definition 5.4 (Canonical model for GJLCS). The canonical model for GJLCS , Mc(GJLCS) = 〈W c, Rc, Ec, ec〉,
is defined as follows:

(1) W c := {v ∈ Ev(L?0) | v((ThGJLCS
)?) = 1},

(2) Rc(v, w) :=

{
1, if ∀φ ∈ LJ : ∀t ∈ Jt : v(φt) ≤ w(φ?)

0, otherwise
for all v, w ∈W c,

(3) Ec(v, t, φ) := v(φt) for all v ∈W c, t ∈ Jt and φ ∈ LJ ,
(4) ec(v, p) := v(p) for all v ∈W c, p ∈ V ar.
ec is extended from V ar to LJ as before.

Lemma 5.5 (Truth lemma). Let Mc(GJLCS) = 〈W c, Rc, Ec, ec〉. For all φ ∈ LJ and any v ∈ W c: ec(v, φ) =
v(φ?).

Proof. Induction on the structure of the formula φ.

(IB): For the base case of φ = p ∈ V ar, we have ec(v, p) = v(p) = v(p?) for all v ∈ W c. Similarly, for φ = ⊥,
we have ec(v,⊥) = 0 = v(⊥) = v(⊥?).

(IS): For the induction step, we divide between the different connectives.
We have, for φ = ψ → χ, that ec(v, ψ → χ) = ec(v, ψ)⇒ ec(v, χ) = v(ψ?)⇒ v(χ?) = v(ψ? → χ?) =

v((ψ → χ)?) straightforwardly by (IH). Similarly, for φ = ψ ∧ χ, we obtain ec(v, ψ ∧ χ) = v((ψ ∧ χ)?)
by (IH) as well.

Hence, we are left with showing that ec(v, t : ψ) = v(ψt) for an arbitrary v ∈ W c. As Ec(v, t, ψ) =
v(ψt) per definition, it holds that

ec(v, t : ψ) = Ec(v, t, ψ)� ec(v,�ψ) = v(ψt)� ec(v,�ψ).
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Thus, it suffices to show that ec(v,�ψ) ≥ v(ψt) by the laws of � = min. Now, by (IH), we have
ec(w,ψ) = w(ψ?) for any w ∈W c and thus

ec(v,�ψ) = inf
w∈W c

{Rc(v, w)⇒ ec(w,ψ)} = inf
w∈W c

{Rc(v, w)⇒ w(ψ?)}.

As Rc is crisp, we now have

inf
w∈W c

{Rc(v, w)⇒ w(ψ?)} = inf{w(ψ?) | w ∈W c, Rc(v, w) = 1}.

Now, for all w ∈W c such that Rc(v, w) = 1, we have v(ψt) ≤ w(ψ?), i.e.

v(ψt) ≤ inf{w(ψ?) | Rc(v, w) = 1} = ec(v,�ψ).

Thus ec(v, t : ψ) = v(ψt)� ec(v,�ψ) = min{v(ψt), e
c(v,�ψ)} = v(ψt).

�

Lemma 5.6. Mc(GJLCS) = 〈W c, Rc, Ec, ec〉 has the strong evidence property, i.e.

Ec(v, t, φ) ≤ ec(v, t : φ)

for all v ∈W c, φ ∈ LJ , t ∈ Jt.

Proof. By the Truth lemma 5.5 and the definition of Mc(GJLCS), we have Ec(v, t, φ) = v(φt) = ec(v, t : φ). �

Note, that for a GJ-model M = 〈W,R, E , e〉, the strong evidence property E(w, t, φ) ≤ e(w, t : φ) is equivalent
with the stronger assertion E(w, t, φ) = e(w, t : φ) as e(w, t : φ) = E(w, t, φ) � e(w,�φ) ≤ E(w, t, φ) follows
anyway by properties of �.

Lemma 5.7. Mc(GJLCS) is a well-defined GJLCS-model.

Proof. Let Mc(GJLCS) = 〈W c, Rc, Ec, ec〉. We divide between the different possibilities for GJLCS:

GJCS: We just need to check the three basic conditions on Ec. Let v ∈W c be arbitrary:
(i) As v((ThGJCS

)?) = 1, we have v((φ → ψ)t → (φs → ψ[t·s])) = 1, i.e. v((φ → ψ)t) ≤ v(φs) ⇒
v(ψ[t·s]) and thus
v((φ→ ψ)t)� v(φs) ≤ v(ψ[t·s]). Thus, we have

Ec(v, t, φ→ ψ)� Ec(v, s, φ) ≤ Ec(v, t · s, ψ)

by definition of Mc.
(ii) Again as v((ThGJCS

)?) = 1, we have v(φt → φ[t+s]) = 1 and
v(φs → φ[t+s]) = 1, i.e. v(φt) ≤ v(φ[t+s]) and v(φs) ≤ v(φ[t+s]). Thus immediately Ec(v, t, φ), Ec(v, s, φ) ≤
Ec(v, t+ s, φ), i.e.

Ec(v, t, φ)⊕ Ec(v, s, φ) ≤ Ec(v, t+ s, φ).

(iii) Let c : φ ∈ CS. Then c : φ ∈ ThGJCS
by (CS) in GJ CS , i.e. φc ∈ (ThGJCS

)? and thus for any
v ∈W c, we have v(φc) = 1, i.e. Ec(v, c, φ) = 1 for all v ∈W c.

GJTCS: We have Rc(v, v) = 1 iff ∀φ ∈ LJ : ∀t ∈ Jt : v(φt) ≤ v(φ?) which follows, as v((ThGJT CS
)?) = 1, i.e.

we have that v(φt → φ?) = 1 by axiom (F ), i.e. v(φt) ⇒ v(φ?) = 1, thus v(φt) ≤ v(φ?) for all t ∈ Jt
and any φ ∈ LJ . The rest follows as in the GJCS-case.

GJ4CS: We check the three additional conditions of GJ4-models from Def. 4.6. The rest follows similarly to the
GJCS-case.

(i) Let v, w ∈ W c. If w(φt) = Ec(w, t, φ) ≤ Ec(v, t, φ) = v(φt), the inequality is immediately satisfied.
Thus, suppose that w(φt) > v(φt). But as w ∈W c, we have w(φt) ≤ w((t : φ)!t), i.e.

v(φt) < w(φt) ≤ w((t : φ)!t),

i.e. v(φt) < w((t : φ)!t). Thus

∃ψ ∈ LJ , s ∈ Jt : v(ψ?) < w(ψs).

Thus, we have Rc(w, v) = 0 in this case.
(ii) Let w, v, u ∈W c. As Rc is crisp, we have that either

Rc(w, v) � Rc(v, u) = 0 or Rc(w, v) � Rc(v, u) = 1. For the former, the inequality is trivially
satisfied. Thus suppose Rc(w, v)�Rc(v, u) = 1, i.e. Rc(w, v) = Rc(v, u) = 1 and thus

∀φ ∈ LJ : ∀t ∈ Jt : w(φt) ≤ v(φ?)

and

∀φ ∈ LJ : ∀t ∈ Jt : v(φt) ≤ u(φ?).
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Let φ ∈ LJ and t ∈ Jt be arbitrary. Then, by monotonicity, i.e. item (i), we have that Ec(w, t, φ)�
Rc(w, v) ≤ Ec(v, t, φ), i.e. as Rc(w, v) = 1 we have w(φt) = Ec(w, t, φ) ≤ Ec(v, t, φ) = v(φt). Thus,
we have w(φt) ≤ v(φt) ≤ u(φ?). The claim follows as φ and t were arbitrary.

(iii) For any w ∈W c, as w((ThGJ 4CS
)?) = 1, we have w(φt → (t : φ)!t) = 1 for any φ ∈ LJ , t ∈ Jt, i.e.

Ec(w, t, φ) = w(φt) ≤ w((t : φ)!t) = Ec(w, !t, t : φ)

for any φ ∈ LJ , t ∈ Jt.
GLPCS: For GLPCS , as shown in the GJTCS-case, the presence of the axiom (F ) makes the accessibility function

reflexive. The other properties of a GLPCS-model follow from the GJ4CS-case.
GJ45CS: As of Lem. 5.6, the canonical model has the strong evidence property in any case. We thus just check

the negative introspection property: Let w ∈ W c, i.e. w(¬φt → (¬t : φ)?t) = 1, i.e. ∼ w(φt) ≤ w((¬t :
φ)?t) and thus ∼ Ec(w, t, φ) ≤ Ec(w, ?t,¬t : φ) for any φ ∈ LJ , t ∈ Jt. The other properties follow from
the GJ4CS-case.

GJT45CS: Again, through the GJTCS-case, the presence of axiom (F ) makes the accessibility function reflexive.
The other properties of a GJT45CS-model thus follows from the GJ45CS-case.

�

Now we are ready to prove the main theorem of the paper, establishing strong completeness for all the
introduced model classes and proof systems.

Theorem 5.8 (Completeness of GJLCS). For any Γ ∪ {φ} ⊆ LJ , the following are equivalent:

(i) Γ `GJLCS
φ,

(ii) Γ |=GJLCS≤ φ,
(iii) Γ |=GJLCS

φ,
(iv) Γ |=GJLCSc φ.

Proof. We have (i) ⇒ (ii) for each case GJ CS , GJ T CS , GJ 4CS , GLPCS , GJ 45CS , GJ T 45CS by Lem. 3.18,
Lem. 4.4, Lem. 4.9, Lem. 4.13 respectively. (ii) ⇒ (iii) follows by Lem. 3.6 in any case, and as GJLCSc is a
subclass of GJLCS for every case, we also have (iii) ⇒ (iv). Thus, it suffices to prove (iv) ⇒ (i).

For this, assume that Γ 6`GJLCS
φ. By Lem. 5.3, this is equivalent with Γ? ∪ (ThGJLCS

)? 6`G φ?. By
strong standard completeness of G, there is an evaluation v : L?0 → [0, 1] such that v(Γ? ∪ (ThGJLCS

)?) = 1
but v(φ?) < 1. By the former, we have v((ThGJLCS

)?) = 1 and thus v ∈ W c. By the Truth Lemma 5.5 for
Mc(GJLCS), we thus have, by v(Γ?) = 1, that ec(v,Γ) = 1 and by v(φ?) < 1, we have ec(v, φ) < 1. By
Lem. 5.7, Mc(GJLCS) is a well-defined accessibility crisp GJLCS-model such that (Mc(GJLCS), v) |= Γ but
(Mc(GJLCS), v) 6|= φ for v ∈ D(Mc(GJLCS)). Thus Γ 6|=GJLCSc φ. �

We thus find that an analogue of the symmetry property for the accessibility function is not required to
establish completeness of GJ 45CS and GJ T 45CS w.r.t to their intended semantics, similarly to the classical
boolean case.

We may also derive various corollaries from the strong completeness theorem.

Definition 5.9. A set Γ ⊆ LJ is called consistent in GJLCS , if
Γ 6`GJLCS

⊥.

Corollary 5.10 (Model existence). Let Γ ⊆ LJ . If Γ is consistent w.r.t. GJLCS , then ∃M ∈ GJLCS, w ∈ D(M) :
(M, w) |= Γ.

Proof. Suppose Γ is consistent in GJLCS , i.e. Γ 6`GJLCS
⊥ and thus by Thm. 5.8, Γ 6|=GJLCS

⊥, i.e. ∃M ∈
GJLCS, w ∈ D(M) : (M, w) |= Γ directly per definition of 1-entailment. �

We may also utilize the completeness theorem to show a strong form of conservativity for various Gödel
justification logics, over G.

Corollary 5.11 (Conservativity). Let GJL0 ∈ {GJ 0, GJ T 0, GJ 40, GLP0} and CS be a constant specification
for GJL0. For any Γ ∪ {φ} ⊆ L0, if Γ `GJLCS

φ, then Γ `G φ.

Proof. Suppose Γ 6`G φ. By strong standard completeness of G, Thm. 2.7, we have Γ 6|= φ, i.e. ∃ê ∈ Ev(L0) :
ê(ψ) = 1 for all ψ ∈ Γ but ê(φ) < 1. We now construct a particular GJLCS-model, which encodes this faulty
evaluation:

Let M = 〈W,R, E , e〉 be defined over
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• W := {w},
• R(w,w) := 1,
• E(w, t, α) := 1 for all t ∈ Jt, α ∈ LJ ,
• e(w, p) := ê(p) for all p ∈ V ar.

As E(w, t, α) = 1 for any choice of t and α, it clearly respects CS. Also, as all such entries of the evidence
function are equal, we have

E(w, t, φ→ ψ)� E(w, s, φ) ≤ E(w, t · s, ψ),

E(w, t, φ)⊕ E(w, s, φ) ≤ E(w, t+ s, φ),

E(w, t, φ) ≤ E(w, !t, t : φ).

R is trivially reflexive and (min-)transitive. As W is a singleton, we have monotonicity directly as well. Now,
we can prove:

For any α ∈ L0 : e(w,α) = ê(α).

For this, we proceed by induction on the structure of α. As an induction base, for α = p ∈ V ar, we have
e(w, p) = ê(p) and also e(w,⊥) = 0 = ê(⊥) per definition. The induction step for ∧ and → follows from a
straightforward application of the induction hypothesis.

Now, with M, we have found (in each case) a GJLCS-model such that e(w,ψ) = ê(ψ) = 1 for all ψ ∈ Γ as
Γ ⊆ L0 but e(w, φ) = ê(φ) < 1. Thus, per definition, Γ 6|=GJLCS

φ and thus by Thm. 5.8, we have Γ 6`GJLCS
φ. �

6. An alternative semantics over fuzzy Mkrtychev models

Introduced in [30], Mkrtychev models preceded Kripke-Fitting semantics for justification logics. From their
perspective, Mkrtychev models essentially encode the necessary information concerning the justification modal-
ities only via the admissible evidence function. In the following, we present Gödel-Mkrtychev models for our
various Gödel justification logics for which we prove another strong completeness theorem.

Definition 6.1. A Gödel-Mkrtychev model is a structure M = 〈E , e〉 with

(1) E : Jt× LJ → [0, 1],
(2) e : V ar → [0, 1],

where we have the following conditions on the corresponding admissible evidence function E :

(i) E(t, φ→ ψ)� E(s, φ) ≤ E(t · s, ψ),
(ii) E(t, φ)⊕ E(s, φ) ≤ E(t+ s, φ),

for all t, s ∈ Jt and φ, ψ ∈ LJ .

In a similar spirit as before, e extends to LJ via the following recursive rules:

• e(⊥) = 0,
• e(φ ∧ ψ) = e(φ)� e(ψ),
• e(φ→ ψ) = e(φ)⇒ e(ψ),
• e(t : φ) = E(t, φ).

A Gödel-Mkrtychev model respects a constant specification CS if

E(c, φ) = 1 for all c : φ ∈ CS.
We denote the class of all Gödel-Mkrtychev models by GM and for a class of GM-models C, we denote its
subclass of models respecting a constant specification CS by CCS.

Definition 6.2. Let M = 〈E , e〉 be a GM-model and Γ ∪ {φ} ⊆ LJ . We say

(i) φ is valid in M, written M |= φ, iff e(φ) = 1,
(ii) Γ is valid in M, written M |= Γ, iff ∀ψ ∈ Γ : M |= ψ.

For C a class of GM-models, we say

(iii) φ is a consequence of Γ in C, written Γ |=M
C≤ φ, iff ∀M ∈ C : e(Γ) := infψ∈Γ{e(ψ)} ≤ e(φ),

(iv) φ is a 1-consequence of Γ in C, written Γ |=M
C φ, iff ∀M ∈ C : M |= Γ implies M |= φ.

A formula φ is called C-valid, for a class of GM-models C, if ∅ |=M
C φ. In this case, we also just write |=M

C φ
similarly as before.

Definition 6.3. We call a Gödel-Mkrtychev model M = 〈E , e〉 satisfying

(1) E(t, φ) ≤ e(φ) for all t ∈ Jt, φ ∈ LJ a GMT-model,
(2) E(t, φ) ≤ E(!t, t : φ) for all t ∈ Jt, φ ∈ LJ a GM4-model,
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(3) (1) and (2) a GMLP-model,
(4) (2) and ∼ E(t, φ) ≤ E(?t,¬t : φ) for all t ∈ Jt, φ ∈ LJ a GM45-model,
(5) (1) and (4) a GMT45-model.

Again, in the following, let

GJL0 ∈ {GJ 0,GJ T 0,GJ 40,GLP0,GJ 450,GJ T 450}
and let CS be a constant specification for GJL0. Let GMJLCS represent the associated class of Gödel-Mkrtychev
models respecting that given constant specification CS.

Lemma 6.4. Every formula that is deduced by the rule (CS) is valid in the class of GMJLCS-models.

Proof. Let M = 〈E , e〉 be a GMJLCS-model and let c : φ ∈ CS. Then, as M respects CS, we have E(c, φ) = 1,
i.e. e(c : φ) = 1 per definition for the extended e. �

Lemma 6.5 (Soundness for GMJL-models). For any Γ ∪ {φ} ⊆ LJ :
Γ `GJLCS

φ implies Γ |=M
GMJLCS≤ φ.

Proof. We divide between the different cases for GJLCS . Also, we just check the validity of the modal axioms
in their respective classes. The rest follows from Lem. 6.4 as before.

GJ CS: To see that (J) is valid, observe that

e(t : (φ→ ψ))� e(s : φ) = E(t, φ→ ψ)� E(s, φ)

≤ E(t · s, ψ) = e([t · s] : ψ).

Rearrangement follows again by properties of the residuum. To see that (+) is valid, note that

e(t : φ) = E(t, φ)

≤ E(t+ s, φ) = e([t+ s] : φ),

and similarly for the other version.
GJ T CS: Naturally, we have e(t : φ) = E(t, φ) ≤ e(φ), i.e. e(t : φ→ φ) = 1 by the conditions on GMT-models.

The rest follows from the GJ CS-case.
GJ 4CS: We have that e(t : φ) = E(t, φ) ≤ E(!t, t : φ) = e(!t : t : φ) by the condition of GM4-models. The rest

follows again from the GJ CS-case.
GLPCS: This case follows entirely from the GJ T CS and GJ 4CS cases.
GJ 45CS: We have

e(¬t : φ) =∼ e(t : φ)

=∼ E(t, φ)

≤ E(?t,¬t : φ) = e(?t : ¬t : φ),

i.e. e(¬t : φ→?t : ¬t : φ) = 1. The rest follows from the GJ 4CS-case.
GJ T 45CS: Again, the cases for GJ 45CS and GJ T CS directly imply this one.

�

Definition 6.6. Let v ∈ Ev(L?0) be such that v((ThGJLCS
)?) = 1. We define the canonical Gödel-Mkrtychev

model of GJLCS w.r.t. v,
Mc
v(GJLCS) = 〈Ec, ec〉,

over

(1) Ec(t, φ) := v(φt) for all φ ∈ LJ , t ∈ Jt,
(2) ec(p) := v(p) for all p ∈ V ar.

Lemma 6.7. Let Mc
v(GJLCS) = 〈Ec, ec〉 be the canonical Gödel-Mkrtychev model of GJLCS w.r.t to v. For

all φ ∈ LJ : ec(φ) = v(φ?).

Proof. Induction on the structure of φ:

(IB): Let φ = p ∈ V ar, then ec(p) = v(p) = v(p?) per definition. If φ = ⊥, then ec(⊥) = 0 = v(⊥) = v(⊥?)
per definition for the extension of an evaluation function.

(IS): We again divide between the different connectives of LJ :
For φ = ψ → χ and φ = ψ ∧ χ, the claim follows again directly from (IH), as we have e.g.

ec(ψ ∧ χ) = ec(ψ)� ec(χ) = v(ψ?)� v(χ?) = v(ψ? ∧ χ?) = v((ψ ∧ χ)?) and similarly for →.
In comparison to Lem. 5.5, the claim for φ = t : ψ is even more straightforward, as we just have

ec(t : ψ) = Ec(t, ψ) = v(ψt) = v((t : ψ)?) per definition.
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�

Lemma 6.8. Mc
v(GJLCS) is a well-defined GMJLCS-model for any choice of v ∈ Ev(L?0) such that v((ThGJLCS

)?) =
1.

We omit the proof as it is similar to the proof of Lem. 5.7.

Theorem 6.9. For any Γ ∪ {φ} ⊆ LJ , the following are equivalent:

(i) Γ `GJLCS
φ,

(ii) Γ |=M
GMJLCS≤ φ,

(iii) Γ |=M
GMJLCS

φ.

Proof. (i) ⇒ (ii) follows from Lem. 6.5 and (ii) ⇒ (iii) follows naturally as before. Thus, we show (iii) ⇒
(i). For this, suppose Γ 6`GJLCS

φ. Thus, by Lem. 5.3, we have Γ? ∪ (ThGJLCS
)? 6`G φ?. By strong standard

completeness of G, we have that ∃v ∈ Ev(L?0) : v(Γ? ∪ (ThGJLCS
)?) = 1 and v(φ?) < 1. Now, considering

Mc
v(GJLCS) = 〈Ec, ec〉, we have by the Truth Lemma 6.7, that ec(Γ) = 1 and ec(φ) < 1. By Lem. 6.8, we have

that Mc
v(GJLCS) is a well-defined GMJLCS-model. Thus Γ 6|=GMJLCS

φ. �

Corollary 6.10 (Model existence). Let Γ ⊆ LJ . If Γ is consistent in GJLCS , then ∃M ∈ GMJLCS : M |= Γ.

Proof. Suppose Γ 6`GJLCS
⊥, i.e. by Thm. 6.9 Γ 6|=M

GMJLCS
⊥, i.e. per definition of 1-consequence in Gödel-

Mkrtychev, we have that ∃M ∈ GMJLCS : M |= Γ. �

We may derive a conservativity result for one of the remaining logics easier over the completeness theorem
with respect to Gödel-Mkrtychev models.

Corollary 6.11 (Conservativity of GJ 45CS). Let CS be a constant specification for GJ 450 and let Γ∪{φ} ⊆ L0.
If we have Γ `GJ 45CS

φ, then Γ `G φ.

Proof. Let Γ 6`G φ. By Thm. 2.7, we have Γ 6|= φ, i.e. ∃ê ∈ Ev(L0) : ê(ψ) = 1 for all ψ ∈ Γ with ê(φ) < 1. We
consider the following GM45CS-model M = 〈E , e〉:

• E(t, α) = 1 for all t ∈ Jt and α ∈ LJ ,
• e(p) = ê(p) for p ∈ V ar.

E clearly respects CS as before and it naively satisfies the sum and application laws for basic GM-models. Also,
E(t, φ) ≤ E(!t, t : φ) trivially follows and similarly direct, we have ∼ E(t, φ) = 0 ≤ 1 = E(?t,¬t : φ). As before,
we may prove e(φ) = ê(φ) for any φ ∈ L0 and thus we have found a GM45CS-model M such that M |= Γ and
M 6|= φ. Thus Γ 6|=M

GM45CS
φ and by the Completeness Theorem 6.9, we thus have Γ 6`GJ 45CS

φ. �

A construction of such a counter-model for the remaining logic GJ T 45CS seems to be possible as well.
However, a concrete initial advance proved itself to be rather complicated through the regularity condition
E(t, φ) ≤ e(φ) and we thus leave this as future work.

As in classical justification logic, we can find a way to identify Gödel-Mkrtychev with single world Gödel
justification models.

Definition 6.12. Let M = 〈E , e〉 be a Gödel-Mkrtychev model.

(a) Its 0-valued Gödel justification counterpart model M0 = 〈{w}, R, E , e〉 is defined with
1. R(w,w) := 0,
2. E(w, t, φ) := E(t, φ) for all t ∈ Jt, φ ∈ LJ ,
3. e(w, p) := e(p) for all p ∈ V ar.

(b) Its 1-valued Gödel justification counterpart model M1 = 〈{w}, R, E , e〉 is defined similarly as in (a),
where however R(w,w) := 1.

We find that, for a Gödel-Mkrtychev model M, its 0-valued counterpart model M0 really captures the content
of the evaluation function of M.

Lemma 6.13. For any GM-model M = 〈E , e〉 and its 0-valued GJ-counterpart model M0 = 〈{w}, R, E , e〉, we
have e(φ) = e(w, φ) for any φ ∈ LJ .

Proof. We prove this by induction on the structure of φ.

(IB): Let φ = p ∈ V ar, then e(w, p) = e(p) per definition. Similarly, per definition, we have e(w,⊥) = 0 = e(⊥).
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(IS): We divide between the different connectives of LJ :
For φ = ψ → χ and φ = ψ ∧ χ, the claim follows again directly from (IH), as we have e.g.

e(w,ψ ∧ χ) = e(w,ψ)� e(w,χ) = e(ψ)� e(χ) = e(ψ ∧ χ) and similarly for →.
For φ = t : ψ, we obtain

e(w, t : ψ) = (R(w,w)⇒ e(w,ψ))� E(w, t, ψ)

= (0⇒ e(w,ψ))� E(w, t, ψ)

= E(w, t, ψ) = E(t, ψ).

�

We also find, supposing a relatively weak condition on the class of models, that a 1-valued counterpart of
some Gödel-Mkrtychev model has the same property.

Lemma 6.14. Let M = 〈E , e〉 be a GM-model, where E(t, φ) ≤ e(φ) for all
t ∈ Jt, φ ∈ LJ . For its 1-valued counterpart model M1 = 〈{w}, R, E , e〉, it holds that e(φ) = e(w, φ) for all
φ ∈ LJ .

Proof. We prove this again by induction on the structure of φ. For this, we may proceed as in the proof of Lem.
6.13 where only the case for t : ψ changes:

e(w, t : ψ) = (R(w,w)⇒ e(w,ψ))� E(w, t, ψ)

= e(w,ψ)� E(w, t, ψ) (as R(w,w) = 1)

= e(ψ)� E(t, ψ) (IH)

= E(t, ψ) = e(t : ψ) (as E(t, ψ) ≤ e(ψ)).

�

The following lemma now states that any such counterpart structure is actually a well-defined model. Even
more so, we find that for a Gödel-Mkrtychev model from one of the basic model classes introduced, either its
0- or 1-valued counterpart model is a member of the corresponding class of Gödel justification models.

Lemma 6.15. For any GM, GM4, GM45-model M = 〈E , e〉, M0 is a well-defined GJ, GJ4, GJ45-model, respec-
tively.

Proof. Let M0 = 〈{w}, R, E , e〉. We divide between the various cases:

GM: For any t ∈ Jt, φ, ψ ∈ LJ we obtain

E(w, t, φ→ ψ)� E(w, s, φ) = E(t, φ→ ψ)� E(s, φ)

≤ E(t · s, ψ) = E(w, t · s, ψ),

and

E(w, t, φ)⊕ E(w, s, φ) = E(t, φ)⊕ E(s, φ)

≤ E(t+ s, φ) = E(w, t+ s, φ).

GM4: We have, for any φ ∈ LJ , t ∈ Jt that

E(w, t, φ)�R(w,w) = 0 ≤ E(w, t, φ),

i.e. E is monotone w.r.t. R. Also, we trivially have that R is min-transitive. Lastly, we obtain

E(w, t, φ) = E(t, φ) ≤ E(!t, t : φ) = E(w, !t, t : φ).

The rest follows as in the case for GM.
GM45: For any φ ∈ LJ , t ∈ Jt, we have that

∼ E(w, t, φ) =∼ E(t, φ) ≤ E(?t,¬t : φ) = E(w, ?t,¬t : φ)

and that
E(w, t, φ) = E(t, φ) = e(t : φ) = e(w, t : φ)

where the last equality follows from Lem. 6.13. The rest follows as in the case of GM4.

�

Lemma 6.16. For any GMT, GMLP, GMT45-model M = 〈E , e〉, M1 is a well-defined GJT, GLP, GJT45-model,
respectively.

Proof. Let M1 = 〈{w}, R, E , e〉. We again divide between the various cases:
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GMT: Reflexivity follows per definition and the other inequalities follow as in Lem. 6.15 in the case for GM.
GMLP: For any φ ∈ LJ , t ∈ Jt, we have that

E(w, t, φ)�R(w,w) = min{E(w, t, φ), 1} = E(w, t, φ),

confirming monotonicity of E w.r.t. R. R is again trivially min-transitive and the rest follows as in the
case for GMT and for GM4 in Lem. 6.15.

GMT45: Negative introspectivity of E follows as in Lem. 6.15 in the case of GM45 and we obtain

E(w, t, φ) = E(t, φ) = e(t : φ) = e(w, t : φ),

this time by Lem. 6.14. The rest follows as in the case for GMLP.

�

As a consequence, we obtain that any logic introduced here has the simple finite model property w.r.t.
Gödel justification models. For this, again let GJL0 ∈ {GJ 0,GJ T 0,GJ 40,GLP0,GJ 450,GJ T 450}, CS be a
constant specification for GJL0 and GJLCS and GMJLCS be the corresponding model classes of GJ-models and
GM-models for which we have proved completeness, respectively.

Theorem 6.17. For any Γ ∪ {φ} ⊆ LJ , if Γ 6`GJLCS
φ, then there is a simply finite GJLCS-model M and

w ∈ D(M) with (M, w) |= Γ but (M, w) 6|= φ.

Proof. Suppose that Γ 6`GJLCS
φ. By Thm. 6.9, we have Γ 6|=M

GMJLCS
φ, i.e. there is a GMJLCS-model N such

that N |= Γ but N 6|= φ. If
N ∈ {GM,GM4,GM45},

let M = N0. On the other hand, if
N ∈ {GMT,GMLP,GMT45},

take M = N1. Let N = 〈E , e〉, then for the latter we have that E(t, φ) ≤ e(φ) for all φ ∈ LJ , t ∈ Jt. We obtain
that M either way respects the constant specification CS and that (M, w) |= Γ but (M, w) 6|= φ. This follows
from Lem. 6.13 and Lem. 6.14 respectively. Also, by Lem. 6.15 or Lem. 6.16 respectively, we have that M is
either way a well-defined GJLCS-model. As D(M) = {w}, M is simply finite. �

The above considerations show that the content of the possible-worlds part of Gödel justification models may
be completely encoded into the admissible evidence function, similarly to the classical case. This shows in which
strong ways justifications add information to epistemic scenarios also in the many-valued setting.

This is, at first, in contrast with standard Gödel modal logic, where the fundamental proof systems do not
enjoy the finite model property w.r.t. their fundamental semantics over Gödel-Kripke models, which are Gödel
justification models without the admissible evidence function E . However, the function E in the Gödel-Fitting
models is essentially an infinite object which is why this reduction to finite sets of possible worlds is in a sense
really just a simple and not a true finite model property.

In the literature for the classical case, there are various ways of reducing the admissible evidence function
to a finite object, e.g. by considering so called evidence bases (see [28]), and it remains as an open problem to
further investigate the applicability of those to strengthen the above results.

7. An application of vague justifications

T-norm based fuzzy logic is well known for its capabilities of modeling and resolving argumentation scenarios
involving vague propositions. As shown by Ghari’s treatment in [19] for an epistemic variant of the famous
sorites-style (slippery-slope) paradox, fuzzy justification logics are very well adapted to treat vague justifications
for (vague) propositions.

A difference between Gödel justification logics and other representatives of the class of fuzzy justification
logics is that the Gödel-case can also handle [0, 1]-valued Fitting models with a fuzzy accessibility function.
This proves to be advantageous in modeling certain epistemic scenarios, e.g. the following, where we present a
slippery slope argument taking place inside the accessibility function, which is determined by a vague predicate.
Consider the following situation:

Imagine a person in a room. His room has a temperature of 25 ◦C, which he considers warm and
his feeling of the warmth provides evidence for the room being warm. As he is living in a country
near the equator, he can only imagine the room warm, that is any possible different situation
of his reality involves the room being warm. He thus has a justified true belief of the room
being warm. He agrees, that if one would lower the temperature in his room, it would become
gradually less warm, with 0 ◦C being 0 in degree of warmness. He also agrees that a temperature
change of ±1 ◦C in a warm room will not make it cold. He thus considers a situation possible
where the room temperature is 24 ◦C and iterating this argument he considers a situation
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possible where the temperature is 0 ◦C, which is however not warm anymore, contradicting his
justified true belief.

For a formalization, we use a propositional variable w for the proposition the room is warm and a justification
variable x for representing the feeling of the agent that the temperature of the actual room is warm.

We may first set up an accessibility-crisp Gödel-Fitting model

M = 〈{25,24, . . . ,0}, R, E , e〉

where the worlds correspond to various temperature scenarios of the room, encoded in their name. We may set
E(25, x, w) = 1 as a natural modeling assumption for the agents feeling of the temperature.5 It is natural, in
the different room scenarios 25, . . . ,0 considered as possible worlds, that the proposition w, representing the
actual degree of warmness, is modeled to decline in truth value, e.g. by

e(T, w) =
(T

25

)6
for T ∈ {25, . . . ,0}. For the accessibility function, it is at first reasonable to set R(25,25) = 1. By further
formalizing the assumption from the presented example regarding the accessibility function, and being restricted
to the values 0, 1, we are required to set R(25,24) = 1, as we want that if R(25,T) > 0, then R(25,T− 1) > 0.
Continuing this, we are thus necessarily left with an accessibility function R being characterized by R(25,T) = 1
for any T ∈ {25, . . . ,0}. We may visualize this model as follows:

25

24 23 22 . . .

. . .

0

1 1 1
1

This yields by the semantics of Gödel-Fitting models:

e(25, x : w) = E(25, x, w)� e(25,�w) = e(0, w) = 0.

An accessibility-crisp model is thus not capable, given the premises, to resolve this argument. The problem here
is essentially that, although the accessibility-crisp model is able to model the vagueness of the propositions and
justifications properly, it is not able to model the vagueness determining the accessibility function.

In the case of true [0, 1]-valued Fitting models however, we can formalize the much more natural assump-
tion (which is still in accordance to the described situation) that the accessibility degrees decrease while still
staying positive and even that they decrease much faster than the degree of warmness. We may thus require
R(25,T) > R(25,T− 1) > 0. And the many-valuedness of the accessibility function allows a reasonable
concrete implementation of this assumption by e.g. setting

R′(25,T) =
(T

25

)7
for any T ∈ {25, . . . ,0}. This is also in line with the assumption made before that the current world 25 is
totally accessible, as R′(25,25) = 1. The resulting model M′ = 〈{25, . . . , 0}, R′, E ′, e′〉, with E ′ = E and
e′ = e, can be visualized as follows:

25

24 23 22 . . .

. . .

0

≈ 3
4 ≈ 1

2 ≈ 2
5

0

We obtain, as desired: e′(25, x : w) = E ′(25, x, w)� e′(25,�w) = 1 as we have

R′(25,T) =
(T

25

)7 ≤ (T

25

)6
= e′(T, w)

for any T ∈ {25, . . . ,0} and thus e′(25,�w) = 1.

5In favor of simplicity, we ignore the other values of the evidence function (and similarly so for the forthcoming evaluation and
accessibility functions).
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8. Conclusions and further directions

In this note, we exhibited fuzzy analogies to concepts from justification logic. More specifically, we replaced
classical boolean propositional logic with Gödel fuzzy logic as a base for the modal extensions of justification
logic. With this, we translated the common semantical approach via Kripke-Fitting possible world semantics to
a many-valued setting and, in contrast to previous approaches to fuzzy justification logic, we considered models
with a fuzzy accessibility function. We then provided Hilbert-style axiomatic proof systems for the resulting
analogous model classes of the most common representatives of classical justification logic, proved a strong
completeness theorem for all of them and deduced various corollaries in the following. With Gödel-Mkrtychev
models, we also translated a second semantical access point to justification logic besides the Kripke-Fitting ap-
proach into the setting of Gödel logic for which we provided a second strong completeness theorem for the here
introduced proof systems, which is another similarity Gödel justification logic bears with the classical version.
A conversion of Gödel-Mkrtychev models to Gödel justification models is exhibited at the end.

However, this paper is only one of a few regarding the topic of fuzzy justification logics and there remain a lot
of interesting questions yet still to be answered. In the following, we give pointers to some possible directions.

8.1. Forgetful projection and realization. Very prominent results in the classical case are the realization
and projection theorems by Artemov, relating a justification logic to a classical modal counterpart in the sense
that for every theorem of

(1) the classical modal proof calculus, there exists an assignment of justification terms to the occurrences
of the standard necessity modality � such that the resulting formula is a theorem in the calculus of the
justification logic, (Realization),

(2) the justification proof calculus, replacing every justification modality by the standard necessity operator
� results in a theorem of the classical modal calculus, (Forgetful Projection).

For the systems G�, G� + T�, G� + 4� and G� + T� + 4� established in [9] and the systems GJ CS , GJ T CS ,
GJ 4CS and GLPCS respectively, introduced in this paper, the Forgetful Projection property follows immedi-
ately. It shall be very interesting to see as of if and how the Realization Theorem can be proved in the case of
Gödel justification logic and standard Gödel modal logic.

8.2. Adding the Baaz-Delta and truth constants. One common extension to Gödel (or in general fuzzy)
logics is the Baaz-Delta operator ∆, introduced by Baaz in [4] as a unary crisp projection operator stipulated
over the truth function δ : [0, 1]→ [0, 1] with

δ(x) =

{
1, if x = 1

0, otherwise
.

In plain Gödel logic, this operator is not definable and thus adds expressive strength. Another common exten-
sion is the incorporation of countably many truth-value constants into the language, i.e. adding formulas of the
form c̄ for c ∈ C ⊆ [0, 1] for a countable C and stipulating an evaluation of c̄ in every case as its represented
value c. These extensions, especially in combination with one another, are by now well-studied in the framework
of basic propositional mathematical fuzzy logic, see e.g. [12].

As an advantage in the case of Gödel justification logic, besides gaining general expressive strength, it might
also be interesting to consider graded justification assertions, that is formulas of the type

t :c φ := c̄→ t : φ,

t :c φ := t : φ→ c̄,

t
c
: φ := t :c φ ∧ t :c φ,

for truth constants c̄ with the intuitive reading of having at least, at most and exactly a certainty degree of
c of regarding t as a justification of φ. These were already studied by Ghari in [18], [19] in the context of
justification logic over rational Pavelka logic and considered conceptually different before also by Milnikel in
[29]. The additional presence of the crisp projection ∆ might even create various other possibilities for internal
definitions of model-theoretically interesting justification assertions.

8.3. Using other fuzzy logics as a base. Among the other prominent representatives for systems of math-
ematical fuzzy logic, Gödel logic is in general a well-behaved example (e.g. being the only instance enjoying
the classical deduction theorem), as this paper additionally exhibits through the similarity of Gödel justifica-
tion logic to many classical cases. However, for future work it might be interesting to consider these other
common examples as choices of bases for justification logic. Investigations in this already include Ghari’s work
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[19], where he studies the case of using rational Pavelka logic, i.e.  Lukasiewicz logic with truth constants r̄ for
every r ∈ [0, 1]∩Q. But also  Lukasiewicz logic alone as well as Product logic shall be very interesting to consider.6

As however already exhibited in e.g. [32], [7], [31], these logics prove themselves already to be quite untamed
in the context of classical modal operators, as e.g. the modal axiom (K)

�(φ→ ψ)→ (�φ→ �ψ)

is no longer valid over the class of all corresponding Kripke models with fuzzy accessibility function. It should
be interesting to see how these logics cooperate with an extension in the spirit of justification logic, both in
fuzzy-framed and crisp-framed models and if they are respectively axiomatizable.

References

[1] S. Artemov. Operational Modal Logic. Technical Report MSI 95-29, Cornell University, 1995. Ithaca, NY.

[2] S. Artemov. Explicit Provability and Constructive Semantics. The Bulleting of Symbolic Logic, 7(1):1–36, 2001.
[3] S. Artemov. The logic of justification. The Review of Symbolic Logic, 1(4):477–513, 2008.
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[6] M. Baaz and R. Zach. Compact Propositional Gödel logics. In Proceedings of the 28th International Symposium on Multiple-

Valued Logic, pages 108–113. IEEE Computer Society Press, 1998.
[7] F. Bou, F. Esteva, and L. Godo. Modal systems based on many-valued loigcs. In New Dimensions in Fuzzy Logic and Related

Technologies, Proceedings of the 5th EUSFLAT Conference, volume 1, pages 177–182. Universitas Ostraviensis, 2007.
[8] X. Caicedo and R. Rodriguez. A Godel Modal Logic. ArXiv e-prints, 2009. arXiv, math.LO, 0903.2767.
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6As said before, in [18], Ghari already exhibited the basics of some of these various other systems over crisp frames.


